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The paper focuses on the estimation of the sensor faults and the state variables, using an unknown inputs observer (UIO), applied to an induction machine. A model based on LPV (linear parameter varying) systems of the machine is used where the rotation speed is considered as a variable parameter. Then based on Lyapunov theory, a feasible algorithm is explored to ensure the stability of the proposed approach. Furthermore, the observer efficiency is investigated in presence of the current sensor faults. It's done by using the calculation of the observer gains based on the LMI (Linear Matrix Inequalities). The contribution of this study lies on the development of an extended unknown inputs observer (UIO) to estimate the sensors faults. In addition, an augmented system is constructed, using a first filter, to transform the sensor faults to actuator faults and the noise to disturbance. The performance of this method is compared either in terms of state observation errors or in terms of fault estimation. The results obtained by simulation illustrate the effectiveness of the proposed approach.

parameter varying (LPV); Linear Matrix Inequalities (LMI); sensor faults.

Introduction

The induction cage machine (IM) is well known since a long period in leading position in applications requiring very high dynamic and static performance, due its the simplicity, low manufacturing cost and low maintenance [START_REF] Trachi | Induction machines fault detection based on subspace spectral estimation[END_REF]. A low starting torque accompanies this simplicity and at constant frequency, it transmits a fixed speed. The induction motor has become the most widely used in complex system, especially due to the development of power electronics devices, which have brought the notion of true frequencies. In addition, the flux control allows the induction motor to provide high torque especially at the machine start and working at variable speed [START_REF] Wang | Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives[END_REF].

Due to the nonlinearity of the induction machine dynamic model and the influence of parametric variations, the control of this machine is not easy.

Therefore, the IM control becomes an attractive topic, several works dealing with IM control can be found in the literature. The indirect field oriented control (IFOC) technique is the mostly used, [ [START_REF] Kan | Indirect vector control with simplified rotor resistance adaptation for induction machines[END_REF], [START_REF] Yi | Vector control of induction machines via firefly algorithm for speed application[END_REF], [START_REF] Amrane | Robust sensorles control of an induction machine based on a fuzzy mras[END_REF]] applied this technique in their investigation, as is also the Direct Torque Control (DTC) command used in [START_REF] Ananth | A novel direct torque control scheme for induction machines with space vector modulation[END_REF], in [START_REF] Sudheer | Improved Fuzzy Logic based DTC of Induction machine for wide range of speed control using AI based controllers[END_REF], the authors have improved the performance of IM control using this technique based on fuzzy logic. In addition, the approach of control by sliding mode was developed in [START_REF] Xu | Study of a new rotor flux estimator for induction machine based on sliding mode control[END_REF]. In [START_REF] Orlowska-Kowalska | Sliding-mode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive[END_REF] a combination of the sliding mode and the DTC with an observation of the magnetizing reluctance has been studied.

On the other hand, the approaches without sensor speed were developed. The stability of an estimation based on a back Electromotive Morce-Model Reference Adaptive System (EMF-MRAS) observers apply to an induction machine has been analyzed. [START_REF] Bensiali | Convergence analysis of back-emf mras observers used in sensorless control of induction motor drives[END_REF].

In order to improve efficiency, the reliability can be achieved by fault tolerant control (FTC) [ [START_REF] Liu | Robust fault-tolerant control design for induction motor with faults and disturbances[END_REF], [START_REF] Mekki | Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems[END_REF], [START_REF] Chenaru | Fault-tolerant control system implementation based on parameter analysis[END_REF]].The first step of tolerant controls is the detection and location of faults. Fault detection uses up to now signal process-ing techniques [START_REF] Azeddine | A new method to enhance of fault detection and diagnosis in gearbox systems[END_REF], for operating phases, which highlights and localizes faults.

Moreover, we can find other techniques based on observers [START_REF] Abbasi | A decentralized approach based on unknown input observers for actuator fault detection and isolation of a class of interconnected nonlinear systems[END_REF] or analytical redundancy based on parity space space approach [START_REF] Amrane | Fault detection and isolation based on nonlinear analytical redundancy applied to an induction machine[END_REF] and the modelless approaches such as the use of neural networks in [START_REF] Thomas | Fault detection and isolation in nonlinear systems by using oversized neural networks, intelligent Forecasting, Fault Diagno-sis[END_REF] and fuzzy logic in [START_REF] Puig | Passive robust fault detection using fuzzy parity equations, intelligent Forecasting, Fault Diagnosis[END_REF]. The second step is named the faults estimation, as presented by [START_REF] Sun | Robust sensor fault estimation for induction motors via augmented observer and ga optimisation technique[END_REF]. On other hand, in [START_REF] Kowalski | Neural networks application for induction motor faults diagnosis, modelling and Simulation of Electric Machines[END_REF] diagnosis problems of the induction motors were developed, with neural detectors, in the case of rotor, stator and rolling bearing faults. In this case, in [START_REF] Devanneaux | An accurate model of squirrel cage induction machines under stator faults[END_REF] the authors present an accurate transient model of squirrel cage induction machines under current stator failures.

Linear Parameter Varying (LPV) approach can be used to convert a nonlinear system into a multiple model form. LPV systems can be seen as nonlinear systems that are linearized along a trajectory determined by the parameter vector, this approach is developed in several works, in [START_REF] Tien | Iqc-based robust stability analysis for lpv control of doubly-fed induction generators[END_REF] a control system of a LPV system is designed, , López-Estrada et al [START_REF] López-Estrada | Lpv model-based tracking control and robust sensor fault diagnosis for a quadrotor uav[END_REF] studied the stability of the double feed induction machine (DFIG) using LPVs. In addition, and Bokor et al [ [START_REF] Bokor | Detection filter design for lpv systems ageometric approach[END_REF]] used the LPV system to investigate the fault detection and isolation by using an approach for linear invariant systems and extended to LPV ones. Moreover, to eliminate the nonlinear character of the system, the authors of [25] use a Takagi-Sugeno approach for the design of a nonlinear state observer.

There are several methods developed for fault diagnosis and estimation. The most effective method use unknown observers input, and it is used in [START_REF] Shahnazi | Dynamic nonlinear unknown input observer for fault detection of induction motors[END_REF] to develop a detection and diagnostic system for the induction machine. . Rotondo et al [START_REF] Rotondo | Icing detection in unmanned aerial vehicles with longitudinal motion using an lpv unknown input observer[END_REF] propose a diagnosis of actuator faults and icing in unmanned aerial vehicles (UAVs) based on a unknown input observer which use linear parameter varying model. Despite of its advantages, the UIO is only used for actuator faults and unknown input such as rotor resistance, also an extended version is necessary and a first order filter is used for building an augmented system. In the proposed method, the sensor fault and noise can be converted into actuator fault and disturbance.

In this context, this article investigates an estimation of the sensor faults and the output states of the IM by an extended observer with unknown input based on an LPV model. Then, this problem will be solved using the Linear Matrix Inequalities (LMI) tools.

The rest of this paper is organized as follows. Section 2, gives the dynamic presentation of the induction machine and its nonlinear state representation.

In section 3, the development of the variable parameter linear model of IM is presented. The model obtained is used in Section 4 to synthesis and design an augmented unknown inputs observer UIO for IM sensor fault estimation.The results demonstrate effectiveness of the proposed approach are given in Section 5, followed by some conclusions and future works in section 6.

Notation:

Throughout the paper, the following useful notation is used:

• T T denotes the transpose of the matrix T .

• T > 0 means that T is a symmetric positive definite matrix.

• ||T || represents the norm for matrix T and the symbol * denotes the transpose elements in the symmetric positions.

• Sometimes to simplify the calculation, we will write the variables that depend on the time without : (t)

Dynamic model of induction machine

The current modeling approach of the asynchronous machine is based on the transformation of the three-phase system into a bi-phase system equivalent to Park. It can also be asserted that the model is nonlinear as shown by the following equations [ [START_REF] Wang | Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives[END_REF], [START_REF] Ananth | A novel direct torque control scheme for induction machines with space vector modulation[END_REF], [START_REF] Xu | Study of a new rotor flux estimator for induction machine based on sliding mode control[END_REF], [START_REF] Liu | Robust fault-tolerant control design for induction motor with faults and disturbances[END_REF], [START_REF] Amrane | Fault detection and isolation based on nonlinear analytical redundancy applied to an induction machine[END_REF], [START_REF] Dufour | An induction machine and power electronic test system on a field-programmable gate array[END_REF]]:

                                                 d dt i ds = 1 σ L s -R sm i ds + σ L s ω s i qs + L m L r T r φ dr + L m P L r φ qr ω r + V ds d dt i qs = 1 σ L s -R sm i qs -σ L s ω s i ds + L m L r T r φ qr + L m P L r φ dr ω r + V qs d dt φ dr = L m T r i ds -1 T r φ dr + (ω s -P ω r ) φ qr d dt φ qr = L m T r i qs -1 T r φ qr + (ω s -P ω r ) φ dr d dt ω r = P L m JT r i qs φ dr -i ds φ qr + 1 J (-Cr -Kf ω r ) (1) 
The systems shown in equation ( 1) can be written in the general nonlinear form, equation ( 2):

         ẋ = A(x).x(t) + B.u y = C.x(t) ( 2 
)
Where A is the state function matrix and g is the input function matrix.

The state variables are the stator and rotor current components with flux and speed velocity, in addition, the inputs are the stator voltage components, but the outputs are stator current components and speed velocity as given in Equations ( 3) to [START_REF] Sudheer | Improved Fuzzy Logic based DTC of Induction machine for wide range of speed control using AI based controllers[END_REF].Then the equation ( 1) of a squirrel-cage asynchronous machine rewritten in state space form (2) becomes:

                               ẋ1 = -γx 1 + ω s x 2 + αkx 3 + P kx 4 x 5 + u 1 ẋ2 = -ω s x 1 -γx 2 + αkx 4 -P kx 3 x 5 + u 2 ẋ3 = αL m x 1 -αx 3 + (ω s -P x 5 ) x 4 ẋ4 = αL m x 2 -αx 4 -(ω s -P x 5 ) x 3 (3) 
The state vector x is given by:

x = x 1 x 2 x 3 x 4 T ( 4 
)
where :

x 1 = i ds ; x 2 = i qs ; x 3 = φ ds ; x 4 = φ qs ; x 5 = ω r
By replacing x 1 , x 2 , x 3 , x 4 in equation ( 1) we obtain the speed velocity given by equation( 5)

ω = ψ (x 2 x 3 -x 1 x 4 ) + 1 J -c r -K f ω (5) 
And:

α = 1 T r , β = 1 σ L s , γ = β.R sm , k = L m σ L s L r , ψ = P L m JT r .
The model equation ( 3) is under the polynomial form and allows the nonmeasurable state variables can be eliminated.

x n is the state vector, u p is the vector of control inputs and y m is the output vector and variables are functions of time t. All vectors are in appropriate dimensions. The output vector is:

y = y 1 y 2 T = x 1 x 2 T (6)
The input vector is:

u = u 1 u 2 T = V ds V qs T ( 7 
)
The input function matrix g in equation 2 is:

B =         1 σ L s 0 0 0 0 0 1 σ L s 0 0 0         T (8)
As mentioned in the introduction, the work will be devoted to the estimation of the sensor fault and the state estimation. The scheme presented in figure 1, gives a presentation of the principle of the observer with unknown input, where U represents the command, f s is the sensor fault, fs and x are respectively the estimate of the fault and the estimate of the state, and y the output (sensor) of the machine. 

Linear parameters variable (LPV) model of induction machine

In order to transform the nonlinear state-space model of Induction Machine considered in equation 3 to an LPV system, the speed rotation is considered 100 as varying parameter and equation [START_REF] Orlowska-Kowalska | Sliding-mode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive[END_REF] gives the the LPV model, it can also be asserted that the model is nonlinear.

The equations [START_REF] Orlowska-Kowalska | Sliding-mode direct torque control and sliding-mode observer with a magnetizing reactance estimator for the field-weakening of the induction motor drive[END_REF][START_REF] Bensiali | Convergence analysis of back-emf mras observers used in sensorless control of induction motor drives[END_REF][START_REF] Liu | Robust fault-tolerant control design for induction motor with faults and disturbances[END_REF][START_REF] Mekki | Sliding mode based fault detection, reconstruction and fault tolerant control scheme for motor systems[END_REF][START_REF] Chenaru | Fault-tolerant control system implementation based on parameter analysis[END_REF][START_REF] Azeddine | A new method to enhance of fault detection and diagnosis in gearbox systems[END_REF][START_REF] Abbasi | A decentralized approach based on unknown input observers for actuator fault detection and isolation of a class of interconnected nonlinear systems[END_REF][START_REF] Amrane | Fault detection and isolation based on nonlinear analytical redundancy applied to an induction machine[END_REF][START_REF] Thomas | Fault detection and isolation in nonlinear systems by using oversized neural networks, intelligent Forecasting, Fault Diagno-sis[END_REF][START_REF] Puig | Passive robust fault detection using fuzzy parity equations, intelligent Forecasting, Fault Diagnosis[END_REF] show the different steps of the developement of the LPV model for the induction machine.

ẋ = A(x).x(t) + B.u (9) 
Where:

A(x) =                      -γ ω s αk P kω -ω s -γ -P kx 3 ω αk αL m 0 -α ω s -P ω 0 αL m -(ω s -P ω) -α                      and u =                      u 1 u 2 0 0                      (10) 
If the rotor speed is considered as a varying parameter ρ = ω , the equation 105 (9) can be written in the usual form:

         ẋ(t) = A[ρ(t)]x(t) + Bu(t) y(t) = Cx(t) (11) 
where :

A(ρ) = A 0 + r i=1 ρ i A i ( 12 
)
With:

A 0 =                      -γ ω s k T r 0 -ω s -γ 0 k T r L m T r 0 -1 T r ω s 0 L m T r -ω s -1 T r                      (13) A i =                      0 0 0 P kω i 0 0 P kω i 0 0 0 0 -P kω i 0 0 P ω i 0                      (14) 
And :

C =         1 0 0 0 0 1 0 0         (15) 
We assume for physical limits that all the current and speed are measurable and this allowed us to say that:

ω min ≤ ω ≤ ω max ( 16 
)
For this purpose, the following variation interval is obtained:

             A 1 = A ωmin ⇒ ρ 1 = ω-ω min ω max -ω min A 2 = A ωmax ⇒ ρ 2 = ω max -ω ω max -ω min ( 17 
)
So we will have :

r i=1 ρ i A i = ρ 1 A 1 + ρ 2 A 2 (18) 
And:

r i=1 ρ i = 1 is verified 8
Knowing that the unknown input observers are designed for the evaluation of the actuator faults, so, it is necessary to build the extended version in order to estimate the sensor faults. In this section, based on the system of equation [START_REF] Sun | Robust sensor fault estimation for induction motors via augmented observer and ga optimisation technique[END_REF], an observer will be developed to estimate the sensor faults. In addition, from this equation the noise will be considered in the system :

         ẋ = A(ρ).x(t) + B.u y = C.x(t) + W w(t) + F s f s (t) ( 19 
)
Where x is the state vector, u the input, y the output and w the noise and f s the sensor fault vector. A, B, F and D are matrix of appropriate dimension.

Based on LPV and by substituting in equation of A, The system (19) can be rewritten as follows:

           ẋ = r i=1 ρ i A i .x(t) + B.u(t) y = C.x(t) + W w(t) + F s f s (t) (20) 
The construction of the augmented system is based on filtering y(t) by a first order filter such that:

         ẋs = A s .x s (t) + B s .u s (t) y = x s (t) (21) 
Where: A s is negative.

Knowing that the filter control will be done by the observer output, so we obtain :

ẋs = A s .x s (t) + B s .[C.x(t) + W w(t) + F s f s (t)] (22) 
By combining the system (20) with [START_REF] Tien | Iqc-based robust stability analysis for lpv control of doubly-fed induction generators[END_REF] we have the following equation:

           ẋ = r i=1 ρ i A i .x(t) + B.u(t) ẋs = A s .x s (t) + B s .C.x(t) + B s .W .w(t) + B s .F s .f s (t)] (23) 
Therefore, the following matrix system can be deduced:

        ẋ ẋs         =         A i 0 B s .C A s                 x x s         +         B 0         u +         0 B s .F s         f s +         0 B s .W         w ( 24 
)
Denote :

ẋ = ẋT (t) ẋT s (t) and x = x T (t) x T s (t) (25) 
Therefore, equation [START_REF] Shahnazi | Dynamic nonlinear unknown input observer for fault detection of induction motors[END_REF] gives the expression of the augmented system

         ẋ = Āi (ρ). x(t) + B.u(t) + Dw(t) + Ff s (t) y = C. x(t) (26) 
Where the expression of the matrices are:

Āi =         A i 0 B s .C A s         , B =         B 0         , D =         0 B s .W         , F =         0 B s .F s         , C =         0 C         ,
In this case, the system (26) makes it possible to treat the sensor faults as actuator faults.
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Consider the system [START_REF] Shahnazi | Dynamic nonlinear unknown input observer for fault detection of induction motors[END_REF], which describes our system of continuous descriptor (LPV) affected by perturbations and apply the following assumptions to determine the gains of the observer:

• Āi Is an invariant matrix over time.

• ( Āi , C ) is observable.
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• C is full rank and also D is full row of columns.

• w(t) and f s (t) are derived and bounded functions Based on the system (( 26)), the unknown observer can be written as :

             ż(t) = r i=1 ρ i N i z(t) + Gu(t) + Ly(t) + T fs x(t) = z(t) -Ex(t) (27) 
where :

• z(t) state vector related to x(t)

• N i ,G,L, T and E, are matrices of appropriate dimension.
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The error is defined such that:

e(t) = x(t) -x(t) = (I 2 + E C) x(t) -z(t) (28) 
Then the expression of the error becomes:

ė(t) = M ẋ(t) -ż(t) (29) 
where : M = I 2 +E C and I 2 is an identity matrix with appropriate dimensions.

Therefore, the dynamic error can be rewritten as:

ė = [M r i=1 ρ i Āi - r i=1 ρ i N i M -L C]x(t) + M Dω(t) + [M B -G]u(t) +M Ff s (t) -T fs + r i=1 ρ i N i e (30)
Based on the following change of variable fs (t) = f s (t) -fs (t) ⇒ f s (t) = fs (t) + fs (t), and if the conditions in equation(31) hold :

                       M r i=1 ρ i Āi - r i=1 ρ i N i M -L C = 0 M B -G = 0 M D = 0 T = M F (31)
The dynamic error becomes:

ė = r i=1 ρ i N i e + T fs (32)
Note the dynamic error is only related to fs , then the error tends to zero if the N i is Hurwitz and estimation converges to zero.

Knowing that r e = y(t)-ŷ(t) and based on equation of y in [START_REF] Shahnazi | Dynamic nonlinear unknown input observer for fault detection of induction motors[END_REF] , the following relationship is obtained:

⇒ r e = Ce(t)

⇒ ṙe = C ė(t) (33) 
The formula chosen to estimated the fault is equation (34), its stability is studied using Lyapunov function equation (35):

ḟ (t) = QS( ṙe + σ r e ) ( 34 
) V = e T P e + 1 σ fs T Q -1 fs (35)
By deriving the equation , the equation ( 36) is obtained :

V = ėT P e + e T P ė + 1 σ ḟ T s Q -1 fs + 1 σ fs T Q -1 ḟs ( 36 
)
Knowing that ḟ T s fs = fs To study system stability, lemma 01 theorem, is used to transform equation (38) to inequality, equation (41).

Lemma 1

Given a scalar µ and a positive positive symmetric matrix P1, the following equality is true [START_REF] Zhang | Adaptive observer-based fast fault estimation[END_REF] 2x

T y ≤ 1 µ x T P 1 x + µy T P -1 1 y (39)
Based on lemma 01, we can deduce the following inequality:

2 σ fs T Q -1 ḟs ≤ 2 σ ( 1 µ fs T P 1 fs + µQ -1 T ḟs T P -1 1 Q -1 ḟs ) (40)
According to the proposed hypothesis, we have the derivative of the fault f s is bounded then : ḟs < α 1 , Such as 0 < α 1 < ∞ and ḟs + ḟs
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By combining the equation (32) and equation ( 40), the inequality (38) is obtained:

V ≤ r i=1 ρ i e T (N i T P +P N i )e+ 1 µσ fs T P 1 fs +φ- 2 σ fs T T T r i=1 ρ i N i e- 2 σ fs T S CT fs (41) Note that: φ = µ σ α 2 1 λ max Q -1 T P -1 1 Q -1
The vector is defined as :

=         e f         T ( 42 
)
Now the vector V can be writen as follows:

V ≤ r i=1 ρ i T ψ i + φ (43) 
Where :

ψ =         N i T P + P N i * 1 σ T T P N i 1 µσ P 1 -2 σ T T P T         ≤ 0 (44) 
From the convergence conditions (31), H can be written as follows :

H = [M, E] = [M, E] = [I, 0]         I D -C 0         (45) 
Denote:

K i = L i -N i E
by the substitution of (45) to (31), the gains of the observers can be calculated as :

N i = MA i -K i C L i = K i (I + CE) -MA i E T = MF (46)
Replacing the N i of equation (46) in equation (44) and taking ki = P .k i , the solution of the LMI can be obtained by YALMIP or MATLAB editor. The figure [START_REF] Wang | Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives[END_REF] shows the different computing steps of the observer algorithm : According to the parameters of the induction machine mentioned in tables

AP P EN DIX(A)

: 

A 1 =                      -264
                     A 2 = 1.0e + 03 *                      -0.
                    
Where : A 1 , A 2 are matrix geven by equation 14.

B =                      32.1898 0 0 32.1898 0 0 0 0                      ; C =         1 0 0 0 0 1 0 0         ; F s =                      1 0 0 1 0 0 0 0                      ;
The parameters of UIO can be obtained following the steps of the observer algorithem of figure [START_REF] Wang | Loss manipulation capabilities of deadbeat direct torque and flux control induction machine drives[END_REF] and solving the LMIs using the Yalmip: 

M =                      0.25 -0.25 0 0 -0.25 0.25 0 0 0 0 1 0 0 0 0 1                      ; E =                      -0.75 -0.25 -0.25 -0.75 0 0 0 0                      N 1 =                      -29
                     ; L1 =                   
                     N 2 = 1.0e+03 *                      -0.
                     ; L2 =                   
                     G =                      8.0475 -8.0475 -8.0475 8.0475 0 0 0 0                      ; T =                      0.2500 -0.2500
-0.2500 0.2500 0 0 0.0000 -0.0000

                     ; S = 1.0e+03 *         -2.0171 -2.3658 2.0171 2.3658        
5 Results and discussion of the application on induction machine

In order to demonstrate the effectiveness of the proposed approach, it has been applied to the induction machine, where we have considered current 155 outputs of the IM as inputs variables of the observer.

The observer has been tested for three diffrent cases :

• Case 01: without fault.

• Case 02: quasi-square fault between 3s and 7s.

• Case 03: a variable fault between 0s and 8s. We can see that the fault well be estimated and the error estimation tends to zero. This is confirms the effectiveness of the alogrithm. From the above simulation, it's possible to test the performance of the proposed method.

In the light of the results shown in figures 3-7, the observer estimates the state values which converge to the faults references and the estimation error tends to zero. It can be noticed that the output currents of the observer follow those of the machine and the error is almost zero. Therefore, the estimation by this method gives good results. The results show that the unknown inputs observer can be augmented to estimate the sensor faults and the twinning between the UIO and LPV gives system with satisfactory performance.

CONLUSION

In this paper an augmented unknown inputs observer has been developed

for sensor faults estimation and the noise for an induction machine, this last is represented by a Linear Parameter Varying model (LPV).

As a result, the application of the proposed estimation approach of sensor faults and states gives good results despite the complexity of the system. The augmented observer would allow to deal with the sensor faults as same as actuator faults. Based on the results obtained, it can be said also that this approach could find a large field of applications in fault-tolerant control design, which will be the subject of future work, as its implementation on a real induction machine.

APPENDIX A

The electrical parameters of the induction machine cage used are shown below: The stator quadrature voltage V qs

Rated
The direct stator current i ds

The stator quadrature current i qs

The direct stator flow phi ds

The stator quadrature flow phi qs

Figure 1 :

 1 Figure 1: Schematic block of the approach.

T

  ḟs , the following derivative Lyapunov function can be obtained :V = ėT P e + e T P ė + 2 σ fs T Q -1 ḟs(37)By replacing equations (34) and (32) in equation (37), the final expression of the stability derivative expression obtained, equation (38):

Figure 2 :

 2 Figure 2: Algorithm of Unknown Input Observer design
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  under the condition below and for two sensor faults, the results are given by the figures (3-7):• The speed varies between a minimum value ω min = 0 , and a maximum value ω max = 157 [rad/s].• We will simulate only one sensor fault at a time, which will be of the order 165 of 15 % of the nominal values.

Figure 3

 3 Figure 3 shows the evolution of the estimation faults and the state variable (I ds and I qs ) in the absence of faults. It is noteworthy in these figures that the estimated fault value and variable state converges to the reference value.

Figure 3 :

 3 Figure 3: Free system (without sensor faults).

Figure 4 :

 4 Figure 4: Estimation of square sensor faults in I ds .

Figure 5 :

 5 Figure 5: Estimation of square sensor faults in I qs .

Figure 6 :

 6 Figure 6: Estimation of variable sensor faults in I ds .

Figure 7 :

 7 Figure 7: Estimation of variable sensor faults in I qs .