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Abstract

The paper focuses on the estimation of the sensor faults and the state variables,

using an unknown inputs observer (UIO), applied to an induction machine. A

model based on LPV (linear parameter varying) systems of the machine is used

where the rotation speed is considered as a variable parameter. Then based

on Lyapunov theory, a feasible algorithm is explored to ensure the stability of

the proposed approach. Furthermore, the observer efficiency is investigated in

presence of the current sensor faults. It’s done by using the calculation of the

observer gains based on the LMI (Linear Matrix Inequalities). The contribution

of this study lies on the development of an extended unknown inputs observer

(UIO) to estimate the sensors faults. In addition, an augmented system is con-

structed, using a first filter, to transform the sensor faults to actuator faults and

the noise to disturbance. The performance of this method is compared either

in terms of state observation errors or in terms of fault estimation. The results

obtained by simulation illustrate the effectiveness of the proposed approach.
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parameter varying (LPV); Linear Matrix Inequalities (LMI); sensor

faults.

1 Introduction

The induction cage machine (IM) is well known since a long period in leading

position in applications requiring very high dynamic and static performance,

due its the simplicity, low manufacturing cost and low maintenance[1]. A

low starting torque accompanies this simplicity and at constant frequency, it5

transmits a fixed speed. The induction motor has become the most widely used

in complex system, especially due to the development of power electronics

devices, which have brought the notion of true frequencies. In addition, the

flux control allows the induction motor to provide high torque especially at the

machine start and working at variable speed[2].10

Due to the nonlinearity of the induction machine dynamic model and the

influence of parametric variations, the control of this machine is not easy.

Therefore, the IM control becomes an attractive topic, several works dealing

with IM control can be found in the literature. The indirect field oriented

control (IFOC) technique is the mostly used, [[3],[4],[5]] applied this technique15

in their investigation, as is also the Direct Torque Control (DTC) command used

in [6], in [7], the authors have improved the performance of IM control using

this technique based on fuzzy logic. In addition, the approach of control by

sliding mode was developed in [8]. In [9] a combination of the sliding mode and

the DTC with an observation of the magnetizing reluctance has been studied.20

On the other hand, the approaches without sensor speed were developed. The

stability of an estimation based on a back Electromotive Morce- Model Reference

Adaptive System (EMF-MRAS) observers apply to an induction machine has

been analyzed. [10].

In order to improve efficiency, the reliability can be achieved by fault tol-25

erant control (FTC) [[11],[12],[13]].The first step of tolerant controls is the

detection and location of faults. Fault detection uses up to now signal process-
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ing techniques [14], for operating phases, which highlights and localizes faults.

Moreover, we can find other techniques based on observers [15] or analytical

redundancy based on parity space space approach [16] and the modelless ap-

proaches such as the use of neural networks in [17] and fuzzy logic in [18]. The

second step is named the faults estimation, as presented by [19]. On other hand,

in [20] diagnosis problems of the induction motors were developed, with neural

detectors, in the case of rotor, stator and rolling bearing faults. In this case, in

[21] the authors present an accurate transient model of squirrel cage induction

machines under current stator failures.

Linear Parameter Varying (LPV) approach can be used to convert a nonlinear

system into a multiple model form. LPV systems can be seen as nonlinear

systems that are linearized along a trajectory determined by the parameter

vector, this approach is developed in several works, in [22] a control system of a

LPV system is designed, , López-Estrada et al [23] studied the stability of the

double feed induction machine (DFIG) using LPVs. In addition, and Bokor et

al [[24]] used the LPV system to investigate the fault detection and isolation

by using an approach for linear invariant systems and extended to LPV ones.

Moreover, to eliminate the nonlinear character of the system, the authors of

[25] use a Takagi-Sugeno approach for the design of a nonlinear state observer.

There are several methods developed for fault diagnosis and estimation. The

most effective method use unknown observers input, and it is used in [26] to

develop a detection and diagnostic system for the induction machine. . Rotondo

et al [27] propose a diagnosis of actuator faults and icing in unmanned aerial

vehicles (UAVs) based on a unknown input observer which use linear parameter

varying model. Despite of its advantages, the UIO is only used for actuator

faults and unknown input such as rotor resistance, also an extended version is

necessary and a first order filter is used for building an augmented system. In

the proposed method, the sensor fault and noise can be converted into actuator

fault and disturbance.

In this context, this article investigates an estimation of the sensor faults and

the output states of the IM by an extended observer with unknown input based
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on an LPV model. Then, this problem will be solved using the Linear Matrix

Inequalities (LMI) tools.60

The rest of this paper is organized as follows. Section 2, gives the dynamic

presentation of the induction machine and its nonlinear state representation.

In section 3, the development of the variable parameter linear model of IM is

presented. The model obtained is used in Section 4 to synthesis and design an

augmented unknown inputs observer UIO for IM sensor fault estimation.The65

results demonstrate effectiveness of the proposed approach are given in Section

5, followed by some conclusions and future works in section 6.

Notation:

Throughout the paper, the following useful notation is used:

• T T denotes the transpose of the matrix T .70

• T > 0 means that T is a symmetric positive definite matrix.

• ||T || represents the norm for matrix T and the symbol ∗ denotes the trans-

pose elements in the symmetric positions.

• Sometimes to simplify the calculation, we will write the variables that

depend on the time without : (t)75

2 Dynamic model of induction machine

The current modeling approach of the asynchronous machine is based on

the transformation of the three-phase system into a bi-phase system equivalent

to Park. It can also be asserted that the model is nonlinear as shown by the
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following equations [[2],[6],[8],[11],[16],[28]]:80



d
dt ids =

(
1
σLs

)(
−Rsmids + σLsωsiqs + Lm

LrTr
φdr + LmP

Lr
φqrωr +Vds

)

d
dt iqs =

(
1
σLs

)(
−Rsmiqs − σLsωsids + Lm

LrTr
φqr + LmP

Lr
φdrωr +Vqs

)

d
dtφdr = Lm

Tr
ids − 1

Tr
φdr + (ωs − Pωr )φqr

d
dtφqr = Lm

Tr
iqs − 1

Tr
φqr + (ωs − Pωr )φdr

d
dtωr =

(
P Lm
JTr

)(
iqsφdr − idsφqr

)
+ 1
J (−Cr −Kf ωr )

(1)

The systems shown in equation (1) can be written in the general nonlinear

form, equation (2):


ẋ = A(x).x(t) +B.u

y = C.x(t)
(2)

Where A is the state function matrix and g is the input function matrix.

The state variables are the stator and rotor current components with flux

and speed velocity, in addition, the inputs are the stator voltage components,

but the outputs are stator current components and speed velocity as given

in Equations (3) to (7).Then the equation (1) of a squirrel-cage asynchronous

machine rewritten in state space form (2) becomes:



ẋ1 = −γx1 +ωsx2 +αkx3 + P kx4x5 +u1

ẋ2 = −ωsx1 −γx2 +αkx4 − P kx3x5 +u2

ẋ3 = αLmx1 −αx3 + (ωs − P x5)x4

ẋ4 = αLmx2 −αx4 − (ωs − P x5)x3

(3)

The state vector x is given by:

x =
[
x1 x2 x3 x4

]T
(4)

5



where : x1 = ids; x2 = iqs; x3 = φds; x4 = φqs; x5 =ωr

By replacing x1,x2,x3,x4 in equation (1) we obtain the speed velocity given by

equation(5)

ω̇ = ψ (x2x3 − x1x4) +
1
J

(
−cr −Kf ω

)
(5)

And: α = 1
Tr
, β = 1

σLs
, γ = β.Rsm, k = Lm

σLsLr
, ψ = P Lm

JTr
.

The model equation (3) is under the polynomial form and allows the non-85

measurable state variables can be eliminated. xε<n is the state vector, uε<p

is the vector of control inputs and yε<m is the output vector and variables

are functions of time t. All vectors are in appropriate dimensions. The output

vector is:

y =
[
y1 y2

]T
=

[
x1 x2

]T
(6)

The input vector is:90

u =
[
u1 u2

]T
=

[
Vds Vqs

]T
(7)

The input function matrix g in equation 2 is:

B =




1
σLs

0 0 0 0

0 1
σLs

0 0 0




T

(8)

As mentioned in the introduction, the work will be devoted to the estimation

of the sensor fault and the state estimation. The scheme presented in figure 1,

gives a presentation of the principle of the observer with unknown input, where

U represents the command, fs is the sensor fault, f̂s and x̂ are respectively the95

estimate of the fault and the estimate of the state, and y the output (sensor) of

the machine.

6



Figure 1: Schematic block of the approach.

3 Linear parameters variable (LPV) model of induction machine

In order to transform the nonlinear state–space model of Induction Machine

considered in equation 3 to an LPV system, the speed rotation is considered100

as varying parameter and equation (9) gives the the LPV model, it can also be

asserted that the model is nonlinear.

The equations (9- 18) show the different steps of the developement of the

LPV model for the induction machine.

ẋ = A(x).x(t) +B.u (9)

Where:

A(x) =




−γ ωs αk P kω

−ωs −γ −P kx3ω αk

αLm 0 −α ωs − Pω
0 αLm − (ωs − Pω) −α




and u =




u1

u2

0

0




(10)

If the rotor speed is considered as a varying parameter ρ = ω , the equation105
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(9) can be written in the usual form:


ẋ(t) = A[ρ(t)]x(t) +Bu(t)

y(t) = Cx(t)
(11)

where :

A(ρ) = A0 +
r∑

i=1

ρiAi (12)

With:

A0 =




−γ ωs
k
Tr

0

−ωs −γ 0 k
Tr

Lm
Tr

0 − 1
Tr

ωs

0 Lm
Tr
−ωs − 1

Tr




(13)

Ai =




0 0 0 P kωi

0 0 P kωi 0

0 0 0 −P kωi
0 0 Pωi 0




(14)

And :

C =



1 0 0 0

0 1 0 0


 (15)

We assume for physical limits that all the current and speed are measurable

and this allowed us to say that:

ωmin ≤ω ≤ωmax (16)

For this purpose, the following variation interval is obtained:



A1 = Aωmin⇒ ρ1 = ω−ωmin
ωmax−ωmin

A2 = Aωmax⇒ ρ2 = ωmax−ω
ωmax−ωmin

(17)

So we will have :
r∑

i=1

ρiAi = ρ1A1 + ρ2A2 (18)

And:
r∑
i=1
ρi = 1 is verified
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4 Design of unknown input observer for sensor fault estimation

Knowing that the unknown input observers are designed for the evaluation

of the actuator faults, so, it is necessary to build the extended version in order

to estimate the sensor faults. In this section, based on the system of equation

(19), an observer will be developed to estimate the sensor faults. In addition,

from this equation the noise will be considered in the system :

ẋ = A(ρ).x(t) +B.u

y = C.x(t) +Ww(t) +Fsfs(t)
(19)

Where x is the state vector, u the input, y the output and w the noise and110

fs the sensor fault vector. A, B, F and D are matrix of appropriate dimension.

Based on LPV and by substituting in equation of A, The system (19) can be

rewritten as follows:



ẋ =
r∑
i=1
ρiAi .x(t) +B.u(t)

y = C.x(t) +Ww(t) +Fsfs(t)
(20)

The construction of the augmented system is based on filtering y(t) by a first

order filter such that:115


ẋs = As.xs(t) +Bs.us(t)

y = xs(t)
(21)

Where: As is negative.

Knowing that the filter control will be done by the observer output, so we

obtain :

ẋs = As.xs(t) +Bs.[C.x(t) +Ww(t) +Fsfs(t)] (22)

By combining the system (20) with (22) we have the following equation:120



ẋ =
r∑
i=1
ρiAi .x(t) +B.u(t)

ẋs = As.xs(t) +Bs.C.x(t) +Bs.W .w(t) +Bs.Fs.fs(t)]
(23)

9



Therefore, the following matrix system can be deduced:


ẋ

ẋs


 =



Ai 0

Bs.C As






x

xs


+



B

0


u +




0

Bs.Fs


fs +




0

Bs.W


w (24)

Denote :

˙̄x =
[
ẋT (t) ẋTs (t)

]
and x̄ =

[
xT (t) xTs (t)

]
(25)

Therefore, equation (26) gives the expression of the augmented system

ẋ = Āi(ρ).x̄(t) + B̄.u(t) + D̄w(t) + F̄fs(t)

y = C̄.x̄(t)
(26)

Where the expression of the matrices are:

Āi =



Ai 0

Bs.C As


 , B̄ =



B

0


 , D̄ =




0

Bs.W


 , F̄ =




0

Bs.Fs


 , C̄ =



0

C


 ,

In this case, the system (26) makes it possible to treat the sensor faults as actua-

tor faults.

125

Consider the system (26), which describes our system of continuous descrip-

tor (LPV) affected by perturbations and apply the following assumptions to

determine the gains of the observer:

• Āi Is an invariant matrix over time.

• (Āi , C̄ ) is observable.130

• C̄ is full rank and also D̄ is full row of columns.

• w(t) and fs(t) are derived and bounded functions

Based on the system ((26)), the unknown observer can be written as :


ż(t) =
r∑
i=1
ρiNiz(t) +Gu(t) +Ly(t) + T f̂s

x̂(t) = z(t)−Ex(t)
(27)

where :

10



• z(t) state vector related to x(t)

• Ni ,G,L, T and E, are matrices of appropriate dimension.135

The error is defined such that:

e(t) = x̄(t)− ˆ̄x(t)

= (I2 +EC̄)x̄(t)− z(t)
(28)

Then the expression of the error becomes:

ė(t) =Mẋ(t)− ż(t) (29)

where : M = I2+EC̄ and I2 is an identity matrix with appropriate dimensions.

Therefore, the dynamic error can be rewritten as:

ė = [M
r∑
i=1
ρiĀi −

r∑
i=1
ρiNiM −LC̄]x(t) +MD̄ω(t) + [MB̄−G]u(t)

+MF̄fs(t)− T f̂s +
r∑
i=1
ρiNie

(30)

Based on the following change of variable f̃s(t) = fs(t)− f̂s(t)⇒ fs(t) = f̃s(t) +

f̂s(t), and if the conditions in equation(31) hold :


M
r∑
i=1
ρiĀi −

r∑
i=1
ρiNiM −LC̄ = 0

MB̄−G = 0

MD̄ = 0

T =MF̄

(31)

The dynamic error becomes:

ė =
r∑

i=1

ρiNie+ T f̃s (32)

Note the dynamic error is only related to f̃s, then the error tends to zero if the

Ni is Hurwitz and estimation converges to zero.

Knowing that re = y(t)−ŷ(t) and based on equation of y in (26) , the following

relationship is obtained:

⇒ re = C̄e(t)

⇒ ṙe = C̄ė(t)
(33)

11



The formula chosen to estimated the fault is equation (34), its stability is

studied using Lyapunov function equation (35):140

˙̂f (t) =QS(ṙe + σre) (34)

V = eT P e+
1
σ
f̃s
T
Q−1f̃s (35)

By deriving the equation , the equation (36) is obtained :

V̇ = ėT P e+ eT P ė+ 1
σ

˙̃f Ts Q
−1f̃s + 1

σ f̃s
T
Q−1 ˙̃fs (36)

Knowing that ˙̃f Ts f̃s = f̃s
T ˙̃fs, the following derivative Lyapunov function can

be obtained :

V̇ = ėT P e+ eT P ė+ 2
σ f̃s

T
Q−1 ˙̃fs (37)

By replacing equations (34) and (32) in equation (37), the final expression of

the stability derivative expression obtained, equation (38):

V̇ =
r∑

i=1

ρie
T (Ni

T P + PNi)e+
2
σ
f̃s
T
Q−1ḟs − 2

σ
f̃s
T
SC

r∑

i=1

ρiNie− 2
σ
f̃s
T
SC̄T f̃s (38)

To study system stability, lemma 01 theorem, is used to transform equation

(38) to inequality, equation (41).

Lemma 1

Given a scalar µ and a positive positive symmetric matrix P1, the following

equality is true [29]

2xT y ≤ 1
µ
xT P1x+µyT P −1

1 y (39)

Based on lemma 01, we can deduce the following inequality:

2
σ
f̃s
T
Q−1ḟs ≤ 2

σ
(
1
µ
f̃s
T
P1f̃s +µQ−1T ḟs

T
P −1

1 Q−1ḟs) (40)

According to the proposed hypothesis, we have the derivative of the fault fs

is bounded then :
∣∣∣
∣∣∣ḟs

∣∣∣
∣∣∣ < α1 , Such as 0 < α1 <∞ and

∣∣∣
∣∣∣ḟs

∣∣∣
∣∣∣+

∣∣∣∣
∣∣∣∣ḟs
T
∣∣∣∣
∣∣∣∣145
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By combining the equation (32) and equation (40), the inequality (38) is

obtained:

V̇ ≤
r∑

i=1

ρie
T (Ni

T P+PNi)e+
1
µσ
f̃s
T
P1f̃s+φ− 2

σ
f̃s
T
T T

r∑

i=1

ρiNie− 2
σ
f̃s
T
SC̄T f̃s (41)

Note that: φ = µ
σ α

2
1λmaxQ

−1T P −1
1 Q−1

The vectorε is defined as :

ε =



e

f̃




T

(42)

Now the vector V̇ can be writen as follows:

V̇ ≤
r∑

i=1

ρiε
Tψiε+φ (43)

Where :

ψ =



Ni

T P + PNi ∗
1
σ T

T PNi
1
µσ P1 − 2

σ T
T P T


 ≤ 0 (44)

From the convergence conditions (31), H can be written as follows :

H = [M,E] = [M,E] = [I,0]



I D

−C 0


 (45)

Denote:

Ki = Li −NiE

by the substitution of (45) to (31), the gains of the observers can be calculated

as :
Ni =MAi −KiC

Li = Ki(I +CE)−MAiE
T =MF

(46)

Replacing the Ni of equation (46) in equation (44) and taking k̄i = P .ki , the

solution of the LMI can be obtained by YALMIP or MATLAB editor. The figure

(2) shows the different computing steps of the observer algorithm :150

13



Figure 2: Algorithm of Unknown Input Observer design

According to the parameters of the induction machine mentioned in tables

AP P ENDIX(A) :

A1 =




−264.7163 314.1593 420.9129 606.2030

−314.1593 −264.7163 −606.2030 420.9129

3.5828 0 −13.8869 294.1593

0 3.5828 −294.1593 −13.8869




A2 = 1.0e+ 03 ∗




−0.2647 0.3142 0.4209 9.5174

−0.3142 −0.2647 −9.5174 0.4209

0.0036 0 −0.0139 0.0002

0 0.0036 −0.0002 −0.0139
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Where : A1 , A2 are matrix geven by equation 14.

B =




32.1898 0

0 32.1898

0 0

0 0




;C =



1 0 0 0

0 1 0 0


 ;Fs =




1 0

0 1

0 0

0 0




;

The parameters of UIO can be obtained following the steps of the observer

algorithem of figure (2) and solving the LMIs using the Yalmip:

M =




0.25 −0.25 0 0

−0.25 0.25 0 0

0 0 1 0

0 0 0 1




;E =




−0.75 −0.25

−0.25 −0.75

0 0

0 0




N1 =




−29.4716 45.9571 256.7790 46.3225

29.4896 −46.0233 −256.7790 −46.3225

4.7653 4.9220 −13.8869 294.1593

−6.1519 −12.8996 −294.1593 −13.8869




;L1 =




31.2179 125.8617

−31.2390 −125.8407

3.6220 −0.0392

−1.6869 5.2697




N2 = 1.0e+03∗




−0.3973 −0.1162 2.4846 2.2741

0.3968 0.1159 −2.4846 −2.2741

0.0017 0.0008 −0.0139 0.0002

0.0013 0.0006 −0.0002 −0.0139




;L2 =




82.6350 74.4447

−82.6017 −74.4779

3.3621 0.2207

−0.1777 3.7605




G =




8.0475 −8.0475

−8.0475 8.0475

0 0

0 0




;T =




0.2500 −0.2500

−0.2500 0.2500

0 0

0.0000 −0.0000




;S = 1.0e+03∗


−2.0171 −2.3658

2.0171 2.3658




5 Results and discussion of the application on induction machine

In order to demonstrate the effectiveness of the proposed approach, it has

been applied to the induction machine, where we have considered current155

outputs of the IM as inputs variables of the observer.
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The observer has been tested for three diffrent cases :

• Case 01: without fault.

• Case 02: quasi-square fault between 3s and 7s.

• Case 03: a variable fault between 0s and 8s.160

under the condition below and for two sensor faults, the results are given by

the figures (3-7):

• The speed varies between a minimum value ωmin = 0 , and a maximum

value ωmax = 157[rad/s].

• We will simulate only one sensor fault at a time, which will be of the order165

of 15 % of the nominal values.

Figure 3 shows the evolution of the estimation faults and the state variable

(Ids and Iqs) in the absence of faults. It is noteworthy in these figures that the

estimated fault value and variable state converges to the reference value.

Figure 3: Free system (without sensor faults).

16



The Figures 4 and 5, present the evolution of the reference, fault estimation,170

fualt estimation error and estimation error of state variables, with square sensor

faults in Ids and Iqs respectively. We can see also that fault simulated converges

to the reference fault which demonstrates the effectiveness of the proposed

alogrithm.

Figure 4: Estimation of square sensor faults in Ids .

17



Figure 5: Estimation of square sensor faults in Iqs .

The results shown on figures 6 and 7, give the estimation of the sensor faults175

and the error of the estimation of the state variables, in the prsence of variable

sensor faults where this variation is between 0 and 2A.

We can see that the fault well be estimated and the error estimation tends to

zero. This is confirms the effectiveness of the alogrithm.
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Figure 6: Estimation of variable sensor faults in Ids .

Figure 7: Estimation of variable sensor faults in Iqs .
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From the above simulation, it’s possible to test the performance of the pro-180

posed method.

In the light of the results shown in figures 3-7, the observer estimates the

state values which converge to the faults references and the estimation error

tends to zero. It can be noticed that the output currents of the observer follow185

those of the machine and the error is almost zero. Therefore, the estimation

by this method gives good results. The results show that the unknown inputs

observer can be augmented to estimate the sensor faults and the twinning

between the UIO and LPV gives system with satisfactory performance.

6 CONLUSION190

In this paper an augmented unknown inputs observer has been developed

for sensor faults estimation and the noise for an induction machine, this last is

represented by a Linear Parameter Varying model (LPV).

As a result, the application of the proposed estimation approach of sensor

faults and states gives good results despite the complexity of the system. The195

augmented observer would allow to deal with the sensor faults as same as actu-

ator faults. Based on the results obtained, it can be said also that this approach

could find a large field of applications in fault-tolerant control design, which

will be the subject of future work, as its implementation on a real induction

machine.200

7 APPENDIX A

The electrical parameters of the induction machine cage used are shown

below:
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Rated power 1.5 Kw. PN

Nominal voltage 220/380 V. VN

Rated power factor 0.8.Rated. cosφ

Speed 1420 rev/ min ω

Nominal frequency 50 Hz. f

Stator resistance 4.85 Ω. Rs

Rotor resistance 3.805 Ω. Rr

Stator cyclic inductance 0.274 H. Ls

Cyclic inductance of Rotor 0.274 H. Lr

Cyclic mutual inductance 0.258 H. Lm

Number of pole pairs 2. P

Moment of Inertia 0,031 Nms2/rad. J

Friction 0.008 Nm s /rad. Kf

8 APPENDIX B

Synchronous Pulsation [rad/s]. ωs

Electrical angular Pulsation [rad/s]. ωr

Electromagnetic torque [N.m]. Cem

Resistive torque [N.m]. Cr

Rotor time constant [s]. Tr

The direct stator voltage Vds

The stator quadrature voltage Vqs

The direct stator current ids

The stator quadrature current iqs

The direct stator flow phids

The stator quadrature flow phiqs
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