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Viewpoints

The Axon Initial Segment: An Updated Viewpoint

X Christophe Leterrier
NeuroCyto, INP UMR7051, Aix Marseille Université, CNRS, 13344 cedex 15, Marseille, France

At the base of axons sits a unique compartment called the axon initial segment (AIS). The AIS generates and shapes the action potential
before it is propagated along the axon. Neuronal excitability thus depends crucially on the AIS composition and position, and these adapt
to developmental and physiological conditions. The AIS also demarcates the boundary between the somatodendritic and axonal com-
partments. Recent studies have brought insights into the molecular architecture of the AIS and how it regulates protein trafficking. This
Viewpoints article summarizes current knowledge about the AIS and highlights future challenges in understanding this key actor of
neuronal physiology.

Introduction
Neurons ensure the directional propagation of signals through-
out the nervous system. The functional asymmetry of neurons is
supported by cellular compartmentation: the cell body and den-
drites (somatodendritic compartment) receive synaptic inputs,
and the axon propagates the action potentials that trigger synap-
tic release toward target cells. Between the cell body and the axon
sits a unique compartment called the axon initial segment (AIS).
The AIS was first described 50 years ago (Palay et al., 1968), and
its molecular composition and organization have been progres-
sively elucidated during the following decades (Rasband, 2010a).
Studies have delineated the mechanisms driving its formation
and maintenance, as well as its modification in different physio-
logical and pathological contexts (Grubb et al., 2011; Petersen et
al., 2016; Yamada and Kuba, 2016). Recent years have also
brought crucial insights into the functions of the AIS: how ion
channels at its surface generate and shape the action potential
(Clark et al., 2009; Kole and Stuart, 2012), and how its specialized
scaffold regulates protein trafficking between the cell body and
the axon (Leterrier and Dargent, 2014; Nirschl et al., 2017).

This Viewpoints article aims to provide an up-to-date sum-
mary of these aspects, familiarizing nonspecialists with this
unique neuronal compartment and reviewing the latest results in
this actively evolving field. Numerous, likely subjective, choices
have been made to keep this Viewpoints article short and synop-
tic, and the interested reader will find additional details in several
recent reviews (Jones and Svitkina, 2016; Leterrier, 2016; Zhang
and Rasband, 2016; Nelson and Jenkins, 2017).

Overview of the AIS architecture
In most neurons, the AIS is present along the first 20 – 60 �m of
the axon shaft (Fig. 1). The AIS usually starts just after the axon

hillock close to the cell body, but sometimes more distally, for
example, when the axon emerges as a branch from a proximal
dendrite (Thome et al., 2014; Höfflin et al., 2017). In electron
microscopy studies, the AIS was initially defined by three unique
morphological features: closely apposed bundles of 3–10 micro-
tubules called fascicles, a �50-nm-thick undercoat lining the
plasma membrane, and an almost complete absence of ribosomes
(Palay et al., 1968; Peters et al., 1968). In some neuron types,
the AIS also contains postsynaptic specializations connected to
GABAergic interneurons (Jones and Powell, 1969; Kosaka, 1980).

At the molecular level, AIS proteins organize as a layered scaf-
fold spanning from microtubules to the plasma membrane (Le-
terrier, 2016). The central component of this scaffold is ankyrin G
(ANK3), with long isoforms of 480 and 270 kDa that concentrate
specifically at the AIS and nodes of Ranvier (Kordeli et al., 1995).
Ankyrin G has a modular structure, allowing it to organize the
AIS scaffold, with a membrane-binding domain (made of 24
ankyrin repeats), and spectrin-binding, serine-rich, tail and car-
boxyterminal domains (Fig. 2A) (Bennett and Lorenzo, 2013).
The aminoterminal side of ankyrin G is inserted into the actin/
spectrin submembrane scaffold. It anchors AIS-specific membrane
proteins, including voltage gated sodium (Nav) and potassium (Kv)
channels and two cell adhesion molecules (CAMs): the 186 kDa
isoform of neurofascin 186 (NF-186) and NrCAM (Davis et al.,
1996). The ankyrin G carboxyterminal side connects this sub-
membrane scaffold to microtubules via interactions with
microtubule-associated proteins, such as EB1/3 and Ndel1 (Le-
terrier et al., 2011; Kuijpers et al., 2016).

The actin/spectrin submembrane scaffold and the formation
of the AIS
The actin/spectrin submembrane complex is present along the
whole axonal plasma membrane (or axolemma). In the AIS and
nodes of Ranvier, spectrin tetramers contain the �4-spectrin sub-
unit (Fig. 2B) (Berghs et al., 2000). The full-length, 280 kDa
isoform of �4-spectrin (�4�1) contains an actin-binding calpo-
nin-homology domain, 17 triple-helical spectrin repeats, and a
specific pleckstrin-homology domain (Bennett and Lorenzo,
2013). A shorter, 140 kDa �4�6 isoform lacks the actin-binding
domains and repeats 1–9 (Komada and Soriano, 2002). This
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shorter isoform becomes progressively enriched as the AIS ma-
tures (Yoshimura et al., 2016). Spectrins are head-to-head te-
tramers composed of two � and two � subunits (Fig. 2B). The
�2-spectrin subunit, expressed throughout neurons, has recently
been identified as the �-spectrin partner of �4-spectrin at the AIS
and nodes of Ranvier (Huang et al., 2017a, b). Interaction with
ankyrin G drives the concentration of �4-spectrin at the AIS
(Dzhashiashvili et al., 2007; Yang et al., 2007). Spectrin repeats
14 –15 of �4-spectrin bind to the ankyrin G spectrin-binding
domain (Komada and Soriano, 2002). A second site in the tail of
the 480 kDa ankyrin G is also implicated in its recruitment at the
AIS (Jenkins et al., 2015).

Using super-resolution microscopy, the actin/spectrin sub-
membrane complex in axons was shown to be periodically orga-
nized with actin rings connected by tetramers of spectrin (Figs.
2C, 3A) (Xu et al., 2013; D’Este et al., 2015; Leterrier et al., 2015).
This periodic scaffold is composed of actin and tetramers of �2-
and �4-spectrin at the AIS, while �2-spectrin replaces �4-
spectrin along the distal axon (Zhong et al., 2014; Huang et al.,
2017a). The �190 nm distance between actin rings, just below the
�250 nm diffraction limit of epifluorescence microscopy, corre-
sponds to the length of individual spectrin tetramers (Bennett et
al., 1982). Indeed, spectrin tetramers connect adjacent actin
rings: the aminotermini of the two �-spectrin subunits colocalize
with actin rings, whereas their carboxytermini and the two ami-
notermini of �2-spectrin are found halfway between rings (Fig.
2C) (Zhong et al., 2014; Huang et al., 2017a). In the AIS, ankyrin
G binds to the center of the spectrin tetramer, thus positioning
the ankyrin G/channels/CAMs complex midway between actin
rings (Xu et al., 2013; Leterrier et al., 2015; D’Este et al., 2017). In
the more distal axon, the periodic complex contains �2/�2-
spectrin and anchors ankyrin B rather than ankyrin G between
the actin rings (Xu et al., 2013; Zhong et al., 2014). The periodic
actin/spectrin scaffold is crucial for the robustness of axons, help-

ing them flex and resist mechanical constraints (Krieg et al., 2014,
2017; Zhang et al., 2017). The resulting periodic organization of
Nav and Kv channels (Xu et al., 2013; Leterrier et al., 2015) could
also affect action potential generation and conduction, although
this has yet to be demonstrated.

The periodic actin/spectrin scaffold appears just after axonal
specification, before the assembly of the AIS (Zhong et al., 2014);
this shines a new light on the timing and hierarchy of component
recruitment during AIS formation. Ankyrin G clusters along the
proximal axon early during development: after 3– 4 d in neuronal
cultures, and between embryonic day 13.5 and postnatal day 1 in
vivo depending on the neuronal type (Galiano et al., 2012; Gutz-
mann et al., 2014; Le Bras et al., 2014). Ankyrin G then recruits
other AIS components: ion channels, CAMs, and �4-spectrin
(Zhou et al., 1998; Jenkins and Bennett, 2001; Hedstrom et al.,
2007). The full-length 480 kDa ankyrin G is necessary for this
recruitment and the formation of the AIS, whereas the role of the
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Figure 1. The AIS. A, A typical neuron receives input on the cell body and dendrites (left). The
hillock leads to the axon, which contains the AIS (orange). The distal axon contacts downstream
neurons (right). B, Hippocampal neurons after 22 d in culture labeled for the AIS components
NF-186 (green) and �4-spectrin (red). The somatodendritic compartment is labeled using an
anti-MAP2 antibody (blue). Scale bar, 50 �m. C, Hippocampal neuron after 14 d in culture
labeled for actin (gray), �4-spectrin (red), and Nav channels (green). Bottom, The zoomed
image represents the AIS. Scale bar, 20 �m.
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Figure 2. Molecular structure of ankyrin G and AIS spectrins. A, Domain organization of
ankyrin G, which exists as isoforms of 480 and 270 kDa at the AIS (top, orange). Important
residues (red) and EB-binding SxIP motifs (blue) are indicated. Binding sites of partners are
indicated below the protein (gray bars). B, Domain organization of �4-spectrin, which exists as
isoforms of 280 and 140 kDa (left), and domain organization of �2-spectrin (right). Binding
sites of partners are indicated below the protein (gray bars). Bottom, Structure of the �2/�4
spectrin tetramer. N and C indicate the aminoterminus and carboxyterminus, respectively, of
each subunit. C, The AIS submembrane complex. The �2/�4 spectrin tetramers (red) lie hori-
zontally under the plasma membrane (dark gray), connecting actin rings (purple) with a dis-
tance of �190 nm. In the middle of the tetramer, ankyrin G (orange) is bound to �4-spectrin
and anchors AIS membrane proteins (Nav/Kv7 channels, CAMs, blue).
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shorter 270 kDa isoform is less clear (Fig. 2A) (Jenkins et al., 2015;
Fréal et al., 2016). Binding of ankyrin G to the plasma membrane,
via membrane protein partners or palmitoylation of its
membrane-binding domain, promotes its recruitment and sta-
bility at the AIS (He et al., 2012; Leterrier et al., 2017a). In cortical
neurons, the clustering of ankyrin G occurs after ankyrin B and
�2-spectrin assembly along the distal axon, directing the subse-
quent anchoring of the ankyrin G/�4-spectrin complex along the
remaining proximal axon submembrane (Galiano et al., 2012;
Normand and Rasband, 2015). In another study, the actin/�2-
spectrin periodic scaffold was shown to assemble along the prox-
imal axon after only 2 d in vitro and was not found along the distal
axon until later stages (Zhong et al., 2014). This presence of the
actin/�2-spectrin scaffold before the appearance of ankyrin G at
the nascent AIS suggests that �2-spectrin could be later replaced
or supplemented by �4-spectrin within the periodic scaffold
(Zhong et al., 2014). An interplay between �2-spectrin and
ankyrin G could thus be an early event of AIS formation, but the
exact hierarchical and temporal sequence remains to be
established.

Ion channels at the AIS
Ankyrin G recruits and anchors ion channels (Nav, Kv7) and
CAMs (NF-186, NrCAM) via several binding sites in its mem-
brane-binding domain (Wang et al., 2014). Ankyrin G binds to
an interaction motif within the II-III intracellular loop of Nav
channels (Srinivasan et al., 1988; Garrido et al., 2003; Lemaillet et
al., 2003; Gasser et al., 2012). This results in an �30-fold concen-

tration of Nav channels in the AIS compared with in the dendrites
or distal axon (Kole et al., 2008; Lorincz and Nusser, 2010). The
Nav channel composition of the AIS depends on the develop-
mental stage and on the neuronal type, with Nav1.6 being the
dominant type in mature neurons (Inda et al., 2006; Van Wart et
al., 2007; Lorincz and Nusser, 2008; Duménieu et al., 2017). Nav
channels are primarily responsible for the initiation of action
potentials at the AIS (Clark et al., 2009; Kole and Stuart, 2012).
The pore-forming Nav � is often associated with Nav � subunits,
with a reported AIS concentration of Nav �1 and Nav �4 (Hull
and Isom, 2017), and they are regulated by fibroblast growth
factor homologs FHF1– 4/FGF12–14 (Dover et al., 2016; Pablo
et al., 2016).

Voltage-gated potassium (Kv) channels are also present at the
AIS, forming distinct complexes. Kv7.2 and Kv7.3 channels
(KCNQ2/KCNQ3) concentrate at the AIS by binding to ankyrin G
through a Nav-homologous motif in their carboxyterminal tail (Pan et
al., 2006; Cooper, 2011; Xu and Cooper, 2015). They generate the M
current that restricts intrinsic firing and excitability (Shah et al.,
2008). Kv1.1 and Kv1.2 associate with PSD-93, Caspr2, Tag1, and
ADAM22 at the AIS (Ogawa et al., 2008), where they modulate
action potential firing and waveform (Kole et al., 2007). This
complex is not bound to ankyrin G, and how it localizes at the AIS
remains unclear (Rasband, 2010b). Interestingly, Kv1.2 channels
cluster at actin rings, rather than in-between them (D’Este et al.,
2017). Kv2.1 channels are also found at the AIS, where they form
distinct, large ankyrin G-negative clusters (Sarmiere et al., 2008;
King et al., 2014; Jensen et al., 2017).
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Figure 3. The molecular organization of the AIS. A, Diagram depicting the organization of the AIS scaffold. Membrane proteins (Nav/Kv7 channels, NF-186, NrCAM, blue) are anchored by ankyrin
G (orange), itself inserted into the �2/�4-spectrin complex (red) that spaces actin rings (purple). Kv1 channels (light blue) are present along the distal AIS. In the distal axon, the complex is made
of �2- and �2-spectrin (pink). Ankyrin G binds to microtubules via EB1/EB3 proteins and Ndel1 (brown). AIS microtubules (gray) are capped by CAMSAP2 at their minus-end (brown) and grouped
in fascicles crosslinked by TRIM46 and possibly MTCL-1 (brown). They are enriched in post-translational modifications (PTMs) and GTP islands (yellow). Intracellular patches of actin (purple) are also
present inside the AIS. B, The �50 nm resolution of stochastic optical reconstruction microscopy (STORM) makes it possible to resolve the 190 nm spacing of actin rings and the presence of actin
patches along the AIS. C, STORM can resolve microtubule bundles along the AIS, but the close apposition within bundles (�30 nm spacing) makes it a challenge to distinguish individual
microtubules. Scale bars: B, C, 0.5 �m.
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Several mechanisms underlie the targeting of ion channels to
the AIS (Leterrier et al., 2010). Chimera constructs bearing the
Nav1.2 ankyrin-binding motif are delivered nonspecifically to
the plasma membrane in all compartments, then are selectively
endocytosed in the cell body, dendrites, and distal axon, leaving
only those in the AIS (Fache et al., 2004). This “negative” target-
ing likely happens during the dynamic phase of AIS formation. At
later stages, a direct insertion of Nav channels occurs at the as-
sembled AIS (Akin et al., 2015), cotransported with ankyrin G
(Barry et al., 2014; Leterrier et al., 2017a). Kv1 channels are
targeted to the axon and the AIS through association of
the Kv�2 subunit with the microtubule end-binding protein EB1
and kinesin-2 (Vacher et al., 2011), and a Golgi-independent path-
way directs a specific fraction of Kv2.1 channels to the AIS (Jen-
sen et al., 2017).

Once channels are anchored at the AIS, their diffusion and
turnover are limited (Angelides et al., 1988; Brachet et al., 2010;
Akin et al., 2015; Benned-Jensen et al., 2016). Although they are
not required for AIS formation (Dzhashiashvili et al., 2007; Hed-
strom et al., 2007; but see Xu and Shrager, 2005), depletion of ion
channels and CAMs affects the integrity of the assembled AIS
(Zonta et al., 2011; Leterrier et al., 2017a). A key feature of the
assembled AIS scaffold is thus the interdependence between
components, a feature that could facilitate its plasticity.

Links between the AIS scaffold and microtubules
While the aminoterminus of ankyrin G is inserted in the actin/
spectrin submembrane scaffold, anchoring ion channels and
CAMs, its carboxyterminal side extends �35 nm toward the cy-
toplasm (Fig. 3A) (Leterrier et al., 2015). The numerous SxIP
motifs present in the tail domain of ankyrin G (Fig. 2A) allow
binding to microtubules via EB1 and EB3 proteins (Fréal et al.,
2016). In contrast to their classical role as microtubules plus-end
organizers (van de Willige et al., 2016), EBs concentrate along the
microtubule lattice at the AIS (Nakata and Hirokawa, 2003; Le-
terrier et al., 2011). The interplay between EBs and ankyrin G is
necessary for both the formation and maintenance of the AIS
scaffold (Leterrier et al., 2011; Fréal et al., 2016). The recruitment
of microtubules �50 –100 nm under the plasma membrane by
ankyrin G and EBs could be important for organizing trafficking
into the axon (see below).

Axonal microtubules have a uniform orientation with their
plus-ends toward the axon tip (Fig. 3A) (Baas and Lin, 2011; Yau
et al., 2016). In the AIS, they are grouped in fascicles, a feature
that depends on ankyrin G (Fig. 3B) (Sobotzik et al., 2009). This
unique organization depends on the presence of several micro-
tubule-associated proteins (MAPs) that have been recently iden-
tified at the AIS. CAMSAP2, a member of the CAMSAP/patronin
minus-end binding protein family (Akhmanova and Hoogen-
raad, 2015), is present at the axon hillock (just before the AIS)
and is important for the establishing uniform orientation of mi-
crotubules in the axon (Yau et al., 2014). TRIM46 is associated
with proximal AIS microtubules, and it is important for axon
specification, uniform microtubule orientation, and AIS assem-
bly. Its microtubule-bundling activity could drive the formation
of microtubule fascicles (van Beuningen et al., 2015). Another
microtubule-associated protein, MTCL-1, also associates with
microtubules within the proximal AIS and has a stabilizing role
(Satake et al., 2017).

The biochemical characteristics of microtubules at the AIS are
also unique (Fig. 3A). They are rich in post-translational modifi-
cations (Janke, 2014), such as tubulin acetylation, detyrosination,
and polyglutamylation (Konishi and Setou, 2009; Hammond et

al., 2010; Tapia et al., 2010). These modifications progressively
accumulate as the microtubules age, which is consistent with the
observed stability of AIS microtubules (Baas et al., 1993; Ham-
mond et al., 2010; but see Zempel et al., 2017). Microtubules
polymerize from GTP-tubulin, but the GTP is rapidly hydrolyzed
into GDP after assembly, leaving only a short cap of GTP-tubulin
at the growing microtubule tip (Brouhard, 2015). However, short
stretches of GTP-tubulin can be found along the microtubule
lattice; these either remain after tip assembly (Dimitrov et al.,
2008) or are formed later by in-lattice microtubule repair
(Aumeier et al., 2016). These GTP islands are abundant along the
axon hillock and AIS (Nakata et al., 2011), and they might par-
ticipate in EB accumulation, given that EB1 and EB3 have a pref-
erential affinity for GTP-tubulin (Maurer et al., 2012).

The AIS as the gatekeeper of axonal identity
Depletion of ankyrin G, by shRNA or gene knock-out, has a
profound effect on the proximal axon composition: AIS compo-
nents are not recruited (Zhou et al., 1998; Jenkins and Bennett,
2001; Hedstrom et al., 2007) or lose their localization (Hedstrom
et al., 2008; Leterrier et al., 2017a). Moreover, the proximal axon
of ankyrin G-depleted neurons is progressively invaded by soma-
todendritic-specific proteins, such as MAP2, KCC2, and integrin
�1 (Hedstrom et al., 2008; Franssen et al., 2015; Jenkins et al.,
2015), and ectopic spines containing excitatory postsynaptic
components form along the AIS (Hedstrom et al., 2008; Sobotzik
et al., 2009). Thus, the AIS acts as a boundary between the soma-
todendritic and axonal compartments and maintains the distinct
molecular identity of the axon (Rasband, 2010a). Two processes
potentially contribute to this role: a surface diffusion barrier seg-
regating the somatodendritic and axonal membrane proteins and
an intracellular filter regulating vesicular transport as well as cy-
tosolic diffusion between the cell body and the axon (Leterrier
and Dargent, 2014; Huang and Rasband, 2016; Nirschl et al.,
2017).

The AIS diffusion barrier
The high concentration of membrane proteins anchored at the
AIS (Matsumoto and Rosenbluth, 1985) was proposed to create
an AIS “barrier” maintaining the distinct composition between
the somatodendritic and axonal plasma membrane (Dotti and
Simons, 1990). Indeed, ankyrin G-bound channels and CAMs are
strongly immobilized at the AIS (Nakada et al., 2003; Boiko et al.,
2007; Brachet et al., 2010), and membrane protein diffusion
through the AIS is restricted (Fig. 4A) (Winckler et al., 1999).
Membrane lipids only slowly diffuse between the cell body and
axon (Kobayashi et al., 1992), and single particle tracking shows
that they are less mobile at the AIS than in the cell body or the
more distal axon surface (Nakada et al., 2003). These findings led
to the “picket and fences” model of the AIS diffusion barrier:
diffusion of membrane proteins and lipids is hampered by picket
membrane proteins (channels and CAMs) bound to submembrane
fences (ankyrin G/spectrin/actin scaffold) (Nakada et al., 2003).

How does the “pickets and fences” model accommodate the
periodic alternation of actin rings and ankyrin G/membrane-
protein complexes spaced along spectrin tetramers (Xu et al.,
2013)? Surprisingly, submembrane actin rings, rather than the
ankyrin G/membrane-proteins complex, seem to compartment
the diffusion of a membrane-bound probe along the AIS (Fig.
4A) (Albrecht et al., 2016). A possible explanation is that the
“pickets” formed by ankyrin-bound membrane proteins restrict
diffusion not by excluding the passage of membrane compo-
nents, but by capturing and slowing them down within a dense
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“forest,” similar to what was proposed at the postsynaptic mem-
brane (Renner et al., 2009; Li and Blanpied, 2016). This would
also explain why surface diffusion is not affected in the axon shaft
beyond the AIS, as it lacks the dense array of ankyrin/spectrin-
bound membrane proteins.

Sorting of intracellular trafficking at the AIS
The regulation of intracellular trafficking at the AIS has been
hotly debated since it was initially proposed (Song et al., 2009).
Intracellular trafficking includes diffusion of soluble macromol-
ecules through the AIS axoplasm and active vesicular transport of
membranous organelles and vesicles. Regarding the former, an
actin-based cytoplasmic sieve has been proposed to impede dif-
fusion between the cell body and the axon, with a mesh size
estimated at 13 nm (Song et al., 2009; Sun et al., 2014). However,
fluorescence and electron microscopy do not show a dense accu-
mulation of actin inside the AIS: actin forms rings connected by
spectrin, as in the rest of the axon (Xu et al., 2013; Leterrier et al.,
2015; D’Este et al., 2017), as well as patches made of short inter-
twined filaments (Fig. 3A,B) (Watanabe et al., 2012; Jones et al.,
2014; Leterrier et al., 2017b). Diffusion of the microtubule-
associated protein tau is impaired at the AIS in an isoform-
dependent manner (Li et al., 2011; Zempel et al., 2017).
Altogether the mechanisms of soluble protein diffusion at the AIS
are still unclear; studies using controlled assays could bring more
clarity, as they did for diffusion in the primary cilium (Breslow et
al., 2013; Lin et al., 2013).

Vesicular transport through the AIS has long attracted inter-
est, as regulating the entry of cargoes into the axon could have a
crucial effect on the establishment and maintenance of polarity
(Rasband, 2010a; Bentley and Banker, 2016). Vesicles containing
axonal membrane proteins are assembled in the cell body and
preferentially trafficked into the axon, with no visible slowing at
the AIS (Petersen et al., 2014; Jenkins et al., 2015; Liu et al., 2018),
whereas vesicles harboring somatodendritic proteins are ex-
cluded from entering the axon, or stall and reverse within the AIS
when they do (Burack et al., 2000; Al-Bassam et al., 2012; Petersen
et al., 2014). This suggests that a specific sorting process occurs at
the AIS entrance (Fig. 4B). A handful of recent studies point to a
two-stage mechanism for vesicle recruitment and sorting: (1)
direct recruitment or exclusion at the AIS entrance and (2) re-
trieval of mistargeted cargos within the AIS (Nirschl et al., 2017).
Recruitment of axonal vesicles and exclusion of somatodendritic
cargoes occurs within the axon hillock at the AIS entrance, a
region recently termed “pre-axonal exclusion zone” (Fig. 4B)
(Farías et al., 2015). This region overlaps with the TRIM46-
positive region that depends on ankyrin G for its proper assembly
(van Beuningen et al., 2015). An interesting question is whether
axonal cargo recruitment and somatodendritic cargo exclusion
are independent of the ankyrin G-based AIS scaffold (Farías et al.,
2015; Jenkins et al., 2015). In DRG neurons, that lack the concen-
tration of AIS components, such as ankyrin G, this pre-axonal
exclusion also occurs at the axon hillock via a TRIM46/MAP2
based mechanism (Gumy et al., 2017).

Vesicular transport is driven by motor proteins (kinesins, dy-
nein), and the AIS might also regulate their recruitment to direct
axonal trafficking. Because axonal microtubules have a uniform
orientation with their plus-ends out, plus-end-directed motors
(i.e., kinesins) drive anterograde transport from the cell body
toward the axon tip (Kapitein and Hoogenraad, 2015). A subset
of kinesins, most notably the kinesin-1 members KIF5A/B/C,
selectively direct transport cargoes into the axon rather than den-
drites (Nakata and Hirokawa, 2003; Huang and Banker, 2012;
Lipka et al., 2016). The KIF5 motor head is able to recognize and
selectively bind microtubules that enter the axon (Nakata and
Hirokawa, 2003), but the cue it detects remains elusive. KIF5
could recognize distinct post-translational modifications on ax-
onal microtubules (Konishi and Setou, 2009; Hammond et al.,
2010; Tapia et al., 2010). Interestingly, stretches of GTP-tubulin
(“GTP islands”) found along microtubules in the AIS have been
shown to recruit KIF5 (Nakata et al., 2011). Based on this, I
propose a “repair and recruit loop” hypothesis of preferential
KIF5 recruitment into the axon. As mentioned above, GTP is-
lands were initially proposed to be remnants from GTP-tubulin
polymerization at the microtubule plus tip (Dimitrov et al., 2008;
Nakata et al., 2011), but they can instead result from repair of
microtubule defects by the incorporation of GTP-tubulin into
the lattice (Schaedel et al., 2015; Aumeier et al., 2016). Moreover,
such defects might be created by the passage of kinesin motors,
which can remove tubulin monomers as they walk along micro-
tubules (Dumont et al., 2015). This would generate a feedback
loop to establish preferential transport to the axon: the sustained
procession of axonal kinesins induces numerous defects along
AIS microtubules, which are subsequently repaired by GTP-
tubulin incorporation. This concentration of GTP-tubulin drives
the recruitment of more kinesins, causing more defects, repair,
and recruitment.

An additional sorting mechanism involving retrieval within
the AIS ensures that somatodendritic cargoes are not mistargeted
to the axon (Fig. 4B). Actin is involved in this process: the actin-
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Figure 4. Protein trafficking at the AIS. A, The AIS forms a diffusion barrier for membrane
proteins and lipids (gray). A virtual trajectory (top) shows unimpaired diffusion at the cell body
and distal axon (green segments), whereas diffusion at the AIS is limited by the AIS scaffold (red
segments). B, Sorting of transport vesicles at the AIS entrance. Vesicles containing axonal car-
goes (green) have kinesin motors (blue) that recognize cues on microtubules entering the axon,
either post-translational modifications or GTP islands (yellow), before being transported into
the axon (green arrow). Somatodendritic cargoes that start progressing into the AIS (red) are
stopped by myosin-mediated immobilization at actin patches, before being brought back to the
cell body by Ndel1-dependendant dynein transport (red arrows).
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based molecular motor myosin V interacts with binding motifs
on somatodendritic proteins (Lewis et al., 2009) and immobilizes
vesicles at actin patches within the AIS, preventing further trans-
port (Watanabe et al., 2012; Balasanyan et al., 2017; Janssen et al.,
2017). Ndel1, a regulator of the microtubule minus-end-directed
motor complex dynein, is stably anchored at the AIS by its inter-
action with ankyrin G (Kuijpers et al., 2016). Ndel1, together with
its partner LIS1, can activate dynein-mediated transport to re-
trieve vesicles stalled at the AIS, and this retrieval is regulated by
cdk5-mediated phosphorylation of Ndel1 (Klinman et al., 2017).
Another retrieval mechanism involves the activation of dynamin-
mediated retrograde transport by Rab5 and its effector FHF (Guo
et al., 2016). Thus, AIS retrieval is likely to rely on actin-
dependent immobilization followed by dynein-mediated retro-
grade transport to the cell body, but this sequence has not been
directly demonstrated yet.

Morphological plasticity at the AIS
Despite its complex architecture and overall stability, the AIS
morphology is finely regulated and can adapt to physiological or
pathological cellular changes (Yoshimura and Rasband, 2014;
Yamada and Kuba, 2016; Jamann et al., 2018). This includes
short-term changes (seconds to minutes) due to channel modu-
lation, or long-term changes (hours to days) implicating mor-
phological changes (Petersen et al., 2016).

Fast inhibition of the AIS electrogenic properties is often
linked to elevated intracellular calcium. Elevated activity leads to
fast endocytosis of Nav and Kv7 channels from the AIS due to
calcium entry via NMDA receptors (Benned-Jensen et al., 2016).
Entry of calcium can also occur via P2X receptors, downregulat-
ing sodium channel currents (Del Puerto et al., 2015), or via Cav3
channels to suppress the M-current driven by Kv7 channels
(Martinello et al., 2015). Neuromodulatory transmitters can also
regulate channel activity at the AIS. For example, dopamine can
inhibit Cav3 channels (Bender et al., 2010; Yang et al., 2016), and
serotonin, acting via 5-HT1A receptors, modulates Nav in corti-
cal pyramidal neurons (Yin et al., 2017) and motoneurons (Cotel
et al., 2013). Serotonin also modulates HCN channels near the
AIS (Ko et al., 2016).

The AIS also exhibits long-term changes in morphology, with
variations in length and position along the proximal axon
(Yamada and Kuba, 2016). During development, the AIS short-
ens and densifies (Kuba et al., 2014; Le Bras et al., 2014) or length-
ens (Galiano et al., 2012) depending on the neuronal type
studied. The AIS is stably maintained with age in the rat hip-
pocampus (Kneynsberg and Kanaan, 2017) but shortens in
monkeys (Cruz et al., 2009). These variations allow intrinsic ex-
citability to be tuned, and they are linked to the development of
inputs: early-life interventions, such as sensory deprivation, can
affect this morphological evolution (Gutzmann et al., 2014; Kuba
et al., 2014; Nozari et al., 2017; Schlüter et al., 2017). In addition,
extrinsic factors, such as BDNF/NT3, can regulate AIS position
(Guo et al., 2017).

The morphology of the assembled AIS can also adapt in re-
sponse to changes in activity: diminished activity results in AIS
lengthening (Kuba et al., 2010), and elevated activity leads to a
distal shift along the axon (Grubb and Burrone, 2010). This mor-
phological plasticity has been observed in neuronal cultures
(Grubb and Burrone, 2010; Chand et al., 2015), in organotypic
brain slices (Wefelmeyer et al., 2015), in human pluripotent stem
cell-derived neurons (Horschitz et al., 2015), and in vivo (Kuba et
al., 2010). It is thought to alter intrinsic excitability in a homeo-
static direction (Grubb and Burrone, 2010; Wefelmeyer et al.,

2016). However, the exact consequence of the AIS lengthening or
distal shift on the intrinsic excitability is not trivial, as it depends
on the overall morphology of the dendritic arbor (Brette, 2013;
Gulledge and Bravo, 2016; Hamada et al., 2016). More subtle
effects, such as a switch in ion channel composition between Kv7
and Kv1 (Kuba et al., 2015), antagonistic phospho-dependent
regulation of Nav channels (Evans et al., 2015), or separation
between the AIS scaffold and inhibitory synapses along the prox-
imal axon (Muir and Kittler, 2014; Wefelmeyer et al., 2015), con-
tribute to the modulation of excitability. A new type of plasticity
involving a distal shift has also been observed recently in response
to inhibition of Kv7 channel activity (Lezmy et al., 2017).

What are the molecular mechanisms of AIS morphological
plasticity? Phosphorylation can strengthen or loosen multiple in-
teractions within the AIS scaffold, providing a starting point for
morphological changes. Protein kinase CK2 regulates the inter-
action between ankyrin G and Nav as well as Kv7 channels
(Bréchet et al., 2008; Hien et al., 2014; Xu and Cooper, 2015), and
it is implicated in Kv7-mediated plasticity (Lezmy et al., 2017).
The kinase Cdk5 is implicated in regulating AIS length (Trunova
et al., 2011; Chand et al., 2015), and the phosphatase calcineurin
drives the distal shift in response to elevated activity (Evans et al.,
2013), but in both cases the target and precise site of action are
unknown. Other kinases, such as CaMKII (Hund et al., 2010) and
GSK3� (Tapia et al., 2013), are anchored to the AIS scaffold, but
their role in regulating the scaffold remains elusive. Degradation
of AIS components could also play a role in morphological plas-
ticity, as calpain can degrade AIS components after ischemic in-
jury or excitotoxic events (Schafer et al., 2009; Del Puerto et al.,
2015; Benned-Jensen et al., 2016).

Changes in the AIS position must ultimately be driven by
cytoskeletal adjustments. Actomyosin contractility has been im-
plicated in this process (Evans et al., 2017), and the distal shift
caused by hyper-phosphorylated tau suggests microtubule in-
volvement as well (Hatch et al., 2017). A structural understand-
ing of AIS morphological plasticity awaits future studies. New
insight may come from studies in genetically tractable organisms,
such as Drosophila, where the proximal axon has recently been
shown to possess trafficking-related features of the mammalian
AIS (Trunova et al., 2011; Rolls and Jegla, 2015; Jegla et al., 2016).

Finally, plasticity and alteration of AIS components are impli-
cated in a variety of nervous system pathologies, such as epilepsy
(particularly forms caused by mutations in AIS-concentrated ion
channels), neurodegeneration (Sun et al., 2014; Tsushima et al.,
2015; Zempel et al., 2017), neuroinflammatory/demyelinating
diseases (Hamada and Kole, 2015; Clark et al., 2016; Benusa et al.,
2017), and bipolar disorders and schizophrenia (Luoni et al.,
2016; Kloth et al., 2017; Lopez et al., 2017; Zhu et al., 2017). A
complete overview of AIS involvement in pathological situations
is beyond the scope of this Viewpoints article; in addition to the
latest studies cited above, the interested reader is referred to sev-
eral comprehensive reviews (Wimmer et al., 2010; Buffington
and Rasband, 2011; Hsu et al., 2014).

Future questions for AIS cell biologists
In conclusion, the AIS is a complex assembly of membrane pro-
teins, scaffold proteins, and cytoskeletal adaptors. It has key roles
in neuronal physiology, as it drives excitability and maintains
polarity. It is exquisitely regulated and can adapt its composition
and morphology during development and adult life. I would like
to finish by highlighting a couple of key cell biology questions
about the AIS that are still unresolved. The first one is the exact
mechanism(s) for trafficking of cargoes at the axon entrance.
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Advances have been made recently, but the puzzle still lacks a few
important pieces: How is the sequence of traffic events coordi-
nated? Are all microtubules within the axon hillock and the AIS
equivalent or are there different populations for anterograde,
retrograde, short and long distances transport? The second ques-
tion is the structural mechanisms underlying AIS morphological
plasticity. When the position of the AIS changes along the axon,
does the AIS slide as a whole or does it disassemble and reassem-
ble at its extremities? Is the position of the AIS driven by the
submembrane actin scaffold via contractility mechanisms or by
intracellular interactions between ankyrin G and microtubules?
Future work will undoubtedly shed light on these questions and
buttress the crucial role of the AIS in neuronal organization and
function.
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Akin EJ, Solé L, Dib-Hajj SD, Waxman SG, Tamkun MM (2015) Preferen-

tial targeting of Nav1.6 voltage-gated Na � channels to the axon initial
segment during development. PLoS One 10:e0124397. CrossRef Medline

Al-Bassam S, Xu M, Wandless TJ, Arnold DB (2012) Differential trafficking
of transport vesicles contributes to the localization of dendritic proteins.
Cell Rep 2:89 –100. CrossRef Medline

Albrecht D, Winterflood CM, Sadeghi M, Tschager T, Noé F, Ewers H (2016)
Nanoscopic compartmentalization of membrane protein motion at the
axon initial segment. J Cell Biol 215:37– 46. CrossRef Medline

Angelides KJ, Elmer LW, Loftus D, Elson E (1988) Distribution and lateral
mobility of voltage-dependent sodium channels in neurons. J Cell Biol
106:1911–1925. CrossRef Medline

Aumeier C, Schaedel L, Gaillard J, John K, Blanchoin L, Théry M (2016)
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