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Abstract

Home health care services play a crucial role in reducing the hospital-
ization costs due to the increase of chronic diseases of elderly people. At the
same time, they allow to improve the quality of life for those patients that
receive treatments at their home. Optimization tools are therefore necessary
to plan service delivery at patients’ homes. Recently, solution methods that
jointly address the assignment of the patient to the caregiver (assignment),
the definition of the days (pattern) in which caregivers visit the assigned pa-
tients (scheduling), and the sequence of visits for each caregiver (routing)
have been proposed in the scientific literature. However, the joint consid-
eration of these three levels of decisions may be not affordable for large
providers, due to the required computational time.

In order to combine the strength and the flexibility guaranteed by a joint
assignment, scheduling and routing solution approach with the computa-
tional efficiency required for large providers, in this study we propose a new
family of two-phase methods that decompose the joint approach by incre-
mentally incorporating some decisions into the first phase. The concept of
pattern is crucial to perform such a decomposition in a clever way. Sev-
eral scenarios are analyzed by changing the way in which resource skills are
managed and the optimization criteria adopted to guide the provider deci-
sions. The proposed methods are tested on realistic instances. The numerical
experiments help to identify the combinations of decomposition techniques,
skill management policies and optimization criteria that best fit with prob-
lem instances of different size.

Keywords: Home Health Care; Mathematical Programming; Optimiza-
tion; Skill Management

1 Introduction
Human resource planning defines, over a given time horizon, the composition of
the required workforce to meet the service goals of the system under study. In the
literature, this planning process is classified under different categories: perma-
nence centered planning, fluctuation centered planning, mobility centered plan-
ning and project centered planning (Causmaecker et al., 2005). This paper focuses
on the short term planning process for mobility centered planning (Brucker et al.,
2011), where human resources (operators) travel to perform on-site service activ-
ities at customer places. For such services, innovative decision making methods
are required to support the planning process.

Home Health Care (HHC) is a relevant example of such services that emerge
as an increasingly promising alternative for providing health and social services
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to patients cared at home (Kucukyazici et al., 2011; Matta et al., 2014; Sahin and
Matta, 2014). Many factors drive the demand for HHC. Among these, we can
cite the actual demographic trends, the changes in the epidemiological landscape
of diseases and the availability of new support technologies. In the HHC service
process, that involves several types of operators (e.g., nurses, physicians, social
workers, home support workers, etc.), the human resource planning process is
of particular interest. As such, the human resource planning process for Home
Health Care (HRPHHC) consists of several decisions such as capacity planning,
partitioning of the territory where the HHC service operates into districts, allo-
cation of resources to districts, assignment of operators to patients (or to visits),
scheduling and routing of operators (Matta et al., 2014; Sahin and Matta, 2014).

In this paper we focus on the last three levels of planning that are the as-
signment, scheduling and routing decisions. Given a planning horizon, a set of
patients where each patient has a specific care plan (i.e. weekly care service re-
quests asking for specific operator qualifications/skills), and a set of operators
characterized by skills, the addressed HRPHHC problem asks to (i) assign the op-
erators to the patients by taking into account the compatibility between requests
and operator skills (assignment decisions), (ii) schedule the patient requests dur-
ing the planning horizon (scheduling decisions), and (iii) determine the tour each
operator has to perform on each day of the planning horizon (routing decisions).
We consider variously skilled operators, various patient care requests, multiple
planning period (which is usually a week) and continuity of care constraints (i.e.,
the assignment patient-operator is not changed during the whole planning horizon
(Lanzarone et al., 2012)).

In the state-of-the-art literature, the HRPHHC problem is usually solved in
cascade: first operators are assigned to patients on a geographical basis so as
to match the skills demanded by patient care requirements with skills owned by
each operator; second, the routing of each operator is determined. Such two-
phase methods generally deal with a daily planning horizon. In a more flexible
way, the problem can be solved without decomposing the three levels of planning
decisions, but jointly addressing assignment, scheduling and routing decisions
over the given planning horizon. We refer to this as the single-phase method.

An innovative modelling device to combine the three levels of decisions has
recently been proposed, where services are offered according to a set of a pri-
ori given patterns, i.e., possible schedules for patients’ requests (Cappanera and
Scutellà, 2015). It has been shown that, by properly selecting the pattern gener-
ation mechanism, the single-phase method is able to compute very good quality
solutions, near to the optimal ones. Large amounts of time and memory resources
may be required, however, in the case of large instances. Hence, the use of the
pattern device coupled with a two-phase decomposition approach seems to be suit-
able for solving large scale HRPHHC instances by combining efficacy (solution
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quality) with efficiency (solution time). This represents the subject of this paper.
Precisely, the main contribution of this paper is the proposal of a new fam-

ily of two-phase methods, based on patterns, where assignment, scheduling and
routing decisions over the considered planning horizon are taken in two steps, as
in the traditional two-phase methods. Such steps, however, are properly coordi-
nated by means of the pattern mechanism introduced in (Cappanera and Scutellà,
2015). In this way the strength of the single-phase method is combined with the
computational efficiency of the traditional two-phase approaches.

The pattern-based two-phase methods are investigated also computationally,
by providing a comparative study among them. Specifically, since the proposed
methods vary in terms of flexibility and efficiency, the goal is to identify the most
effective and efficient ones. In addition, alternative objective functions based on
operating cost minimization and on social equity criteria (i.e., balancing operator
workloads) are compared under different conditions of skill management. The
presented methods are indeed relaxations of the exact, single-phase approach in
(Cappanera and Scutellà, 2015). Therefore, such an exact approach is considered
in order to evaluate the solution quality guaranteed by the pattern-based two-phase
methods.

Numerical analysis is carried out on realistic problem instances. Results show
that some of the proposed two-phase methods provide a powerful tool to solve
HRPHHC, leading to high quality solutions in a short computational time. In
other words, they appear to be a very promising tool to address HRPHHC with
both efficacy and efficiency, especially for large size instances. This finding is
significantly important in practice where many HHC providers have to deal with
large scale problems, characterized by several hundreds of patients located in a
single district.

The paper is organized as follows. Section 2 provides a literature review on
the short term HRPHHC. Section 3 describes the problem and also provides an
overview of the methods presented in this work. Such methods are then detailed
in Section 4. Results from an extensive experimentation are reported in Section 5.
Finally, conclusions are drawn in the last section.

2 Literature Review
The literature related to assignment, scheduling and routing problems in HHC
services has been reviewed by two recent works (Hulshof et al., 2012; Yalcindag
et al., 2012). Hulshof et al. (2012) propose a taxonomic review on planning-
related decisions in health care services, including HHC. Yalcindag et al. (2012)
review the assignment and routing problems in HHC. Among the existing works
already mentioned in these papers, this section summarizes and classifies the most
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relevant ones. Papers are thus grouped based on the length of the planning period
considered, the objective function used as well as constraints imposed. This en-
ables to point out the main differences of the problems studied in this paper with
respect to those addressed in the literature. The solution approaches proposed by
authors are also briefly presented.

Most of existing literature is devoted to the daily HHC planning problems.
Among these, Cheng and Rich (1998) develop a daily scheduling problem as a
multi-depot Vehicle Routing Problem (VRP) with time windows (MDVRPTW)
that considers compatibility information between patients and operators. The
problem is formulated as a mixed integer linear program. The objective is to min-
imize the total cost associated with the amount of overtime hours of full-time and
part-time nurses. Meanwhile, this objective is pursued with respect to constraints
such as visiting each patient exactly once, assigning each nurse to at least one pa-
tient, starting and ending at the operator’s home, taking a lunch break within the
given time interval and respecting the constraint of maximum nurse shift length.
Since the problem is a complex combinatorial optimization problem, Cheng and
Rich (1998) develop a two-phase heuristic. The first phase falls into the parallel
tour-building procedure category. The identified tours are then improved in the
second phase using local search by adjusting assignments and inserting omitted
patients.

Eveborn et al. (2006) formulate the scheduling problem as a VRPTW with the
set partitioning model and solve it heuristically by using a repeated matching algo-
rithm. The objective is to minimize a total cost related to the travel time, scheduled
hours, preferences, etc., while respecting the following constraints: time windows
for visits, operators’ skill requirements, and accomplishment of each visit by one
operator.

Thomsen (2006) addresses the daily scheduling problem as a VRPTW with
shared visits (i.e., visits requiring two operators). The objective of this model
is to minimize the total travelling cost and the number of visits that are carried
out by non reference care givers. The constraints of the model are as follows:
respecting the visits’ and operators’ time windows, assigning at least one visit to
each operator and starting/ending a shared visit at the same time. The model is
solved by using a new insertion method that forms an initial solution for a variant
of tabu search.

Akjiratikarl et al. (2007) generate daily schedules by using the VRPTW. They
minimize the total distance travelled with respect to visits’ and operators’ time
windows and assignment of each visit to only one operator. The solution pro-
cedure incorporates the Local Improvement Procedure into the Particle Swarm
Optimization technique to improve the identified solutions. The initial solutions
are generated using the Earliest Start Time Priority with the Minimum Distance
Assignment technique.
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Bredstrom and Ronnqvist (2008) develop a mathematical model that integrates
synchronization and precedence constraints between visits by extending the tradi-
tional VRP formulation. They use a heuristic approach based on the local branch-
ing heuristic to solve their model. In their previous study (Bredstrom and Ron-
nqvist, 2007), they develop a branch-and-price algorithm to solve the same model
without including the precedence constraints.

Trautsamwieser et al. (2011) propose a model for securing the HHC services
when natural disasters appear. They develop the daily scheduling model as a VRP
with state-dependent breaks. The objective of the model is to minimize the sum
of travel times and waiting times as well as the dissatisfaction levels of patients
and operators. The proposed model is first solved for small scale data with a state
of art solver, and then for real life-sized data with a neighborhood search based
heuristic.

Rasmussen et al. (2012) address the daily scheduling problem as a multi-depot
VRPTW and temporal connections between visits. They use the same formulation
as in Bredstrom and Ronnqvist (2007) with some differences. Visits can be uncov-
ered and a multi-criteria objective is adopted to minimize the number of uncovered
visits with the total distance traveling costs while maximizing the operator-visit
preferences. In particular, in the objective function they assign a higher priority
to the uncovered visit criterion than the other criteria. Constraints of this model
include: each visit can be covered exactly once or left as uncovered, operators can
only handle allowed visits, visits’ and operators’ time windows and precedence
relations of visits.

Despite the fact that HHC providers often make decisions on a multi-period
planning horizon, only few works focus on the weekly planning problem of HHC
services (Begur et al., 1997; Nickel et al., 2012; Borsani et al., 2006; Cappanera
and Scutellà, 2015; Gamst and Jensen, 2012; Cattafi et al., 2012; Trautsamwieser
and Hirsch, 2014). Begur et al. (1997) propose a Spatial Decision Support System
(SDSS) that contains a special module for the daily scheduling of operators’ ac-
tivities. This module assigns simultaneously operators to visits and generates the
sequence in which the visits should be executed. The tool is based on a heuristic
approach to minimize the total travelling time while respecting constraints related
to the route construction, operators time windows, and skills requirements.

Borsani et al. (2006) propose a multi-objective formulation that includes the
number of covered visits, continuity of care constraints and travel costs. Patients’
and operators’ preferences are modeled as soft constraints, but routing decisions
are not addressed. A state-of-the-art solver is used for the two mathematical for-
mulations.

Nickel et al. (2012) address the weekly scheduling problem as the combina-
tion of the VRPTW and the nurse rostering problem. The objective of the pro-
posed model is minimizing the weighted sum of the patient-nurse loyalty (conti-
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nuity of care), unscheduled tasks, the overtime costs, and the traveling distance.
As solution approach, they use different meta-heuristics combined with methods
from constraint programming that allows a very flexible treatment of realistic con-
straints.

Gamst and Jensen (2012) propose a mathematical model and a Branch-and-
Price solution approach. They deal with regular visiting times at the patients by
the same group of operators. Visiting time windows and working time windows
of the operators are not considered as hard constraints but are handled within a
weighted objective function.

Cattafi et al. (2012) propose a solution approach based on constraint program-
ming where they assign operators to the patients and solve a traveling salesman
problem for each operator on each day. Time windows are not addressed and the
operators may work also in intramural health care facilities. The total workload of
the operators and the number of different operators visiting a client are minimized.

Trautsamwieser and Hirsch (2014) study the case where patients need to be
visited one or several times during the week by appropriately skilled operators.
Visits have predefined time windows. Additionally, working time requirements
for the operators such as breaks, maximum working time per day, and daily as
well as weekly rest times are considered. The authors propose a Branch-Price-
and-Cut solution approach to solve the problem exactly, using the solutions of a
variable neighborhood search solution approach as upper bounds. Their algorithm
is capable of solving to optimality real-life based test instances with up to nine
nurses, 45 clients, and 203 visits during the week.

Lastly, Cappanera and Scutellà (2015) present a single-phase method to the
weekly planning of HHC services, where assignment, scheduling and routing de-
cisions are jointly addressed via patterns. In fact, a pattern based mechanism
is proposed to combine the diverse levels of decisions. Furthermore, skill com-
patibility between patients and operators is addressed. Specifically, the authors
develop a hierarchical skill management policy where an operator with a specific
skill is allowed to serve patients requiring lower level skill visits. The mathemati-
cal model aims at balancing the workload among operators.

The two-phase methods presented in this paper originate as a decomposition
of the single-phase method in Cappanera and Scutellà (2015), with the aim to
achieve more efficiency still guaranteeing the quality of the solutions found by an
exact approach. Assignment, scheduling and routing decisions are taken in two
steps, by defining two mathematical programming models related one each other
to keep the consistency of the problem. Assignment decisions are always taken in
the first phase. However, differently than in traditional two-phase approaches, in
some cases also scheduling decisions are addressed in the first phase, and this is
possible by suitably exploiting the pattern mechanism mentioned above, which is
now an instrument to coordinate the two phases of the approach.
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3 Problem description
This section has two objectives. First, Section 3.1 presents the general assump-
tions we use in the HRPHHC problem studied in this paper. Then, Section 3.2
presents the methods used in this study.

3.1 Assumptions and notation
Given a planning horizon H , usually a week, a set of patients with an associ-
ated care plan, i.e. weekly requests that need specific skills to be operated, and a
set of operators where each operator is characterized by a specific skill, the ana-
lyzed problem asks to assign the operators to the patients by taking into account
the compatibility between the requests and operator skills (assignment decisions),
schedule the patient requests during the planning horizon (scheduling decisions),
and determine the tour each operator has to perform on each day of the planning
horizon (routing decisions).

In a more formal way, the problem can be defined on a complete directed
network G = (N ,A ) having n nodes in the set N = {1, . . . ,n}, where each node
j corresponds to a patient. We assume to have an extra node (node 0), which is
used to denote the basis of operators, i.e. the daily tour of each operator starts/ends
from/at node 0. The set A represents the possible trajectories among the nodes
of the network. Arcs are labeled with t j j′(( j, j′) ∈A ) representing the distances
among the nodes.

A set K = {1, . . . ,K} of K levels of skill is considered for either patients
(each patient skill represents a set of specific care requirements) or operators (each
operator skill represents a set of specific competencies), where skill K corresponds
to the most complete competency level and skill 1 to the least complete one. As
an example, if K = 2, skill 1 would refer to ordinary requests or basic operator
competencies, whereas skill 2 can correspond to palliative requests or advanced
operator competencies.

A care plan r j is assumed to be known for each patient j. Indeed, the vector
r j specifies, for each level of skill, the number of visits required by patient j in the
whole planning horizon H relatively to that skill. Hence, according to this, each
care plan r j has K components denoted with r jk (with k ∈K ) that represent the
number of visits of skill k required by patient j in the planning horizon.

The set O represents the (skilled) operators available in the planning horizon,
whereas subsets Od ⊆ O represent the operators available on a particular day d,
for each d ∈H = {1, . . . ,H}. A “hierarchical structure of skill levels” refers to
the situation where an operator with skill k can be assigned to all care requests
characterized by a skill level inferior or equal to k. We denote with Sk ⊆ O the
subset of operators having at least skill k.
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The HRPHHC decisions are taken by using the pattern concept. As such, care
requests associated with each patient are satisfied by choosing the most appropri-
ate pattern within a set P of a priori given patterns. For example, if a patient
requires three visits of a given skill in a week, visits can be operated according to
the pattern Monday-Wednesday-Friday or Monday-Tuesday-Thursday. Formally,
for each pattern p ∈P we define p(d) = 0 if no service is delivered at day d,
while it is p(d) = k if a visit of skill k is operated according to pattern p on day
d. The implicit modeling assumption is that a patient may receive at most one
visit per day. This assumption excludes hospitalization-at-home service, which
requires intensive care services, and acute patients in general. In case more visits
can be delivered in a single day, the pattern definition can be extended to consider
this (Cappanera and Scutellà (2015)).

The addressed HRPHHC problem thus consists in: i) assigning one operator
to each patient j (assignment decisions), ii) assigning a pattern p from P to each
patient j in N , so scheduling the requests of j expressed by r j during the plan-
ning horizon (scheduling decisions), and iii) computing the tour of each operator
for each scheduled day (routing decisions). In addressing these three levels of de-
cisions, skill constraints (i.e. the compatibility between requirements associated
with patient requests and skills of operators) as well as daily workload constraints
for operators are taken into account. Continuity of care constraint (i.e., a unique
operator has to be assigned to each patient over H ) is included. Since service
providers may by guided by several criteria in the HRPHHC, alternative objective
functions are considered, as better specified in the next section.

It is important to emphasize that many significant differences do exist in the
planning of home care organisation operations, which induce the development
of different models and methods. An analysis of the main types of organisa-
tions is depicted in Matta et al. (2014), where a distinction among public service
providers, and private non for profit/for profit providers is outlined depending on
their corporate status. Another classification of home care providers is related to
the pathologies suffered by their patients and the patient characteristics.

The HRPHHC problem studied in this paper refers to providers which are
mainly dedicated to palliative care and terminal patients. This is the most com-
mon case in Italy as stated in Cappanera and Scutellà (2015). However its char-
acteristics are very general; in fact, most of them constitute a common kernel to
other types of health care service organisations. In contrast, the issues that char-
acterize this HRPHHC problem are mainly the low importance of time windows
constraints, the care continuity management and a hierarchical structure of the
skills associated with patients and caregivers. In particular, although time win-
dows imposed on patient’s visits can be crucial in several home care scenarios,
especially for patients requiring a timely administration of drugs, in the palliative
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context the satisfaction of time windows indicated by the patients is typically not
pursued. Furthermore, another issue that characterizes the palliative context is
that patient’s visits and operators are associated with levels of skill that are man-
aged hierarchically. This opportunity is perceived positively by the patients since
it increases their confidence in the service they receive.

The issues that feature the palliative context, however, do not narrow the ap-
plicability of the methods we propose to different home care contexts. Extensions
can be easily designed that may help in coping with the request to satisfy time win-
dows indicated by the patients and those relative to operator shifts, like a morning
and an afternoon shift in each day, and with scenarios where skills are not orga-
nized hierarchically (Cappanera and Scutellà, 2015). Work time constraints such
as break times, minimum rest times between shifts and minimum weekly rest
times, as well as synchronization constraints among visits at the same patients,
not addressed in this paper, also deserve consideration. They will be the subject
of future work.

3.2 Overview of methods
This section presents four alternative pattern-based methods to tackle the HRPHHC
problem stated before, as well as some relevant variants. One is the single-
phase method in (Cappanera and Scutellà, 2015), while the others are two-phase
methods originating from it. As previously introduced, such two-phase methods
are obtained by suitably decomposing the single-phase model in (Cappanera and
Scutellà, 2015) to enhance its computational efficiency. Precisely, each two-phase
method is defined by two mathematical programming models related to each other
to keep the consistency of the problem. The methods differ by their degree of
flexibility, where flexibility refers to the possibility of exploring a wider solution
space: the more a method is flexible, the wider its solution space which corre-
sponds to postpone the decisions in the last phase. With the less flexible method
assignment decisions are taken in the first phase (thus guiding the other remaining
decisions). With the most flexible method no decision has a preeminent role with
respect to the others and all of them are taken simultaneously in one shot (this is
the single-phase method).

In the less flexible method, patients are assigned to operators by looking only
at the overall load of their care plan and at the availability of operators over the
entire programming period. Such operator-patient assignments may eventually
generate infeasibilities in the second phase, where scheduling and routing deci-
sions are taken for each day of the planning period. In an attempt to limit these
infeasibilities, we propose two intermediate methods characterized by different
levels of flexibility. They both integrate scheduling decisions in the first phase.

In the less flexible method of the two intermediate ones, scheduling decisions
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are taken only in the first phase in addition to the assignment decisions. Then,
once each patient has been assigned to one operator (assignment) and once the
day pertaining to each visit specified in the care plan of the patients has been fixed
(scheduling), the tour each operator has to perform every day of the planning
horizon is consequently optimized in the second phase.

In the more flexible method of the two intermediate ones, the assignment is
guided by a tentative schedule of visits, but such a schedule is not fixed in the
second phase. Indeed, scheduling decisions are re-considered in the second phase
together with routing decisions. Integrating the scheduling decisions into the first
phase has the aim of better guiding assignment decisions.

A graphical representation of the four methods described above is given in
Figure 1, by using the notation introduced in Table 1. Specifically, in Table 1 the
main decisions are reported together with their description, the label used in the
following to refer them and the name of the variable that will be used in the models
definition to represent the related decision. In particular, ui j is a binary variable
set to one when patient j is assigned to operator i; z jp is a binary variable set to
one if patient j is served according to pattern p while xid

j j′ is a binary variable set
to one when the tour of operator i on day d includes consecutively patients j and
j′. Figure 1 shows how each of the four methods ranks with respect to flexibility
(x-axis) and in which level the decisions are taken (y-axis).

With regards to decisions taken, each of the four methods is identified by a
two field string where each field contains the label(s) of decisions taken. As an
example, the string A|S+R denotes the rigid method where assignment decisions
characterize the first phase while scheduling and routing decisions are taken in the
second phase. Such a notation will be enriched in the next paragraphs with the
information coming from the objective function used to guide each phase.

Table 1: Type of decisions

Decision Label Description Variable
Assignment A assign a set of patients to each operator ui j
Scheduling S fix the day of each visit z jp
Routing R sequence the visits in each day for each operator xid

j j′

An interesting feature of two-phase methods is that different objective func-
tions may be selected to guide the optimization at each phase. In other words,
these methods are inherently bicriteria. In our study, the first phase of each
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Figure 1: Rigid models vs flexible models

pattern-based two-phase method is equity driven while the second phase can be
either cost or again equity driven. The equity refers to a fair distribution of the
workload among operators and the optimization function is thus a balancing cri-
terion. At that point, two equally prominent points of view can be considered:
we can focus either on the most busy operator and minimize his/her workload, or
alternatively we can focus on the least busy operator and maximize his/her work-
load. In the following, the character “W” is used to denote the workload while
indexes “MB” and “LB” stand respectively for most busy and least busy. Conse-
quently, WMB and WLB are used respectively to denote the two above mentioned
balancing criteria. In contrast, when the focus is on cost control the optimization
will be guided by the minimization of the overall distance traveled by all opera-
tors. The letter “C” is used to denote the cost.

For each of the four methods represented in Figure 1 we use the notation
v1( f1)|v2( f2) to describe the two optimization problems addressed respectively
in the two phases, where vi for i = 1,2 refers to the decision variables involved
(see column “Label” in Table 1) while fi for i = 1,2 refers to the criterion used to
guide the corresponding optimization problem. As an example, A(WMB)|S+R(C)
refers to a two-phase method where the first phase solves an assignment prob-
lem and is guided by a balancing criterion focusing on the most busy operator,
whereas the second phase solves the scheduling and routing problems by using
cost minimization as a guiding criterion.

We propose four variants of A|S+R, namely A(WMB)|S+R(WMB), A(WMB)|S+
R(C), A(WLB)|S+R(WLB), A(WLB)|S+R(C), where the first phase is guided by
two balancing criteria, while the second phase can be guided by a cost criterion or
by a balancing criterion in accordance with the one chosen at the upper level. The
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same considerations hold for A+S|R and A+S|S+R. Finally, we consider three
variants of the the single-phase method .|A+ S+R, which can be guided by one
of the two balancing criteria or by the minimization of cost.

Summarizing, we consider four alternative pattern-based methods for a total
of 15 variants. For more clarity, the used notation is summarized in Table 2.

Table 2: Summary of used notation

Set Description
H planning horizon
N set of patients
A set of possible trajectories
K set of skill levels
P set of patterns
O set of available operators
Od subset of operators available on day d
Sk subset of operators having at least skill k

Parameter Description
ai capacity of operator i
r j care plan of patient j
r jk number of visits of skill k required by patient j
t j j′ distance between patients j and j′

t ′j care service time at patient j
τ j average traveling time to reach patient j
α j total volume of care required by patient j

4 Pattern-based methods
The aim of this section is to give evidence of the structure of the problem ad-
dressed and to show how the four methods presented, and their variants, capture
such a structure with different levels of flexibility. In addition, we list all those
issues that are common to the methods and we emphasize the differences between
them.

As anticipated in the previous section, the main decisions to take are assign-
ment, scheduling and routing decisions which, in all of the four methods, are
modeled respectively by means of the three following sets of variables:

ui j =

{
1 if operator i is assigned to patient j
0 otherwise i ∈ O , j ∈N
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z jp =

{
1 if pattern p is assigned to patient j
0 otherwise j ∈N , p ∈P

xid
j j′ =

{
1 if operator i travels along ( j, j′) on day d
0 otherwise ( j, j′) ∈A , d ∈H , i ∈

Od .

Analogously, the set of constraints that describe HRPHHC can be grouped in
three blocks: assignment, scheduling and routing constraints. Specifically, the
constraints regarding assignment decisions have to guarantee that: (i) exactly one
operator of adequate skill is assigned to each patient; (ii) the workload of the
operators is controlled. The constraints regarding the scheduling decisions have
to guarantee that: (i) for each patient, each visit envisaged in her/his care plan
is scheduled in the planning horizon. Finally, the constraints regarding routing
decisions have to guarantee that: (i) each operator on each scheduled day of the
planning horizon performs a route that starts from the depot and ends to the depot,
i.e. subtours disconnected from the depot are not allowed; (ii) the daily work-
load of each operator, expressed both in terms of visit time and travel time, is
controlled.

Clearly all the decisions and constraints have to be coordinated. At first, we
have to assure that if a visit of a given patient j is allocated on day d one operator
of adequate skill and available on day d performs the visit, i.e. the route of the
operator on that day has to include patient j. These are linking constraints that
bind together scheduling and routing decisions. In addition, we have to assure
that an operator can visit a patient only if she/he has been assigned to that patient
(linking between routing and assignment variables). Figure 2 shows the three
different types of decisions with their constraints as well as the linking constraints
between assignment and scheduling and between scheduling and routing.

The way the decisions are coordinated characterizes the four methods pre-
sented. The most flexible method consists of a mathematical formulation where
the set of constraints comprises the above mentioned three blocks of constraints
in addition to the linking constraints. When the linking constraints are relaxed
by elimination, a decomposition method arises which is organized in two phases
according to the scheme shown in the previous section. In this sense, the models
associated with the decomposition methods can be viewed as relaxations of the
single-phase model. Indeed, the more flexible the more information-aware the
method is. For this reason, we start presenting the single-phase method .|A+S+
R; then we will show the decomposed approaches discussing the mathematical
formulation used in each phase and highlight the relationships with respect to the
single-phase method.

The objective function used, either a cost criterion or an equity criterion, is
common to all the methods and is described in details for the most flexible one.
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Its application to the decomposition methods is straightforward and potential pe-
culiarities are discussed when required.

Likewise the objective function used, another key issue that is common across
all the methods proposed is the way skills are managed, either independently or
hierarchically.

Figure 2: Schema of subproblems: assignment, scheduling and routing

4.1 The most flexible method: .|A+S+R

In the most flexible method the model is described by the following feasibility set,
which is shortly described next. For details we refer to Cappanera and Scutellà

15



(2015).

∑
i∈O

ui j = 1 ∀ j ∈N (1)

∑
p∈P

z jp = 1 ∀ j ∈N (2)

∑
j∈N ∪{0}

xid
j j′ = ∑

j∈N ∪{0}
xid

j′ j ∀ j′ ∈N ,∀d ∈H ,∀i ∈ Od (3)

Did = ∑
( j, j′)∈A

(t ′j + t j j′) · xid
j j′ ≤ ai ∀d ∈H ,∀i ∈ Od (4)

∑
j∈N

yd
0 j = ∑

j∈N
∑

p:p(d)≥1
z jp ∀d ∈H (5)

∑
j∈N ∪{0}

yd
j j′− ∑

j∈N ∪{0}
yd

j′ j = ∑
p:p(d)≥1

z j′p ∀ j′ ∈N ,∀d ∈H (6)

∑
j∈N ∪{0}

∑
i∈O

xid
j j′ ≤ ∑

p:p(d)≥1
z j′p ∀ j′ ∈N ,∀d ∈H (7)

∑
j∈N ∪{0}

∑
i∈Sk

xid
j j′ ≥ ∑

p:p(d)=k
z j′p ∀ j′ ∈N ,∀d ∈H ,∀k ∈K (8)

xid
j j′ ≤ ui j ∀( j, j′) ∈A ,∀d ∈H ,∀i ∈ Od (9)

ui j ≤ ∑
j∈N ∪{0}

∑
d∈H

xid
j j′ ∀ j′ ∈N ,∀i ∈ O (10)

yd
j j′ ≤ n ∑

i∈Od

xid
j j′ ∀( j, j′) ∈A ,∀d ∈H (11)

Constraints (1) are the operator-patient assignment constraints and they assure that
exactly one operator is assigned to each patient during the planning horizon. This
is included in order to guarantee continuity of the care. Constraints (2) are the
scheduling constraints and they assure that each patient is assigned exactly to a
pattern. Then the routing constraints follow. Specifically, constraints (3) are the
classical flow conservation constraints on the routing variables. Constraints (4)
assure that the workload of each operator in each day, expressed as the sum of the
service times (i.e., t ′j is the care service time at node j) and the traveling times,
does not exceed the duration of a workday, i.e. ai. For each operator i, the deter-
ministic capacity ai corresponds to the maximum amount of time (on a single day)
that the operator can work according to his/her working contract. Constraints (5)
and (6) are the flow conservation constraints on the auxiliary y variables, which
are introduced to avoid subtours in the model solutions (Cappanera et al. (2013)).
Specifically, each yd

j j′ is an auxiliary flow variable that represents the number of
patients visited after patient j by the operator moving along ( j, j′) on day d. Con-
straints (5) and (6) also guarantee the correct linking between scheduling decisions
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and auxiliary flow variables. Constraints (7) and (8) link together scheduling and
routing variables. Specifically, constraints (7) state that (exactly) one operator per
day can visit patient j only if a visit has been scheduled on that day for node j.
Constraints (8) guarantee that, on day d, exactly one operator, of adequate skill,
must visit patient j if a service of skill k has been scheduled for j on day d, for
each k. Due to the hierarchical skill management, a visit requiring skill k may
be operated by each of the operator owing a skill at least k; such a set is denoted
by Sk. In particular, the least skilled operators can perform only visits of skill
1 (case k = 1), whereas the most skilled operators can perform all types of visits
(case k = K). Constraints (9) and (10) link together assignment and routing vari-
ables. Specifically, constraints (9) guarantee that an operator can visit a patient
only if he has been assigned to that patient, while constraints (10) force variables
ui j to zero if operator i never visits patient j during the planning horizon. Finally,
constraints (11) link together routing variables and auxiliary flow variables.

Further observe that, for each j ∈N , a pattern variable z jp can assume a value
other than zero only if:

|{d : p(d) = k}|= r jk ∀k ∈K . (12)

Therefore, in the preprocessing phase z jp = 0 if any of the K constraints (12)
is not satisfied.

The way the skills are managed is reflected in the set of operators eligible for
a given patient j. In constraints (8) skills are managed jointly, and therefore the
patients having k∈K as the highest level of skill appearing in their care plan have
to be assigned to an operator with skill greater than or equal to k, i.e. belonging
to the set Sk. On the other hand, when the skills are managed independently,
the patients having k ∈ K as the highest level of skill appearing in their care
plan have to be assigned to an operator with skill exactly k. In such a case, the
linking constraints (8) have to be modified accordingly. Thus, properly defining
the set of operators eligible for a given patient, we can handle both types of skill
management schemes by method .|A+S+R.

As discussed in Section 3.2, the objective function represents an equity crite-
rion or a cost criterion. When the focus is on equity, operators’ utilization rates
play a crucial role, where the utilization rate of an operator is the ratio between
the actual workload of the operator and his/her capacity. The operator workload
is composed of the total service times plus the traveling times to reach patient
homes. If the point of view of the most busy operator is assumed (WMB), the aim
is to minimize the maximum operator utilization rate and the objective function is
formulated as follows:
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WMB min mu

∑d∈H Did

H ·ai
≤ mu ∀i ∈ O (13)

where Did are defined in constraints (4), while mu is an upper bound to the maxi-
mum utilization rate of the operators. Indeed, by minimizing mu we minimize the
maximum utilization rate of the operators.

Symmetrically, when the focus is on the least busy operator (WLB) the maxi-
mization of the minimum operator utilization rate is formulated as follows:

WLB max ml

∑d∈H Did

H ·ai
≥ ml ∀i ∈ O (14)

where ml expresses a lower bound to the minimum utilization rate of the operators
to be maximized.

Finally, when the focus is on cost control the following objective function is
used:

C min ∑
i∈O

∑
d∈H

∑
( j, j′)∈A

t j j′x
id
j j′.

4.2 The most rigid method: A|S+R

This section aims at presenting mathematical models for the two-phase method
A|S+R.

First phase. As emphasized earlier, the assignment process (first phase of the
method) consists in assigning operators to patients in such a way that skill con-
straints are satisfied and the workload of the operators is controlled. Since schedul-
ing and routing aspects are disregarded in this phase, the requirement α j of each
patient j is calculated as the total amount of care volume required by j, for all lev-
els of skill, over the planning horizon and by an estimate of the travelling times.
Specifically,

α j =
K

∑
k=1

r jk(t ′j + τ j),∀ j ∈N , (15)

where t ′j, previously introduced, is the care service time at node j, whereas τ j
denotes the average traveling time to reach patient j from each node other than j,
included the depot:
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τ j =
1
n ∑

j 6= j′
t j j′. (16)

From the definitions above, α j estimates the time that the operator assigned to
j will dedicate to that patient during the planning horizon.

Assignment variables and assignment constraints are exactly the same as the
corresponding ones in the single-phase method. Also in this case, when the skills
are managed independently, the set of operators eligible for a given patient j is
given by all those operators with a skill equal to the maximum skill required in
the care plan of j; when skills are managed hierarchically, an operator is eligible
when she/he has a skill greater than or equal to the maximum skill required by the
patient.

As discussed before, the first phase is equity driven in the whole range of
methods. Differently from what happens in the single-phase method, here the
workload of operator i is expressed by means of the estimated demand, i.e.

∑ j∈N α jui j

H ·ai
,∀i ∈ O. (17)

When skills are managed independently, the assignment problem decomposes by
skill and a model is solved for each skill level, in a separate way. Under the
other variant, the assignment decisions are taken simultaneously for all patients
and operators. In other words, a single assignment problem is solved involving all
operators to handle all patient requirements.

Since scheduling decisions are not considered at this stage, the assignment
models in this method are single period and they can be viewed as special cases
of those presented in (Lanzarone et al., 2012).

Second phase. In the second phase of the A|S+R method, the aim is to schedule
the patient requests during the planning horizon and at the same time to determine
the daily routes of each operator on each day of the horizon.

It is important to point out that the output of the assignment problem solved
in the first phase, i.e. the set of patients assigned to each operator, becomes the
input of the second phase. Assignment decisions do not come into play anymore;
consequently, the model that characterizes the second phase decomposes operator
wise.

The constraints of the model in the second phase are a relaxation of the con-
straints describing the single-phase model presented in Section 4.1. Specifically,
the set of constraints is given by scheduling, routing and related linking con-
straints, i.e. by constraints (2), (3), (4), (5), (6), (7), (8). Also constraints (9)
and (10) are present: in each of them however the value of variables ui j is fixed
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according to the solution of the first phase. With regards to the linking constraints
between flow and routing variables, we can refine constraints (11) in the single-
phase model as follows. Let Ni be the subset of the patients who have been as-
signed to operator i as a result of the assignment phase. In addition observe that,
for each operator i, the routing decisions are taken in the subgraph of G induced
by the node set Ni. Consequently, the linking constraints (11) in the single-phase
method can be replaced by the following constraints:

yd
j j′ ≤ |Ni|xid

j j′ ∀( j, j′) ∈A ,∀d ∈H : i ∈ Od. (18)

Thus, the model in the second phase derives straightforwardly by the single-
phase model; it is only necessary to give some details on how certain sets and
parameters can be refined. In particular we can associate a set of patterns, say
Pi ⊆P , with each operator i, by excluding from P all those patterns that con-
template an activity on a day in which operator i is not available. Specifically, for
each operator i, Pi must be selected in such a way that p ∈Pi implies p(d) = 0
if i /∈ Od . The scheduling constraints (2) can thus be replaced by the following
constraints:

∑
p∈Pi

z jp = 1 ∀ j ∈Ni. (19)

The objective function used in the second phase can be alternatively either
a cost criterion or an equity criterion as discussed in Section 3.2. When an eq-
uity criterion is selected both in the first and in the second phase accordingly, the
utilization rate of the operators is the one returned by the second phase of the
decomposition method.

4.3 The intermediate methods: A+S|R and A+S|S+R

First phase. Both of the intermediate methods A+S|R and A+S|S+R are char-
acterized by a first phase where the assignment of operators to patients is made
on a richer model with respect to the rigid method A|S+R. In the rigid method
the assignment is made by looking at the care plan of a patient as a whole, i.e.
guaranteeing that the total time spent by an operator in the visits during the plan-
ning horizon does not exceed the weekly availability of the operator. This type of
patient-operator assignment can very likely generate infeasibilities when the daily
workload of an operator is considered. For these reasons, the intermediate meth-
ods incorporate scheduling decisions in the first phase and consider assignment
variables ud

i j that are disaggregated by day with respect to the variables ui j. More
formally,
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ud
i j =

{
1 if operator i visits patient j on day d
0 otherwise j ∈N , d ∈H , i ∈ Od .

The mathematical formulation of the problem solved in the first phase is the fol-
lowing:

∑
i∈O

ui j = 1 ∀ j ∈N (20)

∑
p∈P

z jp = 1 ∀ j ∈N (21)

Did = ∑
j∈N

(t ′j + τ j) ·ud
i j ≤ ai ∀d ∈H ,∀i ∈ Od (22)

∑
i∈O

ud
i j ≤ ∑

p:p(d)≥1
z jp ∀ j ∈N ,∀d ∈H (23)

∑
i∈Sk

ud
i j ≥ ∑

p:p(d)=k
z jp ∀ j ∈N ,∀d ∈H ,∀k ∈K (24)

ud
i j ≤ ui j ∀ j ∈N ,∀d ∈H ,∀i ∈ Od (25)

Constraints (20) are the assignment constraints and correspond to constraints
(1) in the single-phase model. Constraints (21) are the scheduling constraints and
they are the same as constraints (2). Constraints (22) control the daily workload
of the operators and make use of τ j to estimate the travel time to reach patient j,
as it happens in the first phase of the method A|S+R. Constraints (23), (24) and
(25) link together assignment and scheduling decisions; specifically, constraints
(23) state that (exactly) one operator per day can visit patient j only if a visit has
been scheduled on that day for node j. Constraints (24) guarantee that, at each
day, exactly one operator of adequate skill must visit a patient for whom a visit is
scheduled on that day, while constraints (25) guarantee that an operator can visit
a patient only if she/he has been assigned to that patient.

As in the previous methods, the skills can be managed either jointly, as realized
by constraints (24), or independently. When independent skills are assumed the
problem decomposes by skill. Also for the intermediate methods the first phase is
equity driven.

Second phase. The two intermediate methods share the first phase but they differ
in regards to the second phase; specifically, in the second phase of the method
A+ S|S+R, which is the more flexible of the two, scheduling and routing deci-
sions are taken exactly as it happens in the second phase of the method A|S+R.
Only assignment decisions taken in the first phase are maintained while schedul-
ing decisions come again into play. On the contrary, in the method A+S|R assign-

21



ment and scheduling decisions taken in the first phase are fixed and the second
phase consists only in a routing phase.

Observing the structure of the single-phase model we have that, by fixing the
assignment variables ui j and the scheduling variables z jp, the routing problem
consists in determining a route for each operator i and for each day d on a re-
duced graph which is made by all the nodes corresponding to patients assigned
to i on day d. In addition, the daily workload of the operator must not exceed
her/his daily capacity. We observe that the routing problem may further decom-
pose according to the objective function used. Specifically, when a cost criterion
is used, the routing problem decomposes by day and by operator thus resulting in
a Capacitated Traveling Salesman Problem for each operator and for each day; in
contrast, when a balancing objective function is used the routing problem cannot
be decomposed. However, whatever the objective function is, the routing prob-
lem can be solved by means of the mathematical formulation of the single-phase
model (method .|A+ S+R) where the assignment and the scheduling variables
are fixed according to the solution obtained in the first phase.

5 Computational results
In this section some computational results are presented on a set of instances gen-
erated from real data. They are analyzed with respect to the used methods (i.e.
single-phase and two-phase methods) under different skill management strategies
(i.e. hierarchical versus independent skill management) and optimization criteria
(i.e. the cost criterion C, and the balancing criteria WLB and WMB). With respect to
the description provided in Section 4, at the implementation level all the methods
have been enhanced with the symmetry management valid inequalities presented
in Cappanera and Scutellà (2015). Furthermore, with the exception of the vari-
ants using the cost criterion C, also the exploit-cluster valid inequalities have been
added to the models since, as shown in Cappanera and Scutellà (2015), they rep-
resent an effective tool to take the travel time under control.

Main conclusions are derived based on the computational efficiency (in terms
of the optimality gap and of the computational time) and the quality of some
solution indicators (i.e. the operator utilization factor and the travel time).

The goal of the numerical experimentation is to assess the advantages of the
proposed pattern-based decomposition methods wih respect to the single-phase
method introduced in Cappanera and Scutellà (2015). In fact, such a method is
very powerful and flexible, but it may be not suitable for instances of large size.
We will show that some of the proposed decomposition methods allow one to im-
prove the computational efficiency of the single-phase approach, by returning very
good quality solutions (in terms of the optimality gap and of the stated solution
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indicators) in a consistently faster computational time, also for instances of large
size.

The main achievement of the computational experience presented in this sec-
tion is therefore that the proposed pattern-based decomposition is a valuable ap-
proach to improve on the computational efficiency of the single-phase method,
without substantially deteriorating its flexibility, i.e. the quality of the returned
solutions. Based on this promising result, more sophisticated exact and heuristic
algorithms, relying on the proposed pattern-decomposition, will be investigated
in order to be able to face with even larger Home Care instances.

In the following subsections, firstly the real data and the generated instances
will be described. Then, an analysis of the results related to the computational
efficiency will be presented. Finally, the quality of the computed solutions will be
discussed.

5.1 Real data and generated instances
The real data have been obtained from one of the largest Italian public HHC
providers that operates in Lombardia region and covers approximately 800 km2

with three independent divisions. The analysis in this work refers to the largest
division and its 7 municipalities. In particular, this provider serves mainly pallia-
tive and non-palliative (i.e. ordinary) patients. Each generated instance has the
following characteristics: the set of the municipalities (i.e., the geographical re-
gion of the service), the time horizon (i.e., 6 days), the set of the patients, the set
of the operators, the categories of the patient requests and the operator skills (i.e.,
ordinary patient (skill 1) or palliative patient (skill 2)), the operators’ capacity
and the set of the patterns. Specifically, for each instance these characteristics are
gathered, in regards to the patients, by selecting arbitrarily a week in 2004 or 2005
from the historical database of the provider. Then, as the next step, the demands
of the patients have been randomly generated by using the method proposed in
(Lanzarone et al., 2010) for the selected week.

A total of 34 instances have been generated, which are grouped in five sets.
The first set consists of 10 small-size instances with 60 patients and 4 operators.
The second set comprises 10 medium-size instances with 100 patients and 7 oper-
ators. The third group includes 10 large-size instances consisting of 200 patients
and 10 operators. Finally, the pool of instances also comprises 2 big instances
with 250 patients and 2 big instances with 300 patients, with 13 and 16 operators,
respectively. In each instance, both skill 1 and skill 2 operators are included with
workday durations (i.e. the parameters ai) of five to eight hours. The traveling
times (i.e. the parameters t j j′) between patients located in different municipali-
ties have been calculated via Google maps, whereas the traveling time between
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patients located in the same municipality has been assumed to be equal to three
minutes. Both skills require clinical competencies, thus the same service time (i.e.
the parameters t ′j) has been assumed and set equal to 45 minutes for all patients.
By considering the patterns, they have been generated with the use of the flow-
based policy proposed by Cappanera and Scutellà (2013). The instance features
are provided in Table 3.

Table 3: Instance features

Instance Number of Number of Number of Number of Number of Number of Number of
Skill1 Patients Skill2 Patients Skill1 Visits Skill2 Visits Patterns Skill1 Operators Skill2 Operators

60-1 51 9 69 28 9 2 2
60-2 51 9 76 28 8 2 2
60-3 48 12 67 38 8 2 2
60-4 50 10 70 28 8 2 2
60-5 44 16 69 46 7 2 2
60-6 53 7 72 23 10 2 2
60-7 52 8 74 21 9 2 2
60-8 52 8 75 26 8 2 2
60-9 56 4 80 7 7 2 2

60-10 49 11 62 36 7 2 2
100-1 84 16 115 46 8 4 3
100-2 82 18 122 48 9 4 3
100-3 86 14 124 39 9 4 3
100-4 88 12 123 39 10 4 3
100-5 80 20 111 66 10 4 3
100-6 94 6 172 21 8 4 3
100-7 82 18 126 51 10 4 3
100-8 92 8 127 23 8 4 3
100-9 93 7 128 19 8 4 3

100-10 89 11 113 38 8 4 3
200-1 168 32 199 104 16 6 4
200-2 165 35 253 96 16 6 4
200-3 171 29 246 92 18 6 4
200-4 174 26 253 71 12 6 4
200-5 159 41 226 132 16 6 4
200-6 174 26 241 83 12 6 4
200-7 180 20 256 66 14 6 4
200-8 177 23 258 77 13 6 4
200-9 178 22 273 64 11 6 4

200-10 178 22 259 58 10 6 4
250-1 210 40 292 131 14 8 5
250-2 213 37 315 137 14 8 5
300-1 250 50 405 152 13 10 6
300-2 258 42 362 152 12 10 6

The experiments on the medium, large and big instances were carried out on
an Intel(R) Core(TM) i7-4770 (CPU 3.40 GHz), and CPLEX 12.6.1 was used as
the solver. The experiments on the small-size instances, instead, were carried out
on an AMD Opteron(TM) Dual Core Processor 246 (CPU 1.9 GHz), by using a
less recent version of CPLEX.

In all the cases a time limit of 12 hours and a memory limit of 1 GB have been
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imposed. Some additional experiments have been performed with time limits of
15 minutes, 1 hour and 6 hours, respectively, in order to emphasize the capability
of some decomposition approaches to efficiently compute, in a reduced amount
of time, solutions near to the optimal ones. Hereafter the computational times are
always expressed in seconds of CPU time. Furthermore, when memory limit is
exceeded, this is identified with a ?.

5.2 Efficiency analysis
In this section we analyze the computational efficiency of the pattern-based de-
composition by solving the 34 instances with different optimization criteria and
skill management policies. The considered indicators are the computational time
and the % optimality gap (i.e. the percentage relative error of the best solution
value with respect to the best bound computed by the solver).

First of all, it is important to emphasize that, for the considered pool of in-
stances, no feasible solutions were determined under the independent skill man-
agement policy. On the contrary, the hierarchical skill management policy was
able to provide feasible solutions for most of the cases. Thus, the hierarchical
skill management policy appears to be relevant to deal with real situations of the
HHC services. All the results in this study therefore refer to this policy.

Furthermore, as far as the most rigid decomposition approach is concerned, i.e.
A|S+R, no results will be provided since this method failed to provide feasible
solutions whatever optimization criterion was used in both phases.

Let us first analyze the experimental results on the small-scale instances. As
expected, the computational time of the single-phase method is much larger than
that of the two-phase methods (see Figure 3). When the cost is minimized, the
single-phase method almost always reached the time limit. However, by consid-
ering the balancing optimization criteria, the boxplot shows that the single-phase
method performed with lower computational times, especially when the WLB cri-
terion is adopted.

The gaps reported in Figure 4 confirm the difficulties of the single-phase
method when a cost criterion is adopted. In this case the average gap, which is
50.5%, is not acceptable. On the contrary, the gaps reduce remarkably when a bal-
ancing criterion is used, and they are smaller with WLB than with WMB, according
to the computational results in Cappanera and Scutellà (2015). Specifically, under
the WLB optimization criterion the optimality gap is below 6.30% for all the small-
size instances but one, and it is below 26.65% under WMB showing, however, two
cases of infeasibility.

The proposed pattern-based decomposition methods proved to be much more
efficient, as shown by Figures 3 and 5. Figure 6 plots the related % optimality
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Figure 3: Boxplot of computational times (in seconds) for single-phase and two-
phase methods (small-scale instances).

gaps. The following overall considerations can be done: (i) the method A+S|S+R
has a larger computational time compared to A+S|R, but it allows to obtain better
optimality gaps, (ii) minimizing costs in the second phase takes largely more time
than balancing, (iii) balancing the utilization factors by maximizing the least busy
operator (WLB) in the first phase requires a lower computational time compared to
minimizing the most busy operator (WMB).

In particular, the pattern-based decomposition method A+S|S+R showed to
be advantageous both with respect to the single-phase approach, and also with
respect to the alternative pattern-based decompositions. In fact, it guarantees bet-
ter optimality gaps under all the combinations of the optimization objectives in
the two phases of the approach, with a just slightly increase in the computational
time. The method is however very fast in most cases. Therefore, the first achieve-
ment is that the tested small-size instances are efficiently affordable by means of
A+ S|S+R, that is when patterns are used in both phases of the decomposition
approach.

More in detail, by minimizing the cost in the second phase the computational
time of A+ S|S +R is below 116.10 seconds for the majority of the cases (by
considering both kinds of balancing criteria in the first phase), and the optimality
gap is almost always below 0.84%. By considering the WLB criterion in both
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Figure 4: Boxplot of the % Gap of single-phase method (small-scale instances).

phases, the percentage gap is zero for all the instances but one, in less than 3.51
seconds, whereas by selecting the WMB criterion in both phases, the optimality
gap is always less than 0.81%, in less than 22.58 seconds for all instances but four
(with a maximum of 818.23 seconds).

According to these promising results, A+ S|S+R has been reputed the best
decomposition methods for solving the even larger instances. Therefore, the ef-
ficiency and the quality results reported for the instances with 100, 200, 250 and
300 patients refer to such a method.

Figure 5: Efficiency analysis of two-phase methods: computational time in sec-
onds (small-scale instances)
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Figure 6: Efficiency analysis of two-phase methods: gap (small-scale instances)

Consider now the larger instances. As expected, with the medium-scale (i.e.
100 patients), the large-scale (i.e. 200 patients) and the big (i.e. 250 and 300
patients) instances, the single-phase method failed to provide feasible solutions
almost everywhere, within the considered time and memory limit.

On the other hand, the pattern-based decomposition method A+S|S+R proved
to be capable to address also these larger instances in an efficient way. Specifi-
cally, by considering the medium-scale instances: (i) using the WLB criterion in
both phases, the decomposition approach was able to compute an optimal solu-
tion in all cases but one (with gap 0.12%) in less than about 40 seconds (see Table
4) (ii) using the WMB criterion in both phases, the gap was less than 0.40% in most
cases, with one infeasibility, in a greater computational time with respect to WLB
(see Figures 7 and 8, showing the bloxpot time and gap, respectively) (iii) using
the cost criterion in the second phase increased the computational time substan-
tially, according to the results obtained on the small-scale instances; furthermore,
also the percentage gaps augmented (see Figures 7 and 8).

The efficient behavior of A+ S|S+R has been confirmed on the large-scale
instances: (i) using the WLB criterion in both phases, the decomposition approach
was able to compute an optimal solution in almost all the cases, with just one in-
feasibility, most often in less than 4 minutes (see Table 5) (ii) the WMB criterion,
used in both phases, showed to be less suitable for these larger instances, return-
ing very small gaps in some cases, but 5 infeasibilities; also for these instances,
the computational time was greater than the one of WLB (see Figures 9 and 10,
showing the bloxpot time and gap, respectively) (iii) using the cost criterion in the
second phase increased both the computational time and the gap; anyway, feasible
solutions were always determined, in the majority of the cases with a gap less than
0.20% (see Figure 10).
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Table 4: A+S(WLB)|S+R(WLB): behavior on the medium-scale instances (time in
seconds)

Instance LPTime LPValue (root) IPValue %Gap IPTime
100-1 0.34 0.5776 0.5776 0.00 6.38
100-2 0.66 0.6011 0.5911 0.00 8.20
100-3 0.74 0.6031 0.6004 0.12 9.95
100-4 0.67 0.5678 0.5678 0.00 35.05
100-5 0.20 0.5650 0.5650 0.00 8.12
100-6 1.68 0.7569 0.7561 0.00 32.45
100-7 0.84 0.5967 0.5967 0.00 6.05
100-8 1.02 0.5761 0.5761 0.00 40.43
100-9 0.36 0.5524 0.5524 0.00 13.65
100-10 0.91 0.5406 0.5406 0.00 10.70

Finally consider the big instances. Using the WLB criterion in both phases,
A+S|S+R computed an optimal solution in two cases, without determining any
feasible solution in the remaining two cases (see Table 6). Again, the WMB cri-
terion, used in both phases, showed to be less suitable for addressing the larger
instances, with 3 infeasibilities over 4. Using the cost criterion in the second
phase increased both the computational time and the gap; however, a feasible so-
lution was computed in all cases (see Figures 11 and 12, showing the bloxpot time
and gap, respectively).

The main achievement is therefore that, as for the small-case instances, the
version of A+S|S+R using the balancing criterion WLB in both phases is very effi-
cient in addressing the medium, the large and the big instances, returning, in most
cases, solutions with a very low percentage gap in a short or however reasonable
time. The versions using the cost criterion in the second phase, although required
an increased computational time and, often, returned solutions with larger gaps,
proved to be very robust, being capable to compute a feasible solution in all the
tested cases.

Some additional experiments have been performed with time limits of 15 min-
utes, 1 hour and 6 hours, respectively, in order to emphasize the capability of
A+S|S+R to efficiently compute, in a reduced amount of time, solutions near to
the optimal ones. The results are very interesting. In fact, on 76 tests for which
a feasible solution was computed, within 15 minutes A+ S|S+R computed 43
solutions with a percentage gap less than 5%. This number increases to 47, so for
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Table 5: A+S(WLB)|S+R(WLB): behavior on the large-scale instances (time in sec-
onds)

Instance LPTime LPValue (root) IPValue %Gap IPTime
200-1 11.95 0.6990 0.6990 0.00 2138.71
200-2 6.59 0.8173 0.8173 0.00 187.87
200-3 ? 19.03 0.7983 n.a. n.a. 3358.60
200-4 ? 7.06 0.7549 0.7533 0.12 31367.41
200-6 6.43 0.7621 0.7621 0.00 384.79
200-7 5.35 0.7580 0.7580 0.00 496.93
200-8? 9.93 0.7885 0.7871 0.15 12535.61
200-9 1.51 0.7944 0.7933 0.03 48.32
200-10 7.26 0.7646 0.7646 0.00 402.66

Table 6: A+S(WLB)|S+R(WLB): behavior on the big instances (time in seconds)

Instance LPTime LPValue (root) IPValue %Gap IPTime
250-1 ? 14.94 0.7517 n.a. n.a. 4265.11
250-2 7.36 0.7956 0.7956 0.00 11257.93
300-1 ? 9.04 0.8157 n.a. n.a. 3237.59
300-2 4.66 0.7290 0.7290 0.00 141.32

30



Figure 7: Efficiency analysis of A + S|S + R: computational time in seconds
(medium-scale instances)

more than the 50% of the experiments, in 1 hour of computation. Furthermore,
there are no meaningful improvements in extending the computational time to 6
hours. See Figure 13 for more details. Therefore, such a pattern-based decompo-
sition approach appears to be very effective in computing, in reasonable amounts
of time, very good solutions in terms of percentage gap.

5.3 Quality analysis
In this section, we analyze the impact of the pattern-based decomposition on the
quality of the computed solutions. The indicators total travel time (i.e., the overall
distance traveled by the operators) and balance (i.e., the difference between the
utilization factor of the most and the least busy operators) are considered.

Figures 14 and 15 show the boxplots of the balance and of the total travel time
indicators for the small-scale instances, respectively.

The single-phase method was able to determine solutions of good quality con-
cerning the balance criterion WLB. On the other hand, the computed solutions
show a large total travel time. This is due to the fact that a very large solution
space is explored, thus the single-phase method may incur into a big effort to find
near optimal solutions, especially when a cost criterion is adopted.

Different is the behavior of the two-phase decomposition methods.
Minimizing costs in the second phase leads to larger balancing but smaller

total travel time than balancing in the second phase. In this case the two-phase
methods perform almost similarly concerning the balance criterion, but A+S|S+
R appears to be preferable regarding the total travel time, especially when the
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Figure 8: Efficiency analysis of A+S|S+R: gap (medium-scale instances)

cost criterion is combined with WLB. In any case, the two-phase decomposition
provided much better solutions than the single-phase method by considering the
total travel time. It is worthy to point out that, in this scenario, the single-phase
method is guided only by a cost criterion and it ignores the balancing issues. In
contrast, the two-phases methods fully get the opportunity, given by the problem
decomposition, of controlling both criteria in the two phases. See also Figure 16
for an overview of the method behavior in terms of the balance and of the total
travel time indicators.

When the objective in the second phase is balancing, all the methods behave
similarly in terms of balancing, with a better behavior A+ S|S+R when using
WMB. See also Figure 17.

By summarizing, the pattern-based decomposition methods allow generally to
obtain better quality solutions than the single-phase method, especially regarding
the total travel time. This is especially true when controlling the cost in the second
phase, although a larger computational time often incurres.

Furthermore, the best combination for the small-scale instances seems to be
the A+S|S+R method, as emerged from the analysis of efficiency in Section 5.2.
In particular, in order to take the total travel time under control, the version using
the cost criterion C in the second phase appears to be preferable, while there is no
strong evidence to privilege WLB or WMB in the first phase.

This trend is confirmed when analysing the larger instances. As an example,
Figure 18 shows the balance and the total travel time of the medium and of the
large-scale solutions computed by A+S|S+R with WLB in the first phase and WLB
or C in the second phase. The variant using the criterion C in the second phase
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Figure 9: Efficiency analysis of A+S|S+R: computational time in seconds (large-
scale instances)

appears to dominate the others especially in terms of total travel time.

Lastly, since the presented results are based on the hierarchical skill manage-
ment policy, we provide some information on the number of overskilled visits, i.e.
the requests of skill 1 patients that have been served by operators of skill 2. Figure
19 shows this indicator for the small-scale instances, by considering the WLB and
the WMB optimization criteria. It can be observed that the overskilling is exploited
by all the methods, and so this seems to be a relevant option to efficiently address
problems arising in HHC.

6 Conclusion
This paper has investigated on four methods, with different level of flexibility,
to solve the assignment, scheduling and routing problems of operators in home
health care services characterized by skill qualifications, continuity of care and
multi-period planning horizon. On the basis of numerical experiments we can
draw the following conclusions:

• The most flexible method, i.e. the single-phase one, is affordable only for
small-size instances and only when a balancing criterion is considered. As
the dimension of the instances increases or cost matters, the computational
time required to get a good solution can be quite high.
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Figure 10: Efficiency analysis of A+S|S+R: gap (large-scale instances)

• The most rigid method, in which the first phase is guided only by assign-
ment decisions, failed to provide a feasible solution, at least on the test bed
considered, whatever the criteria used to drive the two phases, whatever the
skill management strategy adopted.

• The two-phase decomposition method A+S|R and particularly the method
A+S|S+R are able to conjugate computational efficiency and goodness of
the solutions provided in terms of balance between operators’ workload and
total travel time.

• The method A+S|S+R is efficient and robust with respect to the optimiza-
tion criteria used in the two phases. Specifically, for all the instances in
the test bed, whatever the dimension, when used in combination with the
balancing criterion WLB in both phases, it is very efficient and returns, in
most cases, solutions with a very low percentage gap. In addition, the ver-
sions of A+ S|S+R using the cost criterion in the second phase, is very
robust, being capable to compute a feasible solution in all the tested cases,
although they required an increased computational time with respect to the
variants characterized only by a balance criterion. The method A+S|S+R
is also capable to compute near optimal solutions even when a short time
limit is imposed; indeed, it is able to provide a solution within 5% from the
best bound in 15 minutes for more than 50% of the runs; in addition, no
meaningful improvements are obtained further extending the time limit.

Summarizing, the main achievement of the computational campaign is that
the proposed pattern-based decomposition A+ S|S+R is a valuable approach to

34



Figure 11: Efficiency analysis of A+S|S+R: computational time in seconds (big
instances)

improve on the computational efficiency of the single-phase method, without sub-
stantially deteriorating its flexibility, i.e. the quality of the returned solutions.
Clearly, the above conclusions are limited to the numerical experiments reported
in this paper. However, they encourage further work towards the design of more
sophisticated exact and heuristic algorithms, relying on the proposed pattern de-
composition. Other research developments could be devoted to enrich the setting
addressed by considering time windows and synchronization constraints into the
problem as well as multi-objective functions.
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Figure 17: Balancing criterion in the second phase (small-case instances)

Figure 18: Quality analysis of A+S|S+R (medium-scale instances on the left and
large-scale instances on the right)
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Figure 19: Overskill analysis (small-scale instances)
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