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We study a system of atoms that are laser driven to nD3=2 Rydberg states and assess how accurately
they can be mapped onto spin-1=2 particles for the quantum simulation of anisotropic Ising magnets.
Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric
and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in
order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark
these theoretical observations against experiments using two atoms. Finally, we show that in these
conditions, the experimental dynamics observed after a quench is in good agreement with numerical
simulations of spin-1=2 Ising models in systems with up to 49 spins, for which numerical simulations
become intractable.
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A promising approach for quantum information science
and quantum simulation relies on single atoms trapped in
optical tweezers and excited to Rydberg states [1]. Recent
experimental progress has demonstrated active loading of up
to 50 atoms in arrays of optical tweezers arranged in
arbitrary geometries [2,3]. The strong interactions between
Rydberg atoms (van der Waals or dipolar exchange) make
these systems ideal for quantum simulation of spin
Hamiltonians [1,4], lattice gauge theories [5], or topological
matter [6,7].
A major ingredient to realize such pristine artificial

systems is the identification of suitable Rydberg levels
and a full characterization of the interaction potentials. In
the simplest case one identifies the ground state as the spin-
down state j↓i and the Rydberg excitation as the spin-up
state j↑i for the implementation of spin-1=2 Hamiltonians
[8–11]. However, in practice, describing the atom as a two-
level system is an approximation that can be difficult to
fulfill due to small splittings between levels in the Rydberg
manifold. For a single atom, it is sufficient to apply a
magnetic field of a few Gauss to isolate a single two-level
transition. But already for two atoms, the density of pair
states becomes large, and, due to interactions, mixing
between different levels occurs in configurations without
special symmetries (Fig. 1). Finding optimal parameters
such that the system is accurately described as a spin-1=2
system with a well-defined interaction potential is thus
nontrivial and needs to be addressed in view of applications
in quantum simulation.
A natural choice for implementing spin Hamiltonians

with Rb atoms is to use nS Rydberg states [11], as they

possess only two Zeeman sublevels and do not feature
Förster resonances [12]. However, many experiments use
nP or nD states: the former are the only ones accessible
from the ground state using single-photon dipole transitions
[13,14] and are used in particular for Rydberg dressing
[15–18], while the latter [10,19,20] require less laser power
for excitation from the ground state as compared to nS
states. Moreover, for both nP and nD states, the van der
Waals interaction can be anisotropic, opening the way for
simulating exotic matter [4,5]. Nevertheless when imple-
menting an anisotropic Ising model with nD3=2 states,
deviations from the prediction of a spin-1=2 model can
occur, as we observed in Ref. [10].
In this Letter, we focus on Rydberg nD3=2 states, and

derive under which conditions the picture of a spin-1=2
model with an effective anisotropic interaction potential is
valid, despite the large number of Rydberg levels involved.
For that purpose, we use recent software [21,22] to
calculate the exact pair-state potentials in the presence of
external electric and magnetic fields. We find a remarkable
sensitivity of the interaction spectrum to weak static electric
fields, which can lead to a breakdown of the Rydberg
blockade not considered in previous studies [12,23–27].
We then experimentally corroborate this prediction in a
simple system of two atoms. Finally, we extend our study to
a ring of 8 atoms and a 7 × 7 square array, where deviations
from the spin-1=2 model were observed in Ref. [10], and
now demonstrate a much better agreement with a numerical
simulation of the spin-1=2 model. We believe that our
results could stimulate similar studies in other quantum
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simulation platforms, such as ultracold molecules, trapped
ions, or solid-state devices.
We use the Rydberg state jri ¼ jnD3=2; mJ ¼ 3=2i and

couple it to the ground state jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i
by a two-photon transition [Fig. 1(b)]. Ideally we want to
identify the states jgi and jri with pseudo-spin-1=2 states
j↓i and j↑i. In this case, when taking into account
interactions between atoms in jri, the system maps onto
an Ising-like model in a transverse field [8–11] governed by
the Hamiltonian

H ¼
X

i

ℏΩ
2

σix þ
1

2

X

i≠j
Uijninj: ð1Þ

Here, Ω is the Rabi frequency corresponding to the laser
driving, σix ¼ jrihgji þ jgihrji and ni ¼ jrihrji, and the
rotating wave approximation has been applied. The inter-
action between atoms i and j is given at large distances by
an anisotropic van der Waals potential Uij ¼ C6ðθijÞ=R6

ij,
where Rij is the interatomic distance and θij the angle
between the internuclear axis and the quantization axis, see
Fig. 1(a).
We look for conditions allowing us to describe the

interaction spectrum for a pair of atoms by a single
potential curve UðR; θÞ as in Fig 1(c). To approach this
problem quantitatively, we diagonalize the dipole-dipole
Hamiltonian [28] (and higher-order multipole contribu-
tions) in the presence of arbitrary external electric and
magnetic fields [21]. In view of reproducing the experiment
of Ref. [10], we chose the state jri ¼ j61D3=2; mJ ¼ 3=2i.
Figure 2 shows the interaction spectrum for a generic angle
θ ¼ 78°. The shading of the interaction potentials shows

the overlap with jrri. In (a), no magnetic and electric fields
are applied, and some Zeeman pair states interact weakly,
while being still coupled to jggi. Consequently, the
Rydberg blockade is broken as the double excitation of
Rydberg states is possible even at short distances [23,24].
Panel (b) shows the potentials in the presence of a magnetic
field B ¼ −6.9 G. The Zeeman effect splits the various
potentials and the state jrri is now isolated from the other
eigenstates. However, since the sign of the Zeeman shift is
identical to that of the van der Waals interaction, for
specific values of the interatomic distance R the laser
excitation of other Zeeman pair states is resonant; these
“magic distances” [26,29] can lead to a breakdown of the
blockade. In order to avoid this, one can use an opposite
value for B [panel (c), where B ¼ 6.9 G]. These parameters
are similar to the ones used in Ref. [10], and in these
conditions, it is a good approximation to describe the
system by a single state for R > 6 μm.
It turns out, however, that the interaction potentials are

extremely sensitive to electric fields E. Figure 2(d) corre-
sponds to the same parameters as in (c), but in the presence
of a field E ¼ 20 mV=cm along z. A naive calculation of
the Stark shift of pair states for this value of E would give
shifts in the 100 kHz range, which would have hardly any

(e) (f)

(a) (b)

(c) (d)

FIG. 2. Influence of magnetic and electric fields on the
interaction potentials around the pair-state jrri where
jri ¼ j61D3=2; mj ¼ 3=2i, for θ ¼ 78°. The shading encodes
the overlap of the eigenstates with the noninteracting state jrri.
(a) B ¼ 0 and E ¼ 0: jrri overlaps with all the degenerate
Zeeman pair states. (b) B ¼ −6.9 G and E ¼ 0: the interaction
curves are split due to the Zeeman effect. Some curves still
strongly mix with jrri due to the interaction. (c) B ¼ 6.9 G
and E ¼ 0: one potential curve dominates. However, (d) the
addition of a small electric field E ¼ 20 mV=cm is enough to
strongly perturb the pair states. (e),(f) This behavior is absent
for B ¼ 3.5 G.

(a) (b)

(c)

FIG. 1. Mapping a system of multilevel Rydberg atoms onto a
spin-1=2 model. (a) System: Two atoms separated by a distance
R; θ is the angle between the interatomic axis and the quantiza-
tion axis z defined by a magnetic field B. An electric field E can
be applied along z. (b) A two-photon transition couples coher-
ently the ground state jgi to a target Rydberg state jri with an
effective two-photon Rabi frequency Ω. (c) Full energy spectrum
of the atom pair. The mapping consists in replacing this complex
structure by an effective interaction potential.
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influence. However, exact diagonalization shows that the
potentials are strongly affected, with many states being
resonant with the excitation laser. We thus expect a signifi-
cant breakdown of the Rydberg blockade in these condi-
tions. Remarkably, this effect is absent for B ¼ 3.5 G, see
Figs. 2(e) and 2(f). In the optimal regime where a single
potential curveUðR; θÞ can be identified, we check if we can
describe it by a van der Waals potential with an angular
dependence C6ðθÞ=R6. Figure 3(a) shows the energy
dependence as a function of R for θ ¼ 78° together with
a 1=R6 fit. We observe, that forR≳ 8 μm, the van derWaals
description is an excellent approximation. Figure 3(b) shows
the angular dependence ofC6ðθÞ.We have thus extended the
anisotropic effective potential approach of Refs. [26,30]
beyond the strong blockade regime.
We now turn to the experimental test of these predic-

tions. Our setup has been described elsewhere [10]: we
create two-dimensional arrays of optical tweezers loaded
with single atoms from a magneto-optical trap (MOT).
Active sorting of the atoms yields fully-loaded arrays [2]
with up to 49 atoms. The electric field E at the position of
the atoms is controlled by a set of 8 electrodes under
vacuum [31]; we zero out the electric field with an accuracy
better than jEj ¼ 5 mV=cm by performing Stark spectros-
copy on high-n Rydberg states [32]. We optically pump the
atoms into jgi in the presence of a magnetic field pointing
along the z axis, within the arrays’ plane. We then switch
off the tweezers and apply a Rydberg excitation pulse of
duration τ (we use a two-photon transition with lasers at
795 and 475 nm with an effective Rabi frequency
Ω ¼ 2π × 1.2 MHz). At the end of the sequence, we switch
on again the tweezers. Atoms in jgi are recaptured while
those that have been excited to Rydberg states (either in jri
or in any other Rydberg state) are repelled by the traps and
lost [10,33]. Thus, when we switch on again the MOT
beams, atoms in jgi are observed by fluorescence, while
missing atoms are assigned to Rydberg states.
As a first test of the influence of electric and magnetic

fields on the potentials, we perform two-atom blockade
experiments [19,20] with R ¼ 6.5 μm and θ ¼ 78°, i.e., the
same parameters as in Fig. 2. We use four different settings

of the external fields: B is either 3.5 or 6.9 G, and E either
zero (within the accuracy ∼5 mV=cm of our cancellation of
stray fields) or 20 mV=cm. In order to quantify the Rydberg
blockade, we measure the probability Prr to have two
Rydberg excitations (in jri or in any other Rydberg level)
after the excitation pulse. The results are displayed in
Fig. 4. We observe, as expected, a strong suppression of Prr
for all settings, except for B ¼ 6.9 G and E ¼ 20 mV=cm,
where we find a significant probability to excite the two
atoms. To compare with theory, we simulate the dynamics
of the two-atom system solving the Schrödinger equation
and calculate the probability to excite the two atoms [34].
We assume two different models to describe the interacting
system: in the first one (Fig. 4 solid line), we use the full
interaction spectrum and include around 800 pair-states
within 2 GHz from the resonance (a bigger electric field
would drastically increase the basis size). In the second
model (dashed line), we describe the interaction in the jrri
state with the single potential curve identified above, thus
solving the spin-1=2 model governed by the Hamiltonian
Eq. (1). This simulation with no adjustable parameter is in
excellent agreement with the experimental data.
We now investigate more systematically how the geom-

etry and the electric and magnetic fields affect the accuracy
of the mapping on a spin-1=2 model. Using the exact
simulation taking into account the full interaction spectrum,
as done for Fig. 4, we calculate the average value of the
double excitation probability Prr at long times and look at
the range of parameters for which Prr remains small.
Figure 5(a) corresponds to E ¼ 0, while we show in
(b) a “worst-case scenario” where E is chosen in the range

(a) (b)

FIG. 3. Approximation of the interaction by an anisotropic van
der Waals potential C6ðθÞ=R6. (a) Comparison of the exact
interaction energy (solid line) with the asymptotic determination
of the van der Waals potential (dashed line) for a fixed angle
θ ¼ 78° and B ¼ 3.5 G. (b) Angular dependence of C6ðθÞ=R6 at
R ¼ 9 μm marked by the cross on (a).

(a) (b)

(c) (d)

FIG. 4. Two-atom blockade experiments. Probability Prr to
excite the two atoms as a function of the pulse area Ωτ. For
B ¼ 6.9 G [(a),(b)] increasing E from 0 to 20 mV=cm breaks the
Rydberg blockade. At B ¼ 3.5 G [(c),(d)] an efficient blockade is
maintained, even in the presence of the electric field. The solid
lines result from a simulation taking into account the full
interaction spectrum (see text). The dashed lines are obtained
by modeling the atoms as spin-1=2 particles with a single
interaction potential for jrri, except in case (b) where the pair
state is too perturbed. The error bars show the standard error of
the mean.
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0–20 mV=cm so as to maximize Prr. For θ ≈ 0 the system
is faithfully described by a spin-1=2 system. For increasing
θ, we identify the range of magnetic fields where Rydberg
blockade is maintained. In addition, we observe a breaking
of the Rydberg blockade for negative B as predicted in

Ref. [26]. A similar analysis for various principal quantum
numbers n indicates that the presence of a Förster reso-
nance at n ¼ 59 is responsible for this sensitivity to weak
electric fields [29,31].
Now that we have identified parameters allowing us to

map our two-atom system onto a spin-1=2 model, we
extend the study to larger systems. We first revisit the
experimental realization of an 8-atom ring, reported in
Ref. [10], where we observed a discrepancy with the spin-
1=2 model. We apply a Rydberg excitation pulse and
observe the ensuing dynamics by measuring the fraction fR
of atoms that are excited to Rydberg states. We also extract
the probability P5þ that more than five atoms are excited,
i.e., that the blockade condition is violated, as, for our
parameters, nearest-neighbor excitation is thwarted. Prior
to this experiment we compensated the stray electric field
better than 5 mV=cm. Figures 6(a)–6(c) show the results
for two values of the magnetic field. For B ¼ 6.9 G, we
observe a slow rise of P5þ above the prediction of the spin-
1=2 model. Contrarily, for B ¼ 3.5 G, we find a much
better agreement with the spin-1=2 model as expected
from above.
We then probe a square array of 7 × 7 atoms [Figs. 6(d)–

6(f)]. As an exact simulation of the dynamics of the
49-atom system is no longer possible, we use the fact that
two neighboring atoms cannot be excited due to the

(a)

(b)

FIG. 5. Influence of θ, B, E on the mapping onto a spin-1=2
system. Calculated probability of double excitations at long
times (see text) as a function of the magnetic field B and the
angle θ. The interatomic distance is fixed at R ¼ 6.5 μm. The
electric field is E ¼ 0 in (a) and chosen between 0 and
20 mV=cm such that the probability for two Rydberg excita-
tions is maximized in (b).

(b) (c)

(e) (f)

(a)

(d)

FIG. 6. Dynamics of an ensemble of atoms under Rydberg excitation. (a) 8-atom ring with a nearest neighbor spacing of 6.5 μm. The
shaded ellipse illustrates the range of the anisotropic blockaded regionU > ℏΩ. (b) Evolution of the Rydberg fraction fR with the pulse
area Ωτ for B ¼ 6.9 G. The inset shows the probability P5þ to observe configurations with at least 5 excitations. At large times, the
experimental points systematically lie above the results of a simulation of the corresponding spin-1=2 model (solid line). (c) Same
parameters with B ¼ 3.5 G. (d) Square lattice of 7 × 7 traps (lattice spacing 6.1 μm). The blockade extends over nearest and next-
nearest neighbors. (e) Evolution of the Rydberg fraction for B ¼ 6.9 G. Here the data show a slow increase in fR at long times, while the
spin-1=2 model predicts a saturation. (f) For B ¼ 3.5 G, the agreement with the spin-1=2 model becomes very good. All figures: error
bars depict the standard error of the mean and are often smaller than the symbol size.
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Rydberg blockade to truncate the Hilbert space from
249 to ∼230 states. We have checked with systems of up
to 25 atoms that the truncation gives the same results
as an exact calculation. We solve the time-dependent
Schrödinger equation using a split-step approach. Again,
we experimentally find a deviation with respect to the spin-
1=2 model for B ¼ 6.9 G, while at lower B the agreement
is much better. We have thus identified the conditions
where our system can be used as a quantum simulator of an
anisotropic spin-1=2 Ising model.
In conclusion, we have explored the mapping on spin-

1=2 models of interacting multilevel Rydberg atoms by
taking into account the details of the atomic structure in the
presence of electric and magnetic fields. We searched for
conditions under which the interaction between two
Rydberg atoms can be faithfully described by a single
potential curve. We found that this approximation can be
sensitive to electric fields, thus extending previous studies
on the breakdown of the blockade [12,23–27], and searched
numerically for optimal parameters. Then, using atomic
arrays of increasing size, from a pair of atoms to a 7 × 7
array, we confirmed that their dynamics is accurately
reproduced by a spin-1=2 model with anisotropic Ising
interaction. This work opens exciting prospects for har-
nessing the rich interaction spectrum of Rydberg atoms, for
the engineering of various spin Hamiltonians—Ising, spin-
exchange, or XXZ—as also proposed for polar molecules
[35]. These insights could also help improve the control of
interactions in Rydberg dressing experiments using nP3=2
states [16], as well as for Rydberg slow light polaritons with
nD states [36].
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