
HAL Id: hal-01736682
https://hal.science/hal-01736682

Submitted on 18 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Second-Order Complex Random Vectors and Normal
Distributions
Bernard Picinbono

To cite this version:
Bernard Picinbono. Second-Order Complex Random Vectors and Normal Distributions. IEEE Trans-
actions on Signal Processing, 1996, 44, pp.2637 - 2640. �hal-01736682�

https://hal.science/hal-01736682
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON SIGNAL PROCESSING , 1

Second-Order Complex Random Vectors and

Normal Distributions
Bernard Picinbono, Fellow, IEEE

The pdf copy of the final published text can be obtained

from the author at the folowing address :

bernard.picinbono@lss.supelec.fr

Reference of this text : IEEE Trans. on Signal Processing, Vol. 44, No 10, pp. 2637-2640,

October 1996.

Abstract

Complex random vectors are usually described by their covariance matrix. This is insufficient for a

complete description of second-order statistics, and another matrix called relation matrix is necessary.

Some of its properties are analyzed and used to express the probability density function of normal

complex vectors. Various consequences are presented.

S

I. INTRODUCTION

Complex random vectors (RVs) are widely used in many areas of signal processing such as spectral

analysis [I] and array processing [2]. However, the statistical properties of RVs effectively used are
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essentially limited to those of the covariance matrix. Linear prediction procedures and autoregressive

modeling also use only properties of the correlation function of complex signals [l] and [3]. Many

questions concerning statistical properties of RVs remain open, however, and some of them will be

analyzed in this correspondence. In the first part, we show that the covariance matrix is insufficient to

completely describe the statistics of complex RVs, and for this purpose, another matrix is necessary.

Its definition and the conditions of its existence are analyzed. By using this matrix, we present the

structure of the probability density function (PDF) of normal complex RVs. From this PDF, we deduce

the characteristic function and various properties of complex normal random variables. For example, it is

shown that contrary to the real case, noncorrelated normal random variables arc not generally independent.

Conditional PDFs are also analyzed, and the consequences in mean square estimation are presented.

Let us first remind that a complex RV Z of Cn is simply a pair of real RVs of Rn such that Z = X+jY.

It is therefore always possible to treat all the problems concerning complex RVs by using a real RV of

Rn. However, this procedure is often much more tedious than using directly the RV Z of Cn.

II. SECOND-ORDER PROPERTIES

Even if the most interesting second-order properties are related to the covariance matrix Γ, it does

not completely describe the secondorder statistical properties of Z. For this, another matrix C, which we

refer to as the relation matrix, is necessary. For zero-mean RVs, these matrices arc defined by

Γ
4
= E(ZZH) ; C

4
= E(CCT ). (1)

In these equations,T means transposition, and H means transposition and complex conjugation. The

matrix Γ is complex, Hermitian, and nonnegative definite (NND). We assume in the following that there

is no zero eigenvalue. The matrix C is complex and symmetric and therefore satisfies C∗ = CH . where

the star means the complex conjugate. This matrix C is very rarely introduced in signal processing

literature, and the main reason for this fact is that it is explicitly or implicitly assumed to be zero. This

characterizes secondorder circularity, which means that second-order statistics of Z and exp(ja)Z arc

the same for any a. This assumption of circularity [4] is sometimes even introduced in the definition,

as, for example, in the normal case (sec [l, p. 431 and [5]). In [6], the term proper is used instead of

“circular.” However, circularity is only a particular assumption that is not always valid.

The question that immediately appears is to know whetheir the matrices Γ and C must only satisfy the

conditions indicated above and deduced from their definition. The answer is no, and we shall establish

a necessary and sufficient condition on the pair (Γ,C).

Proposition: Assuming that Γ is complex and positive definite and that C is complex and symmetric,

this matrix C is a relation mahix of a random vector Z if and only if the matrix C∗−CHΓ−1C is NND.
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Proof: Suppose first that C is the relation matrix of a RV Z. Consider now the RV W of C2n defined

by [ZT ,ZH ]. Its covariance matrix is a 2n× 2n complex matrix, and a simple calculation yields

Γ2 =

 Γ C

C∗ Γ∗

 =

 Γ C

CH Γ∗

 . (2)

As any covariance matrix, it is NND. Its Cholesky block factorization can be written as

Γ2 =

 I 0

R I

 Γ 0

0 P

 I RH

0 I

 (3)

where

R = CHΓ−1 ; P = Γ∗ −CHΓ−1C. (4)

As Γ2 is NND, the diagonal-block matrix appearing in (3) is also NND. The fact that Γ is PD implies

that P defined by (4) is NND, which gives the only if part.

Suppose now that C is such that P is NND. We have to show that there exists a complex RV Z

satisfying (1). It results from (3) that if Γ is positive definite and P NND, then Γ2, which is defined by

(2), is NND. This implies that there exists at least one RV of C2n such that its covariance matrix is Γ

(see [3, p. 651). However, this docs not mean that this RV can be partitioned as [ZT ,ZH ]T To arrive at

this result, we must introduce the real and imaginary parts X and Y. For this purpose, let Γ2n be the

2n× 2n matrix defined by

Γ2n = MΓ2M
H , (5)

where where M is defined by

M =
1

2

 I I

−jI jI

 ; M−1 =

 I jI

I −jI

 . (6)

It is clear that as Γ2 is NND, Γ2n is also NND. Furthermore, a simple calculation shows that Γ2n is a

real symmetric matrix, or

Γ2n =

 Γx Γxy

Γyx Γy

 , (7)

with

Γx = (1/2)Re(Γ + C) ;Γxy = (1/2)Im(−Γ + C), (8)

Γyx = (1/2)Im(Γ + C) ;Γy = (1/2)Re(Γ−C), (9)

where Re and Im stand for real and imaginary parts, respectively.

As Γ2n is symmetric and NND, it is possible to construct at least one vector of R2n written as

[XT ,YT ]T such that its covariance matrix is Γ2n. Taking Z = X + jY, we easily obtain that the

covariance and relation matrices of X are Γ and C, respectively. This completes the proof.
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III. NORMAL DISTRIBUTION

Normal RV’s arise in rnany areas of signal processing for wellknown reasons. In the complex case, it

is almost always assumed that the RV’s are also circular, which considerably simplifies the calculation

(see [3, p. 1181. [SI, and [6]). We will present the situation appearing when circularity is not introduced.

A complex RV is said to be normal if its real if its real and imaginary parts X and Y are jointly

normal. As a consequence, the PDF of such a vector with zero mean value is

p(x,y) = (2π)−n[det(Γ2n)]
−1/2 exp(−1

2
)q(x,y), (10)

with

q(x,y) = vTΓ−12n v = vHΓ−12n v. (11)

In this quadratic form, v is the vector of R2n defined by vT = [xT ,yT ], and Γ2n is the covariance matrix

defined by (7). It is a 2n× 2n matrix, and the n× n matrices appearing in its block decomposition are

Γx = E(XXT ) ; Γy = E(YYT ) ; Γxy = E(XYT ). (12)

Note that the last equality of (11) comes from the fact that all the previous elements are real.

As noted, for example, in [7] or [8], it is clear that x and y in (10) can be expressed in terms of

z = x + jy or of z∗, which introduces another form of the PDF. The calculation of this PDF is given

in [7], and we present here a derivation giving the same result but expressed in terms of the matrices Γ

and C previously introduced and not expliciily used in [7].

Let w be the vector defined by [zT , zH ] analog to the RV W introduced above. It results; from this

definition that

w = M−1v ; v = Mw, (13)

where is the matrix given by (6). As a consequence, the quadratic form (11) can be expresse’d as

q(x,y) = q′(z, z∗) = wHΓ−1w w, (14)

with Γ−1w = MHΓ−12n M Furthermore, the classical rule for the product of determinants yields detΓ−12n =

det(Γw)|det(M)|2. By using the fact that a determinant is unchanged by adding rows or columns, it

results from (6) that det(M) = jn2−n, and therefore, [det(Γ2n)]
−1/2 = 2n[det(Γw)]

−1/2. By combining

all these results, we can express the PDF (10) as

p(x,y) = p′(z, z∗) =

π−n[det(Γw)]
−1/2 exp(−1

2
wHΓ−1w w). (15)
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This is the result given in [7]. Let us now calculate Γw appearing in (14) in terms of the elements of

Γ2n defined by (12). By using (6), we obtain that Γw is the matnx Γ2 defined by (2), where

Γ = Γx + Γy + j(Γyx − Γxy)

Γyx = Γx − Γy + j(Γyx + Γxy) (16)

These equations are, of course, equivalent to (8) and (9). By using (3) for the determinant and by

combining all these results, (15) takes the form

p(x,y) = p′(z, z∗) =

π−n[det(Γ)det(P)]−1/2 exp

[
−1

2
q′(z, z∗)

]
, (17)

with

q′(z, z∗) = [zH , zT]

 Γ C

CH Γ∗

 z

z∗

 (18)

The principal interest of this expression is the fact that it uses only the two matrices Γ and C defined

by (1) and having a simple meaning in terms of the complex random vecto Z

There is a case that is especially important. It appears when C = 0, which means that the random

vector Z is circular. With this property, the previous equations become

p(x,y) = pC(z) = π−n[det(Γ)]−1 exp[−zHΓ−1z], (19)

which is the classical expression of the PDF of a circular normal vector.

It is now interesting to explicitly express the matrix, appearing in the quadratic form (18). By using a

simple inverse calculation, we obtain Γ C

CH Γ∗

 =

 P−∗ −RHP−1

−RTP−∗ P−1

 , (20)

where the matrices P and R are defined by (4), and P−∗ means (P−1)∗. With this matrix, the quadratic

form (18) becomes

q‘(z, z∗) = 2[zHP−∗z− Re(zTRTP−∗z)] (21)

Finally, the PDF (17) can be written as

p(z, z∗) = π−n[det(Γ)det(P)]−1/2 exp[−zHP−∗z− Re(zTRTP−∗z)] (22)

It is possible to put this expression in another form. Applying the matrix inversion lemma (see [I, p. 241)

to the matrix P−∗ given by (4) yields

P−∗ = Γ−1 + Γ−1CP−1CHΓ−1. (23)
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By inserting this expression in (22), the circular PDF pC(Z) defined by (19) appears, and this gives

p(z, z∗) = pC(x)[det(Γ
−1P]−1/2 exp[−zHRHP−1Rz +Re(zTRTP−∗z)] (24)

Finally, it can be noted that as P is Hermitian and positive definite, det(P) = det(P∗), and by using

(4), we obtain det(Γ−1P) = det(I−RHRT ). As a result, the most general PDF of a complex normal

RV can be factorized in a product of the PDF corresponding to the circular case by a function depending

only on the matrices R and P defined by (4). A similar result is used in [8].

It is clear thatt the same procdur can be applied for the calcultion of the characteristic function of

comples normal random vectors which is more convefntneyt than the PDF in various calculations.
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