Hilbert's 16th problem on a period annulus and Nash space of arcs - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Hilbert's 16th problem on a period annulus and Nash space of arcs

Dongmei Xiao
  • Fonction : Auteur

Résumé

This article introduces an algebro-geometric setting for the space of bifurcation functions involved in the local Hilbert's 16th problem on a period annulus. Each possible bifurcation function is in one-to-one correspondence with a point in the exceptional divisor $E$ of the canonical blow-up $B_I{\C}^n$ of the Bautin ideal $I$. In this setting, the notion of essential perturbation, first proposed by Iliev, is defined via irreducible components of the Nash space of arcs $ Arc(B_I\C^n,E)$. The example of planar quadratic vector fields in the Kapteyn normal form is further discussed.

Dates et versions

hal-01736528 , version 1 (17-03-2018)

Identifiants

Citer

Lubomir Gavrilov, Jean-Pierre Françoise, Dongmei Xiao. Hilbert's 16th problem on a period annulus and Nash space of arcs. 2018. ⟨hal-01736528⟩
172 Consultations
0 Téléchargements

Altmetric

Partager

More