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Abstract

The continuous approximation is used in this work to describe the dynamics
of a nonlinear chain of light oscillators coupled to a linear main system. A
general methodology is applied to an example where the chain has local non-
linear restoring forces. The slow invariant manifold is detected at fast time
scale. At slow time scale, equilibrium and singular points are sought around
this manifold in order to predict periodic regimes and strongly modulated
responses of the system. Analytical predictions are in good accordance with
numerical results and represent a potent tool for designing nonlinear chains
for passive control purposes.

Keywords: Nonlinear chain, Continuous approach, Vibratory energy, Time
multi-scales method, Passive control

1. Introduction

Study of vibratory energy mitigation through addition of light structures
was first studied in the early 1910’s with the invention of what is usually re-
ferred to as Tuned Mass Damper (TMD) [1]. This linear added oscillator is
tuned to a special frequency in order to oscillate in the opposite phase of the
main system to reduce its oscillations. However, such systems tend to modify
the dynamical characteristics of the overall structure. More importantly, if
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the frequency to which the TMD is tuned is to change, because of damaging
or aging of the main system for example, this device becomes less efficient.
To overcome this drawback, a consequent research effort has focused on using
nonlinear systems [2, 3, 4, 5, 6, 7], among which the Nonlinear Energy Sink
[8, 9, 10, 11, 12, 13, 14, 15] is one of the most popular. Its lack of linear
natural frequency enables it to enter in resonance with any frequency and to
generate a passive control for large frequency ranges.
Other studies considered multiple-degree-of-freedom (dof) nonlinear attach-
ments. It has been proved that several NES coupled in parallel are able to
mitigate effectively energy in addition to providing a better mass distribu-
tion over the main structure. Moreover, sets of three NES in series have
been showing the capacity to extract energy from several modes simultane-
ously under impulsive excitation of the primary system [16, 17, 18], whereas
a single-dof NES can only engage in sequential resonance captures known as
resonance capture cascades [19, 20].
The present paper aims to describe the dynamics of a chain of nonlinear os-
cillators coupled to a harmonically forced linear system. The study of oscil-
latory chains can be led in the frame of different concepts. Nonlinear normal
modes (NNM) are for instance useful to investigate stationary behaviors or
transient resonance captures as it is the case in [16, 17, 18]. In the meantime,
the framework of limiting phase trajectories (LPT) has proven recently to be
very relevant to describe in weakly damped systems non-stationary processes
such as strong energy exchanges or energy localization [21, 22]. Nonetheless,
to the authors’ best knowledge, the latter approaches have considered so far
the oscillatory chain from the discrete point of view. The present work seeks
to present a continuous modelling of the chain and study its dynamics via
a complexification-averaging method leading to the detection of an invari-
ant manifold. It is the continuation of a previous paper where a discrete
analytical approach was used to predict the dynamics of a similar system
[23]. Here, the main focus is set on the methodology investigating the chain
behaviors thanks to a continuous approximation, all other hypotheses being
equal. It leads to a more straightforward treatment by transforming sets of
discrete equations into a partial differential equation from which closed-form
solutions can be derived.
The paper is organized as follows. A general analytical methodology is de-
tailed in Sect. 2. It is then applied to a system featuring a linear structure
coupled to a nonlinear chain with nonlinear on-site potentials in Sect. 3.
Finally, conclusions are given in Sect. 4.
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2. General methodology

2.1. System modeling

The system considered consists of a forced single-dof linear main system
(LMS), with the mass 1 and the displacement v, coupled to a discrete chain
of L + 1 oscillators of mass ǫ (0 < ǫ ≪ 1) presenting nonlinear potentials,
with the displacements uj, j = 1, . . . , L+ 1. Governing equations read:







v̈ + ω2
0v + ǫg1(v, v̇)
︸ ︷︷ ︸

LMS

+ ǫh1(v, u1, v̇, u̇1)
︸ ︷︷ ︸

LMS-chain coupling

= ǫf sin(ωt)
︸ ︷︷ ︸

Forcing term

+O(ǫ2)

ü1 − h1(v, u1, v̇, u̇1)
︸ ︷︷ ︸

LMS-chain coupling

+h2(u1, u2, u̇1, u̇2) = O(ǫ)

üj + hc(uj−1, uj, uj+1, u̇j−1, u̇j, u̇j+1)
︸ ︷︷ ︸

Chain

= O(ǫ) j = 2, . . . , L

üL+1 + hL(uL, uL+1, u̇L, u̇L+1) = O(ǫ)

(1)

where g1 is a linear operator, h2, hc and hL are nonlinear and h1 can be
either linear or nonlinear. Furthermore, the LMS is supposed to be excited
around its resonance: ω2 = ω2

0(1 + σǫ), where ω0 is the angular frequency of
the main system and σ plays the role of a detuning parameter.
Considering a high number of nonlinear oscillators, i.e. L ≫ 1, the contin-
uous limit can be applied to the chain. Its behavior is now described by a
continuous function u(x, t) defined as follows:

uj(t) = u(x = j − 1, t)
x ∈ [0, L]

(2)

where L is the length of the chain. Such transformation enables to perform
Taylor expansions as follows:

uj±1 ≈ u(j − 1, t)± ∂u

∂x
(j − 1, t) +

1

2!

∂2u

∂x2
(j − 1, t)± . . .

± 1

n!

∂nu

∂xn
(j − 1, t) . . .

(3)

Equation (1) is then turned into a system of four equations. The first one
is relative to the LMS and the last three equations form a boundary value
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problem: second and last equation stand as the left and right boundary
conditions in x = 0 and x = L while the third one is a partial differential
equation ruling the dynamics of the chain.
We now introduce complex variables of Manevitch [24] (i =

√
−1):







ψ(t)eiωt =
∂v(t)

∂t
+ iωv(t)

ϕ(x, t)eiωt =
∂u(x, t)

∂t
+ iωu(x, t)

(4)

Those variables are the slow modulation of fast oscillations at the frequency
ω.
Time is then embedded to fast (τ0) and slow (τk, k = 1, 2, . . .) time scales
[25] connected to each other by the mass ratio ǫ:

τ0 = t ; τk = ǫkt k = 1, 2, . . . (5)

Those time scales are used to redefine the derivation operator:

d.

dt
=

∂.

∂τ0
+ ǫ

∂.

∂τ1
+ ǫ2

∂.

∂τ2
+ . . . (6)

A Galerkin technique is implemented to truncate high harmonics kω, k > 1.
For an arbitrary function s(τ0, τ1, τ2, . . .), it reads:

S =
ω

2π

∫ 2π
ω

0

s(τ0, τ1, τ2, . . .)e
−iωτ0dτ0 (7)

As slow modulation variables, ψ and ϕ are assumed to be independent of
τ0 when applying (7) in the case where ψ, ψ∗, ϕ or ϕ∗ appear in s. This
assumption will be verified a posteriori during the multiple scale expansions
or by assuming that asymptotic state is reached after a long enough time τ0.
Injecting Eqs. (2), (4) and (7) into system (1), following system is obtained
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(dependence on time is omitted in equations for the sake of brevity):







dψ

dt
+
i

2

(

ω − ω2
0

ω

)

ψ + ǫG1(ψ) + ǫH1(ψ, ϕ(0)) =
ǫf

2i
+O(ǫ2)

∂ϕ

∂t
(0) +

iω

2
ϕ(0)−H1(ψ, ϕ(0)) +H2(ϕ(0), ϕx(0)) = O(ǫ)

∂ϕ

∂t
(x) +

iω

2
ϕ(x) +Hc(ϕ(x), ϕx(x), ϕxx(x)) = O(ǫ) x ∈]0, L[

∂ϕ

∂t
(L) +

iω

2
ϕ(L) +HL(ϕ(L), ϕx(L)) = O(ǫ)

(8)

where the x subscript stands for the derivation with respect to the space
variable. This system shelters multi-scale behaviors that can be traced by
deriving equations at successive orders of ǫ.

2.2. Multi-scale behaviors

2.2.1. Fast time scale τ0
To study the system dynamics at fast time scale, we derive Eq. (8) at

the ǫ0 order.

First equation leads to
∂ψ

∂τ0
= 0, meaning that the amplitude of oscillation of

the LMS will vary slowly as a function of the slow time scale τ1, which is in
agreement with the hypothesis made above. The assumption of independency
of ϕ on fast time scale is verified by searching for fixed points of the three

remaining equations, i.e. points verifying lim
τ0→+∞

∂φ(x)

∂τ0
= 0. In doing so, we

define the Slow Invariant Manifold (SIM) of the system:







ω0φ(0) + 2i [H1(ψ, φ(0))−H2(φ(0), φx(0))] = 0

ω0φ(x)− 2iHc(φ(x), φx(x), φxx(x)) = 0 x ∈]0, L[

ω0φ(L)− 2iHL(φ(L), φx(L)) = 0

(9)

In previous works studying NES or chains of oscillators for purposes of pas-
sive control (see for example [11, 12, 26] for the former and [23] for the latter),
the SIM has a discrete structure taking the form of a system of P complex
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equations where P is the number of dof of the coupled nonlinear system.
Here it is turned in a boundary value problem consisiting of an ordinary dif-
ferential equation (ODE) and two boundary conditions in x = 0 and x = L,
no matter the number of added oscillators. It depicts the whole range of
asymptotic behaviors that the system could face under the assumption that
the response is monochromatic. Once solved, an expression of φ(x) as func-
tion of ψ is obtained. Varying ψ enables to describe the various behaviors
of the chain at τ1 time scale. Nonetheless, one needs to study the system
equations at slow time scale to predict amplitudes of both the LMS and the
chain at its equilibrium and singular points.

2.2.2. Slow time scale τ1
Considering first equation of system (8) around the SIM, and deriving

it at the ǫ1 order, we obtain an equation describing the variation of main
system’s envelope at slow time scale:

∂ψ

∂τ1
+
iσω0

2
ψ +G1(ψ) +H1(ψ, φ(0)) =

f

2i
(10)

Besides, we assume that the left boundary condition of the SIM gives the
following explicit expression of ψ:

ψ = Fl(N(0))eiδ(0) (11)

where N(x) and δ(x) are the magnitude and the phase of φ(x), i.e. φ(x) =
N(x)eiδ(x). Combining Eqs. (10) and (11), a system of the following form
can be obtained (N0 = N(0) and δ0 = δ(0)):







∂N0

∂τ1
=
f1(N0, δ0)

g(N0, δ0)

∂δ0

∂τ1
=
f2(N0, δ0)

g(N0, δ0)

(12)

Equilibrium and singular points, characterizing periodic regimes and Strongly
Modulated Responses (SMR) [27], respectively, can be detected via Eq. (12).
Equilibrium points verify f1 = f2 = 0 and g 6= 0, while singular points verify
f1 = f2 = g = 0. Besides, system (12) can be used to plot phase portraits
around equilibrium points in order to determine their stability. Those two
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equations along with the SIM form a reduced-order model of the overall
system. Detection of equilibrium and singular points enables to predict the
dynamics of the system and thus design the chain as a passive controller.

3. Example of application: nonlinear chain with local potentials

Let us now consider, as an example of application, the following system
(see Fig. 1): a linear oscillator with the mass M , stiffness K and damping
C, subjected to external solicitation F (t), is coupled to a chain of nonlinear
oscillators of mass m = ǫM . Connection between each mass of the chain is
performed via linear springs of stiffness B̃ and viscous damping Γ. Further-
more, they present local nonlinear restoring forces as Ṽ .

M m

F(t)

K

C

m m m

v

1 u2 uL uL+1u

B
~

B
~

B
~

V
~

V
~

V
~

V
~

Γ Γ Γ

Figure 1: (L+2) dof system consisting of a forced linear structure coupled to (L+1) light
nonlinear oscillators (m = ǫM , 0 < ǫ ≪ 1).

Governing system equations read:






v̈ + ǫcv̇ + ω2
0v + ǫγ(v̇ − u̇1) + ǫB(v − u1) = ǫf sin(ωt)

ü1 + γ(−v̇ + 2u̇1 − u̇2) +B(−v + 2u1 − u2) +Du31 = 0
...

üj + γ(−u̇j−1 + 2u̇j − u̇j+1) + B(−uj−1 + 2uj − uj+1) +Du3j = 0
j = 2, . . . , L

...
üL+1 + γ(u̇L+1 − u̇L) +B(uL+1 − uL) +Du3L+1 = 0

(13)

where
K

M
= ω2

0,
B̃

M
= ǫB,

Ṽ (z)

M
= ǫDz3,

C

M
= ǫc,

Γ

M
= ǫγ,

F (t)

M
=

ǫf sin(ωt) and ω2 = ω2
0(1 + σǫ). This system has the same form as Eq. (1).

Hence we can use the method described in Sect. 2.
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3.1. SIM of the system: preliminary treatments

Implementing the tools given in Sect. 2 leads to the following definition
of the SIM:






ω0φ(0)−
(

iγ +
B

ω0

)(

−ψ + φ(0)− ∂φ

∂x
(0)

)

− 2D|φ(0)|2φ(0) = 0

ω0φ(x) +

(

iγ +
B

ω0

)
∂2φ

∂x2
(x)− 2D|φ(x)|2φ(x) = 0 x ∈]0, L[

ω0φ(L)−
(

iγ +
B

ω0

)
∂φ

∂x
(L)− 2D|φ(L)|2φ(L) = 0

(14)

where D =
3D

8ω3
0

.

We search solutions under the form φ(x) = N(x)eiδ(x). Separating the middle
equation of Eq. (14), i.e. the ODE, in real and imaginary parts gives:

ω0N +
B

ω0

(
Nxx −Nθ2

)
− γ (2Nxθ +Nθx)− 2DN3 = 0 (15)

B

ω0

(2Nxθ +Nθx) + γ
(
Nxx −Nθ2

)
= 0 (16)

where θ(x) = δx(x). We set γ = 0, which is equivalent to consider an ǫ2

order damping in the chain, i.e. γ = O(ǫ). Second equation of Eq. (14)
then suggests an underlying Hamiltonian that is perturbed by boundary
conditions. The framework of LPT or techniques very recently endowed
by Gendelman and Sapsis [28] and used for instance in [29] have not been
generalized to this study. Equation (16) can now be integrated, leading to:

θ(x) =
Θ

N(x)2
(17)

where Θ is a constant of integration. Two remarks can be made:

• if ∃x0, N(x0) = 0, then θ = δx presents a singularity in x0. In other
words, whatever the value of Θ may be, a jump in phase is expected in
the chain if amplitude is null.
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• N(x) is the magnitude of φ, so it is positive. However, in the solving
process, negative solutions can arise. In this case, the absolute value of
the obtained expression of N has to be considered. Then, in order to
keep consistency of the solution with the equations, we will add π to
the phase δ(x) at points where N(x) is negative, which is in agreement
with the previous remark.

Using Eq. (17), Eq. (15) can be integrated by multiplying by Nx and gives
the following relation:

N2
x = − Θ

N2
− ω2

0

B
N2 +

Dω0

B
N4 + C1 (18)

where C1 is another constant of integration. Θ and C1 can be determined
by using the boundary conditions. Injecting Eqs. (17) and (18) into the last
equation of Eq. (14), we obtain:







−ω0N(L) +
B

ω0
Nx(L) + 2DN(L)3 = 0

N(L)θ(L) =
Θ

N(L)
= 0

(19)

Equation (19) implies that:

• Θ = 0 (see second equation). Consequently, the phase is constant
through the chain, unless there exists one or more points where N(x) =
0. At those points, corresponding to a change of sign of N(x), the
phase should face a sudden jump of π as previously explained. This
means that admissible behaviors of the chain at slow time scale are
synchronous periodic oscillations, i.e. NNM according to the definition
of Rosenberg [30, 31, 32]. It has already been proven in [23] for a
chain with nonlinear next-neighbor coupling that frequency-amplitude
dependency of nonlinear modes enables the LMS to solicitate different
NNM of the chain depending on the energy injected in the system.

• The first equation stands as the right boundary condition expressing
the amplitude of the last mass of the chain.

• If N(L) = 0, then Nx(L) = 0 (see first equation) and C1 = 0 (see
Eq. (18)). Yet, when C1 = 0, expression of N2

x is strictly positive iff
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N(x) >

√
ω0

D , which does not allow N(L) = 0. As a consequence, if

N(L) = 0, then ∀x,N(x) = 0. We will from now on focus on nontrivial
solutions, corresponding to the case C1 6= 0.

Now injecting Eq. (17) into the first equation of Eq. (14), we obtain:







(
B

ω0

− ω0 + 2DN(0)2
)

N(0)− B

ω0

Nx(0) =
B

ω0

N1 cos(δ1 − δ(0))

N1 sin(δ1 − δ(0)) = 0

(20)

where ψ = N1e
iδ1 . The second equation shows that the LMS oscillates either

in phase or in opposite phase with the first mass of the chain: δ1 = δ0+kπ, k =
0, 1. First equation then becomes:

N1 = ±
[(

1− ω2
0

B
+ 2

ω0D
B

N(0)2
)

N(0)−Nx(0)

]

(21)

Finally, we obtain the following system of equations to be solved:







N2
x = −ω

2
0

B
N2 +

Dω0

B
N4 + C1

N1 = ±
[(

1− ω2
0

B
+ 2

ω0D
B

N(0)2
)

N(0)−Nx(0)

]

−ω0N(L) +
B

ω0

Nx(L) + 2DN(L)3 = 0

(22)

3.2. Solutions of the equations of the SIM

Let us investigate the ODE, i.e. the first equation of system (22). The
constant C1 plays an important role. Indeed, if it is superior to a critical

value C1crit =
ω3
0

4BD , then the polynomial expression of N2
x has no real roots.

Otherwise, there exists two real roots X1 and X2 defined as follows:

Nx = 0 ⇔ N =
√
X1,2

X1,2 =
ω2
0 ±

√

ω4
0 − 4BC1Dω0

2Dω0
, X1 < X2

(23)
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Figure 2: Phase portraits obtained from the first equation of system (22) for the following

parameters: ω0 = 1, B = 40, D = 1 and (a) C1 = −1

2
C1crit (b) C1 =

1

2
C1crit (b)

C1 =
3

2
C1crit. Three possible branches are named as 1, 2 and 3.

Finally, the asymptotic dynamics of the chain can take place along three
different “branches” named as 1, 2 and 3, depending on the value of C1.
They are depicted in Fig. 2.
Let us now inject expression of Nx(L) obtained from the ODE into the right
boundary condition (last equation of system (22)):

B2

ω2
0

(

−ω
2
0

B
N(L)2 + D̃N(L)4 + C1

)

− (ω0N(L)− 2DN(L)3)2 = 0 (24)
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Because of the symmetry of the phase portraits in Fig. 2, we can focus on
positive solutions N(L). This relation has one, two or three real solutions.
It has three solutions when:

C1crit < C1 < C1m if B < 2ω2
0

C1m < C1 < C1crit if B > 2ω2
0

(25)

where C1m =
(8ω2

0 − B)(B + ω2
0)

2

108B2Dω0
. If B = 2ω2

0, then C1m = C1crit and Eq.

(24) has one real solution. Values of solutions of Eq. (24) are plotted in
Fig. 3, with line styles and colors corresponding to the ones used in Fig. 2
so that one can relate the different values of N(L) to the branches 1, 2 or 3
and the corresponding operating ranges. Value of the parameter B is chosen
different from Fig. 2 for the sake of clarity of Fig. 3. For each value of N(L),

−0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

C
1

N
(L

)

C
1crit

C
1m

Figure 3: ω0 = 1, B = 9 and D = 1 – Plot of the solutions of Eq. (24). Line styles
correspond to cases described in Fig. 2.

starting from 0 and progressing along this curve, we aim to integrate the first
equation of system (22), thus obtaining N(0) and Nx(0) and eventually N1

through the left boundary condition (second equation of system (22)). This
procedure will permit to plot the projection of the SIM in the (N(L), N1)
plane.
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Let us first focus on branch 1, i.e. the case where C1 < C1crit and N(x) <√
X1. Then expression of N2

x can be rewritten as:

Nx = ±
√

D̃(X1 −N2)(X2 −N2) (26)

where D̃ =
Dω0

B
. Integration of Eq. (26) leads to:

N(x) =
√

X1 sn

(√

C1

X1

(x− C2),
X1

X2

)

(27)

where sn(X, k2) is a Jacobian elliptic function and C2 a constant of integra-
tion which can be determined through the following expression:

C2 = L−
√
X1

C1
F

(

arcsin

(
N(L)√
X1

)

,
X1

X2

)

(28)

where F(X, k2) is the incomplete elliptic integral of the first kind. Equation
(27) gives an explicit expression of the modal shapes of the NNM of the chain
that are able to enter in resonance with the frequency of the LMS. The part
of the SIM stemming from branch 1 is plotted in Fig. 4 in blue solid line
for the following parameters: ω0 = 1, B = 40, D = 1 and L = 30. In order
to continue this plot, one needs to integrate the ODE for higher values of
N(L) corresponding to branches 2 and 3. However, there is no closed-form
expression of N(x) on those branches. As a result, one needs to numerically
integrate the following expression:

dx = ± dN
√

−ω
2
0

B
N2 +

Dω0

B
N4 + C1

(29)

It can be proven that such integration leads to detection of a monotonic in-
creasing branch of the SIM plotted in Fig. 4 (red dotted line).

3.3. Equilibrium and singular points

The equation relative to the LMS around the SIM derived at the ǫ1 order
reads:

∂ψ

∂τ1
+

1

2

(

cψ + iσω0 −
iB

ω0

)

ψ +
iB

ω0

φ(0) =
f

2i
(30)
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Figure 4: L = 30, ω0 = 1, B = 40 and D = 1 – Example of SIM. Line styles correspond
to cases described in Fig. 2.

Left boundary condition of the SIM gives:

ψ = Fl(N0)e
iδ0

Fl(N0) = −Nx(0) +

(

1− ω2
0

B
+ 2D̃N2

0

)

N0
(31)

Injecting Eq. (31) into Eq. (30), we obtain:






∂N0

∂τ1
=
f1(N0, δ0)

g(N0)

∂δ0

∂τ1
=
f2(N0, δ0)

g(N0)

(32)

where






f1(N0, δ0) = −Fl(N0)

2
[cFl(N0) + f sin(δ0)]

f2(N0, δ0) =
1

2

∂Fl(N0)

∂N0

[(
B

ω0

− σω0

)

Fl(N0)−
B

ω0

N0 − f cos(δ0)

]

g(N0) = Fl(N0)
∂Fl(N0)

∂N0

(33)
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g(N0) = 0 gives points of the SIM where singular points can appear. They
are located on the local extremums in Fig. 4: Fl(N0) = 0 corresponds to

the minimums (N1 = 0) and
∂Fl(N0)

∂N0
to the maximums. We introduce

variables N
(k)
0,min and N

(k)
0,max, where k denotes the number of local maximums

(or minimums), defined as follows: Fl(N
(k)
0,min) = 0 and

∂Fl(N
(k)
0,max)

∂N0
= 0.

To detect singular points, one should also verify the condition f1(N0, δ0) =
f2(N0, δ0) = 0, which comes down to:

cos(δ0) = −
BN

(k)
0,min

fω0

or

sin(δ0) = −
cFl(N

(k)
0,max)

f

(34)

As | cos(δ0)| and | sin(δ0)| are bounded, it is possible to define critical values of
the forcing amplitude above which singular points arise at the corresponding
values of N(0), i.e. at the corresponding local extremums of the SIM:

f
(k)
crit,min =

∣
∣
∣
∣
∣

BN
(k)
0,min

ω0

∣
∣
∣
∣
∣

f
(k)
crit,max =

∣
∣
∣cFl(N

(k)
0,max)

∣
∣
∣

(35)

Despite the complexity of the initial system, the method of detection of
equilibrium and singular points is straightforward compared to the proce-
dure used in [23]. Besides, it enables to detect critical forcing amplitudes
of Eq. (35) which can be of great use when trying to design the chain as a
passive controller. Analytical predictions are now to be compared to numer-
ical results which take into account the real discrete behavior of the overall
system.

3.4. Numerical results

3.4.1. Validation of analytical predictions

In this section, numerical simulations obtained from time integration of
system (13), i.e. the initial discrete system of equations, are confronted with
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analytical predictions of Sects. 3.1, 3.2 and 3.3. Integration is performed
thanks to the ode45 function of Matlab (Runge-Kutta scheme), with follow-
ing options: time step of 0.1, absolute and relative error tolerances of 10−12.
At initial time, all masses of the system are at rest. From the physical am-
plitudes obtained, i.e. v(t) and uj(t), j = 1, . . . , L + 1, we can compute ψ
and the discrete equivalent of ϕ(x, t), which is a (L + 1) vector constituted
of the variables:

ϕj+1(t) = (u̇j(t) + iωuj(t)) e
−iωt = Nj+1(t)e

iδj+1(t) (36)

Let us first set L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 0.5
and σ = 0. A small damping γ = 0.1 is also added in numerical simulations.
The SIM and its equilibrium and singular points are depicted in Fig. 5(a).
The system has one equilibrium point on its first branch. The phase portrait
in Fig. 5(b) shows that it is stable. A singular point is also present on the

local maximum as f
(1)
crit,max = 0.340 < f < f

(1)
crit,min = 8.370. Thus, after a

quick transient state, the system behavior is expected to be attracted by the
SIM and either stabilize around the equilibrium point or face SMR driven
by the singular point. It can be seen on Fig. 6 that the system reaches an
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Figure 5: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 0.5 and σ = 0 – (a)
SIM of the system (black line) with equilibrium and singular points (blue point and black
cross, respectively) (b) Phase portrait around the equilibrium point

equilibrium state. However, there is a significant discrepancy between the
final amplitudes of the system and the prediction (see blue and red points in
Fig. 6(b)). This difference comes from the transition to the continuum limit,
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which can be seen in Fig. 7(a) where blue triangles depict the prediction
of final amplitudes of each oscillator of the chain obtained from the discrete
approach used in [23]. This prediction fits numerical amplitudes represented
by red crosses. Nonetheless, SIM obtained from both methods, plotted side
to side in Fig. 7(b), are in good agreement. Analytical results also succeed
to predict correctly the general behavior of the system: the blue solid line
in Fig. 7(a) reaches 0 at x = 14.4. It means that during the steady-state
regime, the chain should present two groups of particles oscillating in oppo-
site phase with the middle oscillators (no. 14 and 15) having a near-zero
amplitude, which is validated by the numerical results in Fig. 8. Finally,
the discrepancies between predictions of continuous and discrete approaches
decrease as the length of the chain increases. Increasing this length to L = 50
and setting f = 2, all other things being equal, five equilibrium points are
detected. Comparisons of predicted amplitudes of the oscillators of the chain
(i.e. Nj or N(x)) around equilibrium points obtained from discrete and con-
tinuous approaches are given in Fig. 9. They are in good accordance.
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Figure 6: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 0.5 and σ = 0 – (a)
N1 versus time obtained from numerical results (b) SIM of the system (dashed black line)
and equilibrium point (blue point) with corresponding numerical results (red line). The
red point shows the final amplitudes of the system obtained from numerical results

Changing the forcing parameters to f = 4.5 and σ = 10, three equilibrium
points (no. 1, 2 and 3) and a singular point are detected on the SIM, as shown
in Fig. 10. Points no. 1 and 2 are unstable while point no. 3 is stable (see
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Figure 7: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 0.5 and σ = 0 – (a)
Comparison of amplitudes of the masses of the chain obtained from discrete (triangles)
and continuous (solid line) approaches and numerical results (red crosses) (b) Comparison
of the SIM obtained from discrete (dashed line) and continuous (solid line) approaches

Figure 8: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 0.5 and σ = 0
– Evolution of the physical amplitudes of oscillation uj of each oscillator of the chain
obtained from numerical results at τ1 time scale

phase portraits in Fig. 10(b)-(d)). Numerical results in Fig. 11, for which
the damping has been increased to γ = 5, show that the system faces SMR.
Fig. 11(a) depicts the cycle that the system follows repeatedly on the SIM,
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bifurcating from one branch to another. During those cycles, a 1:1 resonance
is engaged between two NNM of the chain which are caught in an intense
energy exchange regime. Figure 12 plots a bifurcation between the NNM
excited on the lower branch of the SIM and the one solicitated on the higher
branch. Such non-stationary behavior ensuing from inter-modal resonance
has been observed and predicted within the framework of LPT in different
systems such as discrete periodic Klein-Gordon [33] and Fermi-Pasta-Ulam
[34] chains.

3.4.2. Evidence of passive control

In this section, an example of passive control of the linear system per-
formed by the chain is shown. We aim to prove that a part of the main
structure’s vibratory energy can be transferred into the chain, without any
consideration about a possible optimal design of the system parameters. To
this end, we consider the same set of parameters as in the previous section,
i.e. L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1 and c = 0.5, and we inves-
tigate the existence and amplitudes of equilibrium and singular points when
varying the amplitude of external excitation, i.e. f , at the exact resonance
with the LMS (σ = 0). A comparison with the amplitude N1 that the LMS
would have without the presence of the chain is led.
Obtained results for f ∈ [0.1, 10] is depicted in Fig. 13. Black solid line
denotes the amplitudes that the LMS would face without the chain. It is

given by the following relation : N1 =
f

√

c2 + σ2ω2
0

= 2f . For the sake

of clarity, the straight line has been cut. It clearly appears that the LMS
has lower amplitudes with the chain, especially at relatively high energies.
Nonetheless, around f = 0.6, an equilibrium point has the same amplitude
as the LMS without the chain. Thus, a parametric study needs to be led to
enhance the control performance at low energy. This is out of the scope of
this paper.

4. Conclusions

The present work studies the dynamics of a chain of light nonlinear oscil-
lators coupled to a linear structure through a method using the continuous
limit to describe the behavior of the chain. It is the continuation of a work
using a discrete description with the same hypotheses. A general method-
ology is presented and applied to an example of a chain with cubic on-site
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restoring forces. The slow invariant manifold of the system is defined at fast
time scale by a boundary value problem which has a closed-form solution
being valid for a large range of amplitudes. At slow time scale, equilibrium
and singular points are detected. They predict periodic regimes and strongly
modulated responses, respectively. Comparisons with the discrete approach
show good agreements when the chain is long enough. This is a predictable
result since it is a mandatory assumption for applying the continuous ap-
proximation. Confrontation with numerical simulations enables to validate
this approach and shows that the method can be used to design nonlinear
chains of oscillators for purposes of passive control.
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Figure 9: L = 50, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 2 and σ = 0 –
Comparisons of predicted amplitudes of the masses of the chain on the five equilibrium
points obtained from discrete (triangles) and continuous (solid line) approaches.
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Figure 10: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 4.5 and σ = 10 –
(a) SIM of the system (black line) with equilibrium and singular points (blue points and
black cross, respectively) (b)-(d) Phase portraits around equilibrium points no. 1, 2 and
3, respectively.
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Figure 11: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 4.5 and σ = 10 –
(a) SIM of the system (dashed black line) with corresponding numerical results (red line)
(b) N1 versus time obtained from numerical results (c) N32 versus time obtained from
numerical results.
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Figure 12: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5, f = 4.5 and σ = 10
– Evolution of the physical amplitudes of oscillation uj of each oscillator of the chain
obtained from numerical results at τ1 time scale
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Figure 13: L = 30, ǫ = 0.001, ω0 = 1, B = 100, D = 1, c = 0.5 and σ = 0 – |N1|-
amplitudes of equilibrium and singular points (blue points and black crosses, respectively)
of the system when the forcing magnitude f varies. Black solid line denotes the amplitude
the LMS would face without the chain.
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