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Abstract

The paper focuses on the estimation of the sensor faults and the state variables,
using an unknown inputs observer (UIO), applied to an induction machine. A
model based on LPV (linear parameter varying) systems of the machine is used
where the rotation speed is considered as a variable parameter. Then based
on Lyapunov theory, a feasible algorithm is explored to ensure the stability of
the proposed approach. Furthermore, the observer efficiency is investigated in
presence of the current sensor faults. It’s done by using the calculation of the
observer gains based on the LMI (Linear Matrix Inequalities). The contribution
of this study lies on the development of an extended unknown inputs observer
(UIO) to estimate the sensors faults. In addition, an augmented system is con-
structed, using a first filter, to transform the sensor faults to actuator faults and
the noise to disturbance. The performance of this method is compared either
in terms of state observation errors or in terms of fault estimation. The results

obtained by simulation illustrate the effectiveness of the proposed approach.
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parameter varying (LPV); Linear Matrix Inequalities (LMI); sensor

faults.

1 Introduction

The induction cage machine (IM) is well known since a long period in leading
position in applications requiring very high dynamic and static performance,
due its the simplicity, low manufacturing cost and low maintenance[l]. A
low starting torque accompanies this simplicity and at constant frequency, it
transmits a fixed speed. The induction motor has become the most widely used
in complex system, especially due to the development of power electronics
devices, which have brought the notion of true frequencies. In addition, the
flux control allows the induction motor to provide high torque especially at the
machine start and working at variable speed[2].

Due to the nonlinearity of the induction machine dynamic model and the
influence of parametric variations, the control of this machine is not easy.
Therefore, the IM control becomes an attractive topic, several works dealing
with IM control can be found in the literature. The indirect field oriented
control (IFOC) technique is the mostly used, [[3],[4],[5]] applied this technique
in their investigation, as is also the Direct Torque Control (DTC) command used
in [6], in [7], the authors have improved the performance of IM control using
this technique based on fuzzy logic. In addition, the approach of control by
sliding mode was developed in [8]. In [9] a combination of the sliding mode and
the DTC with an observation of the magnetizing reluctance has been studied.
On the other hand, the approaches without sensor speed were developed. The
stability of an estimation based on a back Electromotive Morce- Model Reference
Adaptive System (EMF-MRAS) observers apply to an induction machine has
been analyzed. [10].

In order to improve efficiency, the reliability can be achieved by fault tol-
erant control (FTC) [[11],[12],[13]].The first step of tolerant controls is the

detection and location of faults. Fault detection uses up to now signal process-
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ing techniques [14], for operating phases, which highlights and localizes faults.
Moreover, we can find other techniques based on observers [15] or analytical
redundancy based on parity space space approach [16] and the modelless ap-
proaches such as the use of neural networks in [17] and fuzzy logic in [18]. The
second step is named the faults estimation, as presented by [19]. On other hand,
in [20] diagnosis problems of the induction motors were developed, with neural
detectors, in the case of rotor, stator and rolling bearing faults. In this case, in
[21] the authors present an accurate transient model of squirrel cage induction
machines under current stator failures.

Linear Parameter Varying (LPV) approach can be used to convert a nonlinear
system into a multiple model form. LPV systems can be seen as nonlinear
systems that are linearized along a trajectory determined by the parameter
vector, this approach is developed in several works, in [22] a control system of a
LPV system is designed, , Lopez-Estrada et al [23] studied the stability of the
double feed induction machine (DFIG) using LPVs. In addition, and Bokor et
al [[24]] used the LPV system to investigate the fault detection and isolation
by using an approach for linear invariant systems and extended to LPV ones.
Moreover, to eliminate the nonlinear character of the system, the authors of
[25] use a Takagi-Sugeno approach for the design of a nonlinear state observer.

There are several methods developed for fault diagnosis and estimation. The
most effective method use unknown observers input, and it is used in [26] to
develop a detection and diagnostic system for the induction machine. . Rotondo
et al [27] propose a diagnosis of actuator faults and icing in unmanned aerial
vehicles (UAVs) based on a unknown input observer which use linear parameter
varying model. Despite of its advantages, the UIO is only used for actuator
faults and unknown input such as rotor resistance, also an extended version is
necessary and a first order filter is used for building an augmented system. In
the proposed method, the sensor fault and noise can be converted into actuator
fault and disturbance.

In this context, this article investigates an estimation of the sensor faults and

the output states of the IM by an extended observer with unknown input based
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on an LPV model. Then, this problem will be solved using the Linear Matrix
Inequalities (LMI) tools.

The rest of this paper is organized as follows. Section 2, gives the dynamic
presentation of the induction machine and its nonlinear state representation.
In section 3, the development of the variable parameter linear model of IM is
presented. The model obtained is used in Section 4 to synthesis and design an
augmented unknown inputs observer UIO for IM sensor fault estimation.The
results demonstrate effectiveness of the proposed approach are given in Section
5, followed by some conclusions and future works in section 6.

Notation:

Throughout the paper, the following useful notation is used:

 TT denotes the transpose of the matrix T.

* T >0 means that T is a symmetric positive definite matrix.

||T|| represents the norm for matrix T and the symbol * denotes the trans-

pose elements in the symmetric positions.

* Sometimes to simplify the calculation, we will write the variables that

depend on the time without : (t)

2 Dynamic model of induction machine

The current modeling approach of the asynchronous machine is based on
the transformation of the three-phase system into a bi-phase system equivalent

to Park. It can also be asserted that the model is nonlinear as shown by the



s following equations [[2],[6],[8],[11],[16],[28]]:

d . _ . . L L, P
dilds = (ULs )(_Rsmlds + O—Ls(‘)slqs + rrjn"r(i)dr + Z_qubqr(‘)r + Vds)

d - 1 . . L L P

dilgs = (gLs)(_Rsmlqs —oLswgigs + T%¢qr + %¢drwr + Vqs)

d Ly, ; 1

E(Pdr:T':lds_Tr(Pdr‘{'(ws_Pwr)(i)qr (1)

d L, : 1
a1 Pqr = T lgs — T,(qu +(ws = Pw;) Par

L, = (57 ) (igs@ar —iasbgr) + + (~Cr—Kfw,)

The systems shown in equation (1) can be written in the general nonlinear
form, equation (2):

X = A(x).x(t) + B.u 2)
y = C.x(t)

Where A is the state function matrix and g is the input function matrix.

The state variables are the stator and rotor current components with flux
and speed velocity, in addition, the inputs are the stator voltage components,
but the outputs are stator current components and speed velocity as given
in Equations (3) to (7).Then the equation (1) of a squirrel-cage asynchronous

machine rewritten in state space form (2) becomes:

X1 = =YX + WXy + akxz + Pkxyxs +u;
Xy = —wsX1] — VX + akxy — Pkxsxs + up
X3 = aL,x1 —ax; + (ws — Pxs)xy

Xy = aLy,x; — axy —(ws — Pxs)x3

The state vector x is given by:

x=|x x x3 xg (4)



where : X| =igs; Xp = iqs; X3 = ‘Pds; X4 = (qu; X5 = Wy
By replacing x1, x5, x3,x4 in equation (1) we obtain the speed velocity given by
equation(5)

@ =1 (xpx3—X1X4) + (—c,—wa) (5)

~|

And: o=, f=gb, y=pRak=r, p=T

85 The model equation (3) is under the polynomial form and allows the non-
measurable state variables can be eliminated. xeRe” is the state vector, ueRe?

is the vector of control inputs and yeRe™ is the output vector and variables
are functions of time t. All vectors are in appropriate dimensions. The output

vector is:

90 The input vector is:

uz[ U, Uy ]T:[ Vis Vs ]T (7)

The input function matrix g in equation 2 is:

T
1
0 00 0
_| oLs
B_oLooo ®)
oL

As mentioned in the introduction, the work will be devoted to the estimation

of the sensor fault and the state estimation. The scheme presented in figure 1,
gives a presentation of the principle of the observer with unknown input, where

s U represents the command, f; is the sensor fault, f; and £ are respectively the
estimate of the fault and the estimate of the state, and y the output (sensor) of

the machine.
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Observer
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Figure 1: Schematic block of the approach.

3 Linear parameters variable (LPV) model of induction machine

In order to transform the nonlinear state-space model of Induction Machine

w0 considered in equation 3 to an LPV system, the speed rotation is considered

as varying parameter and equation (9) gives the the LPV model, it can also be
asserted that the model is nonlinear.

The equations (9- 18) show the different steps of the developement of the

LPV model for the induction machine.

x=A(x).x(t) + B.u (9)
Where:
-y ws ak Pkw U
—w; - —Pkxzw ak u
Ax =| > 7Y 3 and u=|" (10)
alL,, 0 —-a ws—Pw 0
0 al, -(ws—Pw) -« 0
105 If the rotor speed is considered as a varying parameter p = w , the equation



(9) can be written in the usual form:

#(t) = Alp(t))x() + Bu(t)

(11)
y(t) = Cx(t)
where : .
A(p) :A0+ZpiAi (12)
i=1
With:
-y wy T% 0
k
7 0 -1
Lm
[0 o -
0 0 0  Pko
0 0 Pkw; O
A; = (14)
00 0 -Pkw;
0 0 Pa; 0
And :
1 0 0 O
C= (15)
01 0 O

We assume for physical limits that all the current and speed are measurable

and this allowed us to say that:
Wpin £ W < Wppgy (16)

For this purpose, the following variation interval is obtained:

A1 = Awmin =p1= w:;a::zi:in
(17)
A2 = Ammax =02 = w::;afﬂ_):m
So we will have : .
ZpiAi =p141 +p24; (18)
i=1

r
And: ) p; =1is verified
i=1



4 Design of unknown input observer for sensor fault estimation

Knowing that the unknown input observers are designed for the evaluation
of the actuator faults, so, it is necessary to build the extended version in order
to estimate the sensor faults. In this section, based on the system of equation
(19), an observer will be developed to estimate the sensor faults. In addition,

from this equation the noise will be considered in the system :

x=A(p).x(t)+ B.u
y=C.x(t)+ Ww(t)+ F, fs(t)

(19)

110 Where x is the state vector, u the input, y the output and w the noise and
f; the sensor fault vector. A, B, F and D are matrix of appropriate dimension.
Based on LPV and by substituting in equation of A, The system (19) can be

rewritten as follows:

X = i piA;.x(t)+ B.u(t)
i=1 (20)
y = C.x(t)+ Ww(t) + F, f,(t)

The construction of the augmented system is based on filtering y(t) by a first

1us order filter such that:

X, = Ag.xg(t) + Bs.ug(t)

y= x,(t)

Where: A is negative.

Knowing that the filter control will be done by the observer output, so we

obtain :

% = Ag.X(t) + By [C.x(t) + Ww(t) + F, fi(t)] (22)

120 By combining the system (20) with (22) we have the following equation:

X = i piA;.x(t)+ B.u(t)
i=1 (23)

Xs = As.x5(t) + B;.C.x(t) + Bs. W.w(t) + B, Fy. f5(t)]



Therefore, the following matrix system can be deduced:

o] [a  ol[x] [B 0 0
= +| |u+ fs+ w (24)
i| [B.C Alx| [0 [B.E]T [B.W
Denote :
= 47 270 | and x=| 2Ty AT | (25)

Therefore, equation (26) gives the expression of the augmented system

% =A;(p).x(t) + B.u(t) + Dw(t) + F£(¢)
y = C.x(t)

Where the expression of the matrices are:

A0
B,.C A,

B
0 ’

;B:

In this case, the system (26) makes it possible to treat the sensor faults as actua-
tor faults.
125
Consider the system (26), which describes our system of continuous descrip-
tor (LPV) affected by perturbations and apply the following assumptions to

determine the gains of the observer:
+ A; Is an invariant matrix over time.
130 * (A;, C)is observable.
+ Cis full rank and also D is full row of columns.
* w(t) and f(t) are derived and bounded functions
Based on the system ((26)), the unknown observer can be written as :

Ht)= Y piNiz(t)+ Gu(t) + Ly(t) + T,
i=1

X(t) = z(t) — Ex(t)
where :

10



* z(t) state vector related to x(t)
135 * N;,G,L, T and E, are matrices of appropriate dimension.

The error is defined such that:

e(t) :X(t)—)?ft) (28)
= (I, + EC)x(t) — z(t)
Then the expression of the error becomes:
é(t) = Msx(t)—2(t) (29)

where : M = I,+EC and I, is an identity matrix with appropriate dimensions.

Therefore, the dynamic error can be rewritten as:
T _ T _ _ _

é =[MY piA;— Y piN;M —-LClx(t)+ MDw(t) + [MB— Glu(t)

i=1 i=1 . (30)

+MEf(t) - Tf,+ ¥ piNe

i=1
Based on the following change of variable f(t) = f;(t) —fs(t) = fi(t) = fi(t) +
fi(t), and if the conditions in equation(31) hold :

T _ r _
M Zi PiAi - Zi PiNiM -LC=0
1= 1=
MD =0
T = MF
The dynamic error becomes:
r
€= ZpiNi6+Tfs (32)
i=1

Note the dynamic error is only related to f;, then the error tends to zero if the
N; is Hurwitz and estimation converges to zero.
Knowing that r, = y(¢)-7(t) and based on equation of y in (26) , the following
relationship is obtained:
=r,=Ce(t)

- (33)
=7, = Cé(t)

11



The formula chosen to estimated the fault is equation (34), its stability is

1o studied using Lyapunov function equation (35):
f(t)=QS(re+ ore) (34)

1 - ~
V=eTPe+—f QS (35)
By deriving the equation , the equation (36) is obtained :
V. =éTPe+eTPe+ LETQ1f+ LETQ 1, (36)

Knowing that fST f.= fST fs, the following derivative Lyapunov function can
be obtained :
1% :e'TPeﬁ-eTPe'+%]‘:STQ’lj‘L’S (37)

By replacing equations (34) and (32) in equation (37), the final expression of

the stability derivative expression obtained, equation (38):
. 2.7 2.7 - 2.7
V= ;pieT(NiTP+PNi)e+ “fQi-Sf sC ;piNie— ~Ji SCT (38)
1= 1=

To study system stability, lemma 01 theorem, is used to transform equation

(38) to inequality, equation (41).

Lemma 1

Given a scalar p and a positive positive symmetric matrix P1, the following
equality is true [29]
1
2xTy < ;xTPlx +uyT Py (39)

Based on lemma 01, we can deduce the following inequality:

27 4. 2,127 = AT ;T o1 A1 7

Gl Qs SO R AL pQ PR (40)
According to the proposed hypothesis, we have the derivative of the fault f;

A

s is bounded then : ||f5|| <aj,Such as 0 <@y < oo and ||f5||+

12



By combining the equation (32) and equation (40), the inequality (38) is

obtained:

r r
. 1 -7 - 2T
Vs;pieT(NiTP+PNi)e+ﬂ—aﬂ Pifirg-=f, TT 1

1= 1=

Note that: ¢ = ga%/\maxQ_lTPfl Q!

]

Now the vector V can be writen as follows:

The vectore is defined as :

r
V<) pielie+rd
i=1
Where :
N;TP+PN; *

1T 1 27T pT
177N, Lp-2TTP

From the convergence conditions (31), H can be written as follows :

D
-C 0

H=[M,E] = [M,E] =[I,0]

Denote:

K;=L;—N;E

22T~z
p;Nie—;fs SCTfs (41)

by the substitution of (45) to (31), the gains of the observers can be calculated

as :
N; = MA; - K;C

L= K,‘(I+ CE)—MAZ‘E
T =MF

(46)

Replacing the N; of equation (46) in equation (44) and taking k; = P.k; , the
solution of the LMI can be obtained by YALMIP or MATLAB editor. The figure

10 (2) shows the different computing steps of the observer algorithm :

13



step.01: Compute H from the next equation then obtain the matrices M. E:
H=[M El=01 of!. P

lL —C 0

step.02: Compute G and T from the next equations:
G=M-B;T=M-F

Il

step.03: Solve the next L MT form equalities, obtain the matrices P, and
calculate g, — p~1K, :

ATMIP 2 PAM =B O =R, o F .
1. 1 . 11 2 . .|=o0
—5TTPAM + = TTPR,C W5

Su )

step.04: Calculate matrices N7 and Li from the following equations :

NI': M-A_I-—HI--C; and Li= KI(JI_FC'E)_M'AIE

Figure 2: Algorithm of Unknown Input Observer design

According to the parameters of the induction machine mentioned in tables

APPENDIX(A) :

-264.7163 314.1593  420.9129 606.2030
-314.1593 -264.7163 -606.2030 420.9129
3.5828 0 -13.8869 294.1593
0 3.5828 -294.1593 -13.8869

-0.2647 0.3142 0.4209 9.5174
-0.3142 -0.2647 -9.5174 0.4209
0.0036 0 —-0.0139 0.0002

Ay =1.0e+03%

0 0.0036 -0.0002 -0.0139

14



Where : A; , A, are matrix geven by equation 14.

32.1898 0 1 0
0 32.1898 1 0 0 O 0 1
B= ;C = ;Fg = ;
0 0 01 00 0 0
0 0 0 0

The parameters of UIO can be obtained following the steps of the observer

algorithem of figure (2) and solving the LMIs using the Yalmip:

0.25 -0.25 0 0 075 -0.25
|-0.25 025 0 o  [-025 -075
| o o 1 0 | o 0

0 0 0 1 0 0

29.4896 —46.0233 -256.7790 -46.3225 -31.2390 -125.8407
4.7653 4.9220 -13.8869 294.1593 3.6220 -0.0392

-29.4716 45.9571 256.7790  46.3225 31.2179  125.8617
;L1 =
-6.1519 -12.8996 -294.1593 -13.8869 -1.6869 5.2697

-0.3973 -0.1162 2.4846  2.2741 82.6350  74.4447
0.3968 0.1159 -2.4846 -2.2741 -82.6017 -74.4779
N2=1.0e+03% ;L2 =
0.0017  0.0008 -0.0139 0.0002 3.3621 0.2207
0.0013  0.0006 -0.0002 -0.0139 -0.1777 3.7605
8.0475 —-8.0475 0.2500 -0.2500
-8.0475 8.0475 -0.2500 0.2500 -2.0171 -2.3658
G= ;T = ;S = 1.0e+03=
0 0 0 0 2.0171 2.3658

0 0 0.0000 -0.0000

5 Results and discussion of the application on induction machine

In order to demonstrate the effectiveness of the proposed approach, it has
155 been applied to the induction machine, where we have considered current

outputs of the IM as inputs variables of the observer.

15



The observer has been tested for three diffrent cases :
* Case 01: without fault.
* Case 02: quasi-square fault between 3s and 7s.

160 * Case 03: a variable fault between 0s and 8s.

under the condition below and for two sensor faults, the results are given by

the figures (3-7):

* The speed varies between a minimum value w,,;;, = 0, and a maximum

value w4y = 157 [rad/s].

165 * We will simulate only one sensor fault at a time, which will be of the order

of 15 % of the nominal values.

Figure 3 shows the evolution of the estimation faults and the state variable
(Igs and Iy) in the absence of faults. It is noteworthy in these figures that the

estimated fault value and variable state converges to the reference value.

Fault estimation

o
=20 f hat 1
— e
-40
60 L L L L L L L L L
o 1 2 3 4 5 6 7 8 ] 10
Times(s)
direct courant
o . : .
10 1
ids
20 ids hat ||
L L L L L L L L L
o 1 2 3 4 5 6 T 8 b} 10
Times|(s)
quaderatur courant
o
10 igs B
igs hat
-20 1
o 1 2 3 4 5 6 T 8 2 10

Times(s)

Figure 3: Free system (without sensor faults).

16
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The Figures 4 and 5, present the evolution of the reference, fault estimation,
fualt estimation error and estimation error of state variables, with square sensor
faults in I;; and I, respectively. We can see also that fault simulated converges
to the reference fault which demonstrates the effectiveness of the proposed

alogrithm.

Fault estimation

3
2z —f hat |
= o ) — |
i I |
-1 L L L L L L L . L
o 1 2 3 <4 s L= T 8 E: 10
Times (s)
Estimation error
o5
o ', b
0.5 . . . . . . . . .
o 1 2 3 “ 5 =] T 8 k=1 10
times (s)
Estimation error of direct current
0.5
) [
0.5 L L L L L L L . L
o 1 2 3 <4 s L= T 8 =2 10
Times(s)
Estimation error of gquaderatur current
o.5 T T T T T T T
) l
0.5
o 1 2 3 “ s =] T a8 2 10

Timesi(s)

Figure 4: Estimation of square sensor faults in I .

17



Fault estimation

3
. AL G ’
1 4
o
o 1 =z 3 a4 s 6 T 8 o 10
Timesi({(s)
Estimation error
0.5
o ' B
o 1 = 3 a4 s 6 T a8 o 10
Times({s)
i Estimation error of direct current
o ‘ =
o 1 =z =3 a s 6 T a8 o 10
Times({(s)
e Estimation error of quaderatur current
A
-0.5
o 1 = 3 a4 s 6 T a8 o 10
Timesi(s)
Figure 5: Estimation of square sensor faults in I;.
175 The results shown on figures 6 and 7, give the estimation of the sensor faults

and the error of the estimation of the state variables, in the prsence of variable
sensor faults where this variation is between 0 and 2A.
We can see that the fault well be estimated and the error estimation tends to

zero. This is confirms the effectiveness of the alogrithm.

18



-0.5

0.5

-0.5

Fault estimation

Times(s)

Figure 6: Estimation of variable sensor faults in I 5.

Fault estimation

o 3 3 “ 5 & T 8 k1 10

Times{(s)
Estimation error

o 2 3 “ 5 =] T 8 k=1 10

Times (s )
Estimation error of direct current

o 3 3 4 5 & T 8 k=1 10

Timesi{(s)
Estimation error of gquaderatur current
o -3 3 4 5 & T 8 k=1 10

Times (s)
Estimation error

o 2 3 4 5 & r 8 k=] 10

Times{s)
Estimation error of direct current
, L L L . L L L L

o 2 3 F ! 5 & T 8 k=] 10

Times(s)
Estimation error of quaderatur current
o 2 3 ! 5 & T 8 k=] 10

Times|(s)

Figure 7: Estimation of variable sensor faults in I;.
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From the above simulation, it’s possible to test the performance of the pro-

posed method.

In the light of the results shown in figures 3-7, the observer estimates the
state values which converge to the faults references and the estimation error
tends to zero. It can be noticed that the output currents of the observer follow
those of the machine and the error is almost zero. Therefore, the estimation
by this method gives good results. The results show that the unknown inputs
observer can be augmented to estimate the sensor faults and the twinning

between the UIO and LPV gives system with satisfactory performance.

6 CONLUSION

In this paper an augmented unknown inputs observer has been developed
for sensor faults estimation and the noise for an induction machine, this last is
represented by a Linear Parameter Varying model (LPV).

As a result, the application of the proposed estimation approach of sensor
faults and states gives good results despite the complexity of the system. The
augmented observer would allow to deal with the sensor faults as same as actu-
ator faults. Based on the results obtained, it can be said also that this approach
could find a large field of applications in fault-tolerant control design, which
will be the subject of future work, as its implementation on a real induction

machine.

7 APPENDIX A

The electrical parameters of the induction machine cage used are shown

below:
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Rated power 1.5 Kw. Py
Nominal voltage 220/380 V. %N
Rated power factor 0.8.Rated. cosp
Speed 1420 rev/ min w
Nominal frequency 50 Hz. f
Stator resistance 4.85 Q. R
Rotor resistance 3.805 Q. R,
Stator cyclic inductance 0.274 H. L
Cyclic inductance of Rotor 0.274 H. L,
Cyclic mutual inductance 0.258 H. L,
Number of pole pairs 2. P
Moment of Inertia 0,031 Nms?/rad. ]
Friction 0.008 Nm s /rad. Ky

8 APPENDIX B

Synchronous Pulsation [rad/s]. Ws
Electrical angular Pulsation [rad/s]. w,
Electromagnetic torque [N.m]. C,m
Resistive torque [N.m]. C,
Rotor time constant [s]. T,
The direct stator voltage Vs
The stator quadrature voltage Vis
The direct stator current igs
The stator quadrature current igs
The direct stator flow phigs
The stator quadrature flow phigs
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