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We study a Schrödinger equation which describes the dynamics of an electron in a crystal in the presence of impurities. We consider the regime of small wave-lengths comparable to the characteristic scale of the crystal. It is well-known that under suitable assumptions on the initial data and for highly oscillating potentials, the wave function can be approximated by the solution of a simpler equation, the effective mass equation. Using Floquet-Bloch decomposition, as it is classical in this subject, we establish effective mass equations in a rather general setting. In particular, Bloch bands are allowed to have degenerate critical points, as may occur in dimension strictly larger than one. Our analysis leads to a new type of effective mass equations which are operator-valued and of Heisenberg form and relies on Wigner measure theory and, more precisely, to its applications to the analysis of dispersion effects.

INTRODUCTION

1.1. The dynamics of an electron in a crystal and the effective mass equation. The dynamics of an electron in a crystal in the presence of impurities is described by a wave function Ψ(t, x) that solves the Schrödinger equation:

(1.1)

   i ∂ t Ψ(t, x) + 2 2m
∆ x Ψ(t, x) -Q per (x) Ψ(t, x) -Q ext (t, x)Ψ(t, x) = 0, Ψ| t=0 = Ψ 0 .

The potential Q per is periodic with respect to some lattice in R d and describes the interactions between the electron and the crystal. The external potential Q ext takes into account the effects of impurities on the otherwise perfect crystal. Here denotes the Planck constant and m is the mass of the electrons. In many cases of physical interest, the ratio ε between the mean spacing of the lattice and the characteristic length scale of variation of Q ext is very small. After performing a suitable change of units, and rescaling the external potential and the wave function (see for instance [START_REF] Poupaud | Semi-classical limits in a crystal with exterior potentials and effective mass theorems[END_REF]) the Schrödinger equation becomes:

(1.2)

   i∂ t ψ ε (t, x) + 1 2 ∆ x ψ ε (t, x) - 1 ε 2 V per x ε ψ ε (t, x) -V ext (t, x)ψ ε (t, x) = 0, ψ ε | t=0 = ψ ε 0 .
The potential V per is periodic with respect to a fixed lattice in R d , which, for the sake of definiteness will be assumed to be Z d .

Effective Mass Theory consists in showing that, under suitable assumptions on the initial data ψ ε 0 , the solutions of (1.2) can be approximated for ε small by those of a simpler Schrödinger equation, the effective mass equation, which is of the form:

(1.3) i∂ t φ(t, x) + 1 2 B D x , D x φ(t, x) -V ext (t, x)φ(t, x) = 0,
where, as usual, D x = 1 i ∂ x . The approximation has to be understood in the sense that any weak limit of the density |ψ ε (t, x)| 2 dxdt is the density |φ(t, x)| 2 dxdt as ε goes to 0. In equation (1.3), B is a d × d matrix called the effective mass tensor; it generates the effective Hamiltonian

H eff (x, ξ) = 1 2 Bξ • ξ + V ext (t, x).
The effective mass tensor is an experimentally accessible quantity that can be used to study the effect of the impurities on the dynamics of the electrons. Both the question of finding those initial conditions for which the corresponding solutions of (1.2) converge (in a suitable sense) to solutions to the effective mass equation and that of clarifying the dependence of B on the sequence of initial data have been extensively studied in the literature [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Poupaud | Semi-classical limits in a crystal with exterior potentials and effective mass theorems[END_REF][START_REF] Allaire | Homogenization of the Schrödinger equation and effective mass theorems[END_REF][START_REF] Hoefer | Defect modes and homogenization of periodic Schrödinger operators[END_REF][START_REF] Barletti | Quantum transport in crystals: effective mass theorem and k•p Hamiltonians[END_REF]. The effective mass tensor is related to the critical points of the Bloch modes. These are the eigenvalues of the operator P (ξ) on L 2 (T d ) which is canonically associated with the equation (1.2), (1.4)

P (ξ) = 1 2 |ξ -i∇ y | 2 + V per (y), y ∈ T d , ξ ∈ R d .
We focus here on initial data which are structurally related with one of the Blochs modes in a sense that we will make precise later; we assume that this Bloch mode is of constant multiplicity and we introduce a new method for deriving rigorously equation (1.3). The advantage of this method is that it allows to treat the case where the critical points of the considered Bloch modes are degenerate, leading to the introduction of a new family of Effective mass equations which are of Heisenberg type. Our strategy is based on the analysis of the dispersion of PDEs by a Wigner measure approach which has led us to develop global two microlocal Wigner measures in this specific context, while they are only defined locally in general ( [START_REF] Fermanian-Kammerer | Mesures semi-classiques 2-microlocales[END_REF][START_REF] Kammerer | Analyse à deux échelles d'une suite bornée de L 2 sur une sous-variété du cotangent[END_REF]).

Note that different scaling limits for equation (1.1) have been studied in the literature: the interested reader can consult, among many others, references [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF][START_REF] Poupaud | Semi-classical limits in a crystal with exterior potentials and effective mass theorems[END_REF][START_REF] Hövermann | Semiclassical limit for the Schrödinger equation with a short scale periodic potential[END_REF][START_REF] Bechouche | Semiclassical limit for the Schrödinger-Poisson equation in a crystal[END_REF][START_REF] Allaire | Localization for the Schrödinger equation in a locally periodic medium[END_REF][START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF][START_REF] Panati | Effective dynamics for Bloch electrons: Peierls substitution and beyond[END_REF][START_REF] Dimassi | Gaussian beam construction for adiabatic perturbations[END_REF].

1.2. Floquet-Bloch decomposition. The analysis of Schrödinger operators with periodic potentials has a long history that has its origins in the seminal works by Floquet [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF] on ordinary differential equations with periodic coefficients, and by Bloch [START_REF] Bloch | Über die Quantenmechanik der Electronen in Kristallgittern[END_REF], who developed a spectral theory of periodic Schrödinger operators in the context of solid state physics. Floquet-Bloch theory can be used to study the spectrum of the perturbed periodic Schrödinger operator:

- ε 2 2 ∆ x + V per x ε + ε 2 V ext (t, x),
see for instance [START_REF] Reed | Methods of modern mathematical physics. IV. Analysis of operators[END_REF][START_REF] Kuchment | The mathematics of photonic crystals[END_REF][START_REF] Kuchment | On some spectral problems of mathematical physics[END_REF][START_REF] Kuchment | An overview of periodic elliptic operators[END_REF] and the references therein, and [START_REF] Outassourt | Comportement semi-classique pour l'opérateur de Schrödinger à potentiel périodique[END_REF][START_REF] Gérard | A mathematical approach to the effective Hamiltonian in perturbed periodic problems[END_REF][START_REF] Hoefer | Defect modes and homogenization of periodic Schrödinger operators[END_REF] for results in the semiclassical context. The Floquet-Bloch decomposition gives as a result that the corresponding Schrödinger evolution can be decoupled in an infinite family of dispersive-type equations for the so-called Bloch modes. We briefly recall the basic facts that we shall need by following the approach in [START_REF] Gérard | A mathematical approach to the effective Hamiltonian in perturbed periodic problems[END_REF][START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF].

The Floquet-Bloch decomposition is based on assuming that the solutions to (1.2) depend on both the "slow" x and the "fast" x/ε variables. The fast variables should moreover respect the symmetries of the lattice. This leads to the following Ansatz on the form of the solutions ψ ε of (1.2):

(1.5)

ψ ε (t, x) = U ε t, x, x ε ,
where U ε (t, x, y) is assumed to be Z d -periodic with respect to the variable y (and, therefore, that it can be identified to a function defined on R × R d × T d , where T d denotes the torus R d /Z d ).

The function U ε then satisfies the equation:

(1.6) iε 2 ∂ t U ε (t, x, y) = P (εD x )U ε (t, x, y) + ε 2 V ext (t, x)U ε (t, x, y),

U ε | t=0 = U ε 0 (x, y), such that ψ ε 0 = L ε U ε 0 ,
where the operator L ε maps functions F defined on R d × T d on functions on R d according to:

(1.7) L ε F (x) := F x, x ε , and P (εD x ) denotes the operator-valued Fourier multiplier associated with the symbol ξ → P (εξ) defined in (1.4). The initial condition in (1.6) can be interpreted in terms of the natural embedding L 2 (R d x ) → L 2 (R d x × T d y ) by taking U ε 0 (x, y) = ψ ε 0 (x) ⊗ 1(y). One can also have more elaborated identifications depending on the structure of the initial data, as we shall see later. Identity (1.5) makes sense, since one can check that, under suitable assumptions on the initial datum, U ε (t, x, •) has enough regularity with respect to the variable y (the fact that ψ ε must be given by (1.5) following from the uniqueness of solutions to the initial value problem (1.2)).

Assuming that the function y → V per (y) is smooth is enough for proving that the operator P (ξ) is self-adjoint on L 2 (T d ) (with domain H 2 (R d )) and has a compact resolvent. For the sake of simplicity, we shall make here this assumption, even though it can be relaxed into assuming V per ∈ L p (T d ) for some convenient set of indices p which authorizes Coulombian singularity in dimension 3 (see [START_REF] Mathieu Lewin | Éléments de théorie spectrale: le Laplacien sur un ouvert borné[END_REF]). As a consequence of the fact that P (ξ) has compact resolvent, there exist a non-decreasing sequence of eigenvalues (the so-called Bloch energies):

1 (ξ) ≤ 2 (ξ) ≤ • • • ≤ n (ξ) ≤ • • • -→ +∞,
and an orthonormal basis of L 2 (T d ) consisting of eigenfunctions (ϕ n (ξ, •)) n∈N (called Bloch waves):

P (ξ)ϕ n (y, ξ) = n (ξ)ϕ n (y, ξ), for y ∈ T d .
Moreover, the Bloch energies n (ξ) are 2πZ d -periodic whereas the Bloch waves satisfy

ϕ n (y, ξ + 2πk) = e -i2πk•y ϕ n (y, ξ), for every k ∈ Z d .
This follows from the fact that for every k ∈ Z d , the operator P (ξ + 2πk) is unitarily equivalent to P (ξ) since P (ξ + 2πk) = e -i2πk•y P (ξ)e i2πk•y . It is proved in [START_REF] Wilcox | Theory of Bloch waves[END_REF] that the Bloch energies n are continuous and piecewise analytic functions of ξ ∈ R d . Actually, the set

{(ξ, n (ξ)), n ∈ N, ξ ∈ R d } is an analytic set of R 2d
. Moreover, if the multiplicity of the eigenvalue n (ξ) is equal to the same constant for all ξ ∈ R d , then n and the eigenprojector Π n on this mode are globally analytic functions of ξ. The reader can refer to [START_REF] Kuchment | An overview of periodic elliptic operators[END_REF] for a survey on the subject.

Observing that, via the decomposition in Fourier series, any function U ∈ L 2 (R d x × T d y ) can be written as:

U (x, y) = k∈Z d U k (x)e i2πk•y with U 2 L 2 (R d ×T d ) = k∈Z d U k 2 L 2 (R d ) ,
we denote by H s ε (R d × T d ), for s ≥ 0, the Sobolev space consisting of those functions U ∈ L 2 (R d × T d ) such that there exists C > 0 and:

(1.8) ∀ε > 0, U 2 H s ε (R d ×T d ) := k∈Z d R d (1 + |εξ| 2 + |k| 2 ) s | U k (ξ)| 2 dξ ≤ C, where U k (ξ) = R d e -ix•ξ U k (x)dx.
1.3. Main result. We consider the following set of assumptions.

Assumption 1.1.

(1) Assume V per is smooth and real-valued and that V ext is a continuous function in time taking values in the set of smooth, real-valued, bounded functions on R d with bounded derivatives.

(2) Assume that n is a Bloch mode of constant multiplicity and that the set of critical points

of n Λ n := {ξ ∈ R d , ∇ n (ξ) = 0} is a submanifold of R d . (3) Assume that the Hessian d 2 n (ξ) is of maximal rank above each point ξ ∈ Λ n (or equivalently that Ker d 2 n (ξ) = T ξ Λ n for all ξ ∈ Λ n ). (4) Assume that the initial data ψ ε 0 (x) satisfies ψ ε 0 (x) = U ε 0 x, x ε with U ε 0 (ξ, •) ∈ Ran Π n (εξ), with U ε 0 uniformly bounded in H s ε (R d × T d ) for some s > d/2.
It will be convenient to identify n to a function defined on (R d ) * rather than R d (via the standard identification given by duality). Then we define the cotangent bundle of Λ n as the union of all cotangent spaces to Λ n (1.9)

T * Λ n := {(x, ξ) ∈ R d × Λ n : x ∈ T * ξ Λ n }, each fibre T * ξ Λ n is the dual space of the tangent space T ξ Λ n . Note that this is well-defined, since T * ξ Λ n ⊂ (R d ) * * = R d .
We shall denote by M + (T * Λ n ) the set of positive Radon measures on T * Λ n . We also define the normal bundle of Λ n which is the union of those linear subspaces of R d that are normal to Λ n :

(1.10) N Λ n := {(z, ξ) ∈ R d × Λ n : z ∈ N ξ Λ n },
where

N ξ Λ n consists of those x ∈ (R d ) * * = R d that annihilate T ξ Λ n . Every point x ∈ R d can be uniquely written as x = v + z, where v ∈ T * ξ Λ n and z ∈ N ξ Λ n . Given a function φ ∈ L ∞ (R d ) we write m φ (v, ξ), where v ∈ T * ξ Λ n ,
to denote the operator acting on L 2 (N ξ Λ n ) by multiplication by φ(v + •). Note that assumption (3) implies that the Hessian of n defines an operator

d 2 n (ξ)D z • D z acting on L 2 (N ξ Λ n ) for any ξ ∈ Λ n .
In the statement below, the weak limit of the energy density are described by means of a timedependent family M n of trace-class operators acting on a certain L 2 -space. More precisely, the operators M n depend on t ∈ R and on ξ ∈ Λ n , v ∈ T * ξ Λ n ; for every choice of these parameters, M n (t, v, ξ) is a trace-class operator acting on L 2 functions of the vector space N ξ Λ. Note that M n (t, •) can also be viewed as a section of a vector bundle over T * Λ n , namely:

(v,ξ)∈T * Λ L 1 + L 2 (N ξ Λ n ) . Theorem 1.2.
Assume the hypotheses of Assumption 1.1. Then, there exist a subsequence (ε k ) k∈N , a positive measure ν n ∈ M + (T * Λ n ), and a measurable family of self-adjoint, positive, trace-class operator

M 0,n : T * ξ Λ n (v, ξ) -→ M 0,n (v, ξ) ∈ L 1 + (L 2 (N ξ Λ n )), Tr L 2 (N ξ Λn) M 0,n (v, ξ) = 1
, such that for every for every a < b and every φ ∈ C c (R d ) one has:

lim k→∞ b a R d φ(x)|ψ ε k (t, x)| 2 dxdt = b a T * Λn Tr L 2 (N ξ Λn) [m φ (v, ξ)M n (t, v, ξ)] ν n (dv, dξ)dt,
where

M n (•, v, ξ) ∈ C(R; L 1 + (L 2 (N ξ Λ n ))
solves the Heisenberg equation:

(1.11)      i∂ t M n (t, v, ξ) + 1 2 d 2 n (ξ)D z • D z + m Vext(t, • ) (v, ξ), M n (t, v, ξ) = 0, M n | t=0 = M 0,n .
Remark 1.3. We point out that the measure ν n and the family of operators M 0,n only depend on the subsequence ψ ε k 0 of initial data. The way of computing them will be made clear in Section 5. When the critical points of n (ξ) are all non degenerate, then Λ n is discrete and 2πZ dperiodic, T * Λ n = Λ n × {0} and N Λ n = R d . We then have the following corollary.

Corollary 1.4. Assume we have Assumption 1.1 and that the critical points of n (ξ) are all non degenerate. Then the measure ν n and the operator M n of Theorem 1.2 above satisfy:

(1) The operator M n (t, ξ) is the orthogonal projection on ψ ξ which solves the effective mass equation:

(1.12)

i∂ t ψ ξ (t, x) = 1 2 d 2 n (ξ)D x • D x ψ ξ (t, x) + V ext (t, x)ψ ξ (t, x),
with initial data:

ψ ξ | t=0 is the weak limit in L 2 (R d ) of the sequence e -i ε k ξ•x ψ ε k 0 . (2)
The measure ν n is given by

ν n = ξ∈Λn α ξ δ ξ , α ξ = ψ ξ | t=0 L 2 (R d ) .
This corollary is well known and we refer to the work by Allaire and Piatnitski [START_REF] Allaire | Homogenization of the Schrödinger equation and effective mass theorems[END_REF] or to [START_REF] Allaire | Localization for the Schrödinger equation in a locally periodic medium[END_REF] for similar results in a related problem; in that work homogenization and two-scale convergence techniques are used to obtain a precise description of the solution profile for data similar to ours and for Blochs mode having non-degenerated critical points. In [START_REF] Barletti | Quantum transport in crystals: effective mass theorem and k•p Hamiltonians[END_REF], Barletti and Ben Abdallah obtained a result similar to Corollary 1.4 by following the approach initiated by Kohn and Luttinger in [START_REF] Mazdak | Motion of electrons and holes in perturbed periodic fields[END_REF] consisting in introducing a (non-canonical) basis of modified Bloch functions.

The starting point in our approach is conceptually closer to that in [START_REF] Poupaud | Semi-classical limits in a crystal with exterior potentials and effective mass theorems[END_REF], in the sense that we analyse the structure of Wigner measures associated to sequences of solutions. The main novelty here is the use of two-microlocal Wigner measures, that give a more explicit geometric description of the mechanism that underlies the Effective Mass Approximation, showing that it is a result of the dispersive effects associated to high-frequency solutions to the semiclassical Bloch band equations. Moreover, we are able to deal with the presence of non-isolated critical points on the Bloch energies and to prove Theorem 1.2. We believe our approach is sufficiently robust to be implemented on a Bloch band, isolated from the remainder of the spectrum, and consisting of several Bloch modes which may present crossings. We will devote further works to this specific problem. It is also interesting to notice that our result generalizes to initial data which are a finite sum of data satisfying (4) of Assumption 1.1. The weak limit of the energy density associated with the solution corresponding to this new data is the sum of weak limits of the energy densities of the solution associated with each term of the data, without any interference (see section 6.5 for a precise statement).

1.4. Strategy of the proof. The proof of Theorem 1.2 relies on the analysis of the solution U ε to equation (1.6) with initial data U ε 0 as introduced in (4) of Assumption 1.1, and more precisely on its component U ε n on the n-th Bloch mode and its restriction ψ ε n by L ε : [START_REF] Carles | Semiclassical wave packet dynamics in Schrödinger equations with periodic potentials[END_REF] shows that no other Bloch modes is concerned in the decomposition of U ε and ψ ε : the mass of ψ ε remains above the specific mode n because it is separated from the other ones. Therefore, a crucial step in this strategy consists in performing a detailed analysis of the dispersive equation (1.13).

U ε n = Π n (εD x )U ε , ψ ε n = L ε U ε n . It is shown in Section 6.3 that the family (ψ ε n ) solves the equation (1.13) iε 2 ∂ t ψ ε n (t, x) -n (εD x )ψ ε n (t, x) -ε 2 V ext (t, x)ψ ε n (t, x) = ε 2 f ε n (t, x), ψ ε n | t=0 (x) = ψ ε 0 (x) with f ε n = L ε [Π(εD x ), V ext ] U ε , There, we prove that (1.14) ∀T ∈ R, ∃C T > 0, sup t∈[0,T ] ψ ε (t, • ) -ψ ε n (t, • ) L 2 (R d ) ≤ C T ε. and (1.15) ∃C > 0, ∀t ∈ R, f ε n (t, • ) L 2 (R d ) ≤ Cε. Equation (1.
1.5. Structure of the article. Sections 2 to 5 are devoted to the analysis of a dispersive equation of the form (1.13) in a more general setting. For this, we use pseudodifferential operators and semi-classical measures (Section 3) and we introduce two-microlocal tools (Section 4) that allow us to prove the main results of Section 2 in Section 5. Finally, in Section 6 we come back to the effective mass equations and prove Theorem 1.2 , which requires additional results on the restriction operator L ε , the projector Π n (ξ) and energy estimates for solutions to (1.6). Some Appendices are devoted to basic results about pseudodifferential calculus and trace-class operator-valued measures, and to the proof of technical lemmata.

QUANTIFYING THE LACK OF DISPERSION

As emphasized in the introduction, understanding the limiting behavior as ε → 0 of the position densities of solutions to the Schrödinger equation (1.2) relies on a careful analysis of the solutions of equations of the form: (2.1)

iε 2 ∂ t u ε (t, x) = λ(εD x )u ε (t, x) + ε 2 V ext (t, x)u ε (t, x) + ε 3 g ε (t, x), (t, x) ∈ R × R d , u ε |t=0 = u ε 0 ,
where (g ε (t, •)) is locally uniformly bounded with respect to t in L 2 (R d ).

This equation ceases to be dispersive as soon as λ(ξ) has critical points ξ = 0, and this is always the case if λ is a Bloch energy. Heuristically, one can think that one of the consequences of a dispersive time evolution is a regularization of the high-frequency effects (that is associated to frequencies εξ = c = 0) caused by the sequence of initial data. These heuristics have been made precise in many cases; a presentation of our results from this point of view can be found in [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF]. The reader can also find there a detailed account on the literature on the subject.

Here we show that, in the presence of critical points of λ, some of the high-frequency effects exhibited by the sequence of initial data persist after applying the time evolution (2.1). We provide a quantitative picture of this persistence by giving a complete description of the asymptotic behavior of the densities |u ε (t, x)| 2 dxdt associated to a bounded sequence (u ε ) of solutions to (2.1). We give an explicit procedure to compute all weak-accumulation points of the sequence of positive measures (|u ε (t, x)| 2 dxdt) in terms of quantities that can be obtained from the sequence of initial data (u ε 0 ). These results are of independent interest; we have thus chosen to present them in a more general framework than what it is necessary in our applications to Effective Mass Theory.

In order to obtain a non trivial result we must make sure that the characteristic length-scale of the oscillations carried by the sequence of initial data is of the order of ε. The following assumption is sufficient for our purposes:

H0 The sequence (u ε 0 ) is uniformly bounded in L 2 (R d ) and ε-oscillating, in the sense that its energy is concentrated on frequencies smaller or equal than 1/ε :

(2.2) lim sup ε→0 + |ξ|>R/ε | u ε 0 (ξ)| 2 dξ -→ R→+∞ 0.
We shall assume that λ is smooth and grows at most polynomially, and that its set of critical points is a submanifold of R d . More precisely, we impose the following hypotheses on λ and V :

H1 V ext ∈ C ∞ (R×R d
) is bounded together with its derivatives and λ ∈ C ∞ (R d ) , together with its derivatives, grows at most polynomially; i.e. there exists N > 0 such that, for every α ∈ N d + , one has: sup

ξ∈R d |∂ α ξ λ(ξ)|(1 + |ξ| N ) -1 < ∞. H2 The set Λ := ξ ∈ R d : ∇λ(ξ) = 0 is a connected, closed embedded submanifold of R d of codimension 0 < p ≤ d and the Hessian d 2 λ is of maximal rank over Λ.
Hypothesis H2 implies the existence of tubular coordinates in a neighborhood of Λ. A stronger version of H2 is to suppose that all critical points of λ are non-degenerate (that is, the Hessian of λ, d 2 λ(ξ) is a non-degenerate quadratic form for every ξ ∈ Λ). This implies that p = d and Λ is a discrete set in R d ; if moreover one has that λ is Z d -periodic, which is the situation when λ is a Bloch energy, this set is finite modulo Z d . We first state the main result of this section under this stronger hypothesis.

Theorem 2.1. Suppose that the sequence of initial data (u ε 0 ) verifies H0, denote by (u ε ) the corresponding sequence of solutions to (2.1). Suppose in addition that H1 is satisfied and all critical points of λ are non-degenerate. Then there exists a subsequence (u ε k 0 ) such that for every a < b and every φ ∈ C c (R d ) the following holds:

(2.3) lim k→∞ b a R d φ(x)|u ε k (t, x)| 2 dxdt = ξ∈Λ b a R d φ(x)|u ξ (t, x)| 2 dxdt,
where u ξ solves the following Schrödinger equation:

(2.4) i∂ t u ξ (t, x) = d 2 λ(ξ)D x • D x u ξ (t, x) + V ext (t, x)u ξ (t, x),
with initial data:

u ξ | t=0 is the weak limit in L 2 (R d ) of the sequence e -i ε k ξ•x u ε k 0 . If Λ = ∅ then the right-hand side of (2.3) is equal to zero.
Note that u ξ may be identically equal to zero even if the sequence (u ε 0 ) oscillates in the direction ξ. For instance, if the sequence of initial data is a coherent state:

u ε 0 (x) = 1 ε d/4 ρ x -x 0 √ ε e i ε ξ 0 •x , centered at a point (x 0 , ξ 0 ) in phase space with ρ ∈ C 0 (R d ), then u ξ | t=0 = 0 for every ξ ∈ R d .
Theorem (2.1) allows us to conclude that the corresponding solutions (u ε ) converge to zero in

L 2 loc (R × R d ).
Theorem 2.1 can be interpreted as a description of the obstructions to the validity of smoothingtype estimates for the solutions to equation (2.1) in the presence of critical points of the symbol of the Fourier multiplier. We refer the reader to [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF] for additional details concerning this issue and a simple proof of Theorem 2.1. Here, we obtain Theorem 2.1 as a particular case of a more general result which requires some geometric preliminaries.

As for the mode Bloch n in the Introduction, we identify λ to a function defined on (R d ) * rather than R d , and we associate with Λ its cotangent bundle T * Λ and its normal bundle N Λ. In the analogue of Theorem 2.1 in this context, the sum over critical points is replaced by an integral with respect to a measure over T * Λ, and the Schrödinger equation (2.4) becomes a Heisenberg equation for a time-dependent family M of trace-class operators of (v,ξ)

∈T * Λ L 1 + L 2 (N ξ Λ) . Theorem 2.2. Let (u ε 0 )
be a sequence of initial data satisfying H0, and denote by (u ε ) the corresponding sequence of solutions to (2.1). If H1 and H2 hold, then there exist a subsequence (u ε k 0 ), a positive measure ν ∈ M + (T * Λ) and a measurable family of self-adjoint, positive, trace-class operators

M 0 : T * ξ Λ (v, ξ) -→ M 0 (z, ξ) ∈ L 1 + (L 2 (N ξ Λ)), Tr L 2 (N ξ Λ) M 0 (v, ξ) = 1,
such that for every a < b and every φ ∈ C c (R d ) one has:

(2.5)

lim k→∞ b a R d φ(x)|u ε k (t, x)| 2 dxdt = b a T * Λ Tr L 2 (N ξ Λ) [m φ (v, ξ)M t (v, ξ)] ν(dv, dξ)dt, where t → M t (v, ξ) ∈ C(R; L 1 + (L 2 (N ξ Λ))
solves the following Heisenberg equation:

(2.6)      i∂ t M t (v, ξ) = 1 2 d 2 λ(ξ)D z • D z + m Vext(t,•) (v, ξ), M t (v, ξ) , M | t=0 = M 0 .
Remark 2.3. When hypothesis H2 about the rank of the Hessian d 2 λ is dropped, then an additional term appears in (2.5) (see [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF]).

When Λ consists of a set of isolated critical points, Theorems 2.1 and 2.2 are completely equivalent. Note that in this case, T * Λ = {0} × Λ and the measure ν (which in this case is a measure depending on ξ ∈ R d only) is simply

ν = ξ∈Λ α ξ δ ξ , where α ξ = u ξ | t=0 2 L 2 (R d ) .
In addition, N ξ Λ = R d and the operator M t (ξ) (which again does not depend on z) is the orthogonal projection onto u ξ (t, •) in L 2 (R d ) (recall that u ξ solves the Schrödinger equation (1.12)). These orthogonal projections satisfy the Heisenberg equation (2.6).

The proof of Theorem 2.2 follows a strategy developed in the references [START_REF] Macià | High-frequency propagation for the Schrödinger equation on the torus[END_REF][START_REF] Anantharaman | The dynamics of the Schrödinger flow from the point of view of semiclassical measures[END_REF][START_REF] Nalini Anantharaman | Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures[END_REF] in a different (though related) context. As in those references, the measure ν and the family of operators M 0 only depend on the subsequence of initial data (u ε k 0 ); we will see in Section 3 that they are defined as two microlocal Wigner measures of (u ε k 0 ) in the sense of [START_REF] Fermanian-Kammerer | Équation de la chaleur et Mesures semi-classiques[END_REF][START_REF] Fermanian-Kammerer | Mesures semi-classiques 2-microlocales[END_REF][START_REF] Kammerer | Analyse à deux échelles d'une suite bornée de L 2 sur une sous-variété du cotangent[END_REF][START_REF] Macià | High-frequency propagation for the Schrödinger equation on the torus[END_REF]. At this point, it might be useful to stress out that in this regime the limiting objects M, ν cannot be computed in terms of the Wigner/semiclassical measure of the sequence of initial data, as it is the case when dealing with the semiclassical limit. In [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF], we have explicitly constructed sequences of initial data having the same semiclassical measure but such that their time dependent measures differ. This type of behavior was first remarked in this context in the case of the Schrödinger equation on the torus, see [START_REF] Macià | Semiclassical measures and the Schrödinger flow on Riemannian manifolds[END_REF][START_REF] Macià | High-frequency propagation for the Schrödinger equation on the torus[END_REF].

We also emphasize that the original definition of two-microlocal Wigner measures performed in [START_REF] Fermanian-Kammerer | Mesures semi-classiques 2-microlocales[END_REF] and their extension to more general geometric setting [START_REF] Kammerer | Analyse à deux échelles d'une suite bornée de L 2 sur une sous-variété du cotangent[END_REF] were only defined locally. We prove here that they extend to global objects in the geometric context of closed simply connected embedded submanifolds of R d ; related constructions were performed in the torus [START_REF] Macià | High-frequency propagation for the Schrödinger equation on the torus[END_REF][START_REF] Anantharaman | The dynamics of the Schrödinger flow from the point of view of semiclassical measures[END_REF][START_REF] Nalini Anantharaman | Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures[END_REF][START_REF] Macià | Two-microlocal regularity of quasimodes on the torus[END_REF] and the disk [START_REF] Nalini Anantharaman | Winger measures and observability for the Schrödinger equation on the disk[END_REF].

See also, that as soon as Λ has strictly positive dimension (i.e. it is not a union of isolated critical points), the measure ν may be singular with respect to the z variable, while when Λ consists in isolated points, the weak limit of the densities |ψ ε (t, x)| 2 dx are proved to be absolutely continuous with respect to the measure dx. See [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF] for specific examples exhibiting this type of behavior; see also that reference for examples proving the necessity of hypothesis H2; it is shown there that different types of behavior can happen whenever the Hessian of λ is not of full rank on Λ.

The main idea of the proof comes from the following remark. Setting v ε (t, x) = u ε (εt, x), then (v ε ) solves the semi-classical equation (2.7)

iε∂ t v ε (t, x) = λ(εD x )v ε (t, x) + ε 2 V ext (t, x)v ε (t, x) + ε 3 g ε (t, x), (t, x) ∈ R × R d , v ε |t=0 = u ε 0
, which means that, in the preceding analysis, we have performed the semiclassical limit ε → 0 in (2.7) simultaneously with the limit t/ε → +∞. Such analysis, combining high-frequencies (ε → 0) and long times (t ∼ t ε → +∞) is relevant if one wants to understand the behavior of solutions of (2.7) beyond the Ehrenfest time. This approach was followed in the case of confined geometries in the references [START_REF] Macià | Semiclassical measures and the Schrödinger flow on Riemannian manifolds[END_REF][START_REF] Nalini Anantharaman | Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures[END_REF][START_REF] Macià | Concentration and non-concentration for the Schrödinger evolution on Zoll manifolds[END_REF]. Note also that in the particular case when λ(ξ) is homogeneous of degree two, this change of time scale transforms the semiclassical equation (2.7) into the non-semiclassical one (that is, the one corresponding to ε = 1). Therefore, it is possible to derive results on the dynamics of the Schrödinger equation via this scaling limit [START_REF] Macià | High-frequency propagation for the Schrödinger equation on the torus[END_REF][START_REF] Anantharaman | Dispersion and controllability for the Schrödinger equation on negatively curved manifolds[END_REF][START_REF] Anantharaman | Semiclassical measures for the Schrödinger equation on the torus[END_REF][START_REF] Nalini Anantharaman | Winger measures and observability for the Schrödinger equation on the disk[END_REF]. The reader can consult the survey articles [START_REF] Macià | The Schrödinger flow on a compact manifold: High-frequency dynamics and dispersion[END_REF][START_REF] Anantharaman | The dynamics of the Schrödinger flow from the point of view of semiclassical measures[END_REF] and the introductory lecture notes [START_REF] Macià | High-frequency dynamics for the Schrödinger equation, with applications to dispersion and observability[END_REF] for additional details and references on this approach.

PSEUDODIFFERENTIAL OPERATORS AND SEMICLASSICAL MEASURES -PRELIMINARIES

In this section we recall some basic facts on Wigner distributions and semiclassical measures, which are the tools we are going to use to prove Theorem 2.2 and derive preliminary results about Wigner measures associated with families of solutions of equations of the form (2.1).

3.1. Wigner transform and Wigner measures. Wigner distributions provide a useful way for computing weak-accumulation points of a sequence of densities |f ε (x)| 2 dx constructed from a L 2 -bounded sequence (f ε ) of solutions of a semiclassical (pseudo) differential equation. They provide a joint physical/Fourier space description of the energy distribution of functions in R d . The Wigner distribution of a function f ∈ L 2 (R d ) is defined as:

W ε f (x, ξ) := R d f x - εv 2 f x + εv 2 e iξ•v dv (2π) d ,
and has several interesting properties (see, for instance, [START_REF] Folland | Harmonic analysis in phase space[END_REF]).

• W ε f ∈ L 2 (R d × R d ).
• Projecting W ε f on x or ξ gives the position or momentum densities of f respectively :

R d W ε f (x, ξ)dξ = |f (x)| 2 , R d W ε f (x, ξ)dx = 1 (2πε) d f ξ ε 2 . Note that despite this, W ε f is not positive in general. • For every a ∈ C ∞ c (R d × R d ) one has: (3.1) R d ×R d a(x, ξ)W ε f (x, ξ)dx dξ = (op ε (a)f, f ) L 2 (R d ) ,
where op ε (a) is the semiclassical pseudodifferential operator of symbol a obtained through the Weyl quantization rule:

op ε (a)f (x) = R d ×R d a x + y 2 , εξ e iξ•(x-y) f (y)dy dξ (2π) d . If (f ε ) is a bounded sequence in L 2 (R d ) then (W ε f ε ) is a bounded sequence of tempered distributions in S (R d × R d )
. This is proved using identity (3.1) combined with the fact that the operators op ε (a) are uniformly bounded by a suitable semi-norm in S(R d × R d ), see (A.1). Appendix A contains additional facts on the theory of pseudodifferential operators, as well as references to the literature.

In addition, every accumulation point of

(W ε f ε ) in S (R d × R d
) is a positive distribution and therefore, by Schwartz's theorem, a positive measure on R d × R d . These measures are called semiclassical or Wigner measures. See references [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Lions | Sur les mesures de Wigner[END_REF][START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF][START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF] for different proofs of the results we have presented so far.

Now, if µ ∈ M + (R d × R d ) is an accumulation point of (W ε f ε ) along some subsequence (ε k ) and (|f ε k | 2 ) converges weakly-towards a measure ν ∈ M + (R d ) then one has: (3.2) R d µ(•, dξ) ≤ ν.
Equality holds if and only if (f ε ) is ε-oscillating:

(3.3) lim sup ε→0 + |ξ|>R/ε | f ε (ξ)| 2 dξ -→ R→+∞ 0,
see [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF][START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF][START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF]. The hypothesis H0 that we made on the initial data for equation (2.1), is this ε-oscillating property. Note also that (3.2) implies that µ is always a finite measure of total mass bounded by

sup ε f ε 2 L 2 (R d ) . Remark 3.1. If εD x s f ε L 2 (R d )
is uniformly bounded for some constant s > 0, then the family f ε is ε-oscillating.

3.2.

Wigner measure and family of solutions of dispersive equations. We will now consider Wigner distributions associated to solutions of the evolution equation (2.1) where V ext and λ satisfy hypothesis H1 and (g ε (t, •)) is locally uniformly bounded with respect to t in L 2 (R d ).

When the sequence (u ε 0 ) of initial data is uniformly bounded in L 2 (R d ), so is the corresponding sequence (u ε (t, •)) of solutions to (2.1) for every t ∈ R. Therefore the sequence of Wigner distributions

(W ε u ε (t,•) ) is bounded in C(R; S (R d × R d ))
. Nevertheless, its time derivatives are unbounded and, in general, one cannot hope to find a subsequence that converges pointwise (or even almost everywhere) in t (see Proposition 3.4 below). This difficulty can be overcome if one considers the time-average of the Wigner distributions. Proposition 3.2. Let (u ε ) be a sequence of solutions to (2.1) issued from an L 2 (R d )-bounded family of initial data (u ε 0 ). Then there exist a subsequence (ε k ) tending to zero as k → ∞ and a t-measurable family µ t ∈ M + (R d × R d ) of finite measures, with total mass essentially uniformly bounded in t ∈ R, such that, for every

θ ∈ L 1 (R) and a ∈ C ∞ c (R d × R d ): lim k→∞ R×R d ×R d θ(t)a(x, ξ)W ε k u ε k (t,•) (x, ξ)dx dξ dt = R×R d ×R d θ(t)a(x, ξ)µ t (dx, dξ)dt.
If moreover, the families (u ε 0 ) and g ε (t, •) are ε-oscillating, then for every

θ ∈ L 1 (R) and φ ∈ C ∞ c (R d ): lim k→∞ R R d θ(t)φ(x)|u ε k (t, x)| 2 dx dt = R R d ×R d θ(t)φ(x)µ t (dx, dξ)dt.
This result is proved in [START_REF] Macià | Semiclassical measures and the Schrödinger flow on Riemannian manifolds[END_REF], Theorem 1; see also Appendix B in [START_REF] Macià | Concentration and non-concentration for the Schrödinger evolution on Zoll manifolds[END_REF]. Note that its proof uses the following observation.

Remark 3.3. Let (u ε (t, •)) be a sequence of solutions to (2.1) with ε-oscillating sequence of initial data (u ε 0 ) and assume g ε (t, •) is ε-oscillating for all time t ∈ R. Then, u ε (t, •) also is ε-oscillating for all t ∈ R.

3.3.

Localisation of Wigner measures on the critical set. The fact that (u ε (t, •)) is a sequence of solutions to (2.1) imposes restrictions on the measures µ t that can be attained as a limit of their Wigner functions. In the region in the phase space R d

x × R d ξ where equation (2.1) is dispersive (i.e. away from the critical points of λ) the energy of the sequence (u ε (t, •)) is dispersed at infinite speed to infinity. These heuristics are made precise in the following result. Proposition 3.4. Let (u ε (t, •)) be a sequence of solutions to (2.1) issued from an L 2 (R d )bounded and ε-oscillating sequence of initial data (u ε 0 ), and suppose that the measures µ t are given by Proposition 3.2. Then, for almost every t ∈ R the measure µ t is supported above the set of critical points of λ :

supp µ t ⊂ Λ = {(x, ξ) ∈ R d × R d : ∇λ(ξ) = 0}.
The result of Proposition 3.4 follows from a geometric argument : the fact that u ε are solutions to (2.1) translates in an invariance property of the measures µ t . Lemma 3.5. For almost every t ∈ R, the measure µ t is invariant by the flow

φ 1 s : R d × R d (x, ξ) -→ (x + s∇λ(ξ), ξ) ∈ R d × R d , s ∈ R.
This means that for every function a on R d × R d that is Borel measurable one has:

R d ×R d a • φ 1 s (x, ξ)µ t (dx, dξ) = R d ×R d a(x, ξ)µ t (dx, dξ), s ∈ R.
This result is part of Theorem 2 in [START_REF] Macià | Semiclassical measures and the Schrödinger flow on Riemannian manifolds[END_REF]. We reproduce the argument here for the reader's convenience, since we are going to use similar techniques in the sequel.

Proof of Lemma 3.5. It is enough to show that, for all a ∈ C ∞ c (R d × R d ) and θ ∈ C ∞ c (R), the quantity R ε (θ, a) := R×R d ×R d θ(t) d ds (a • φ 1 s (x, ξ)) s=0 W ε k u ε k (t,•) (x, ξ)dx dξ dt
tends to 0 for the subsequence ε k of Proposition 3.2. Note that

d ds (a • φ 1 s ) s=0 = ∇ ξ λ • ∇ x a = {λ, a};
therefore, by the symbolic calculus of semiclassical pseudodifferential operators, Proposition A.1:

op ε d ds (a • φ 1 s ) s=0 = i ε [λ(εD) , op ε (a)] + O L(L 2 (R d )) (ε)
and, using the fact that u ε solves (2.1):

i ε R θ(t) ([λ(εD), op ε (a)] u ε (t, •), u ε (t, •)) dt + O(ε) = -ε R θ(t) d dt (op ε (a)u ε (t, •), u ε (t, •)) dt = ε R θ (t) (op ε (a)u ε (t, •), u ε (t, •)) dt = O(ε).
This estimate together with identity (3.1) show that R ε (θ, a) = O(ε), which gives the result that we wanted to prove.

Proposition 3.4 follows easily from Lemma 3.5 and the following elementary fact.

Lemma 3.6. Let Ω ⊂ R d and Φ s : R d × Ω -→ R d × Ω a flow satisfying: for every compact K ⊂ R d × Ω such that K contains no stationary points of Φ there exist constants α, β > 0 such that:

α|s| -β |Φ s (x, ξ)| α|s| + β, ∀(x, ξ) ∈ K.
Let µ be a finite, positive Radon measure on R d × Ω that is invariant by the flow Φ s . Then µ is supported on the set of stationary points of Φ s .

Proof. It suffices to show that µ(K) = 0 for every compact set K ⊂ R d × Ω as in the statement of the lemma. By the assumption made on Φ s , it is possible to find s k → +∞ such that Φ s k (K), k ∈ N, are mutually disjoint. The invariance property of µ implies that µ(Φ s k (K)) = µ(K) and therefore, for every N > 0:

µ N k=1 Φ s k (K) = N µ(K).
Since µ is finite, we must have µ(K) = 0.

TWO-MICROLOCAL WIGNER DISTRIBUTIONS

The localization result for semiclassical measures that we obtained in the preceding section is still very far from the conclusions of Theorems 2.1 and 2.2. In particular, Proposition 3.4 does not explain how the measures µ t depend on the sequence of initial data of the sequence of solutions (u ε (t, •)). For obtaining more information, we use two-microlocal tools that we introduce in a rather general framework in this section.

From now on, we assume that X is a connected, closed embedded submanifold of (R d ) * with codimension p > 0. Given any σ ∈ X, T σ X and N σ X will stand for the cotangent and normal spaces of X at σ respectively (as defined in (1.9) and (1.10)). The tubular neighborhood theorem (see for instance [START_REF] Hirsch | Differential topology[END_REF]) ensures that there exists an open neighborhood U of {(σ, 0) : σ ∈ X} ⊆ N X such that the map:

U (σ, v) -→ σ + v ∈ (R d ) *
, is a diffeomorphism onto its image V . Its inverse is given by:

V ξ -→ (σ(ξ), ξ -σ(ξ)) ∈ U,
for some smooth map σ : V -→ X. When X = {ξ 0 } consists of a single point, the function σ is constant, identically equal to ξ 0 .

We extend the phase space

T * R d := R d x × (R d ) * ξ with a new variable η ∈ R d
, where R d is the compactification of R d obtained by adding a sphere S d-1 at infinity. The test functions associated with this extended phase space are functions a ∈ C ∞ (T * R d

x,ξ × R d η ) which satisfy the two following properties:

(1) There exists a compact K ⊂ T * R d such that, for all η ∈ R p , the map (x, ξ) → a(x, ξ, η) is a smooth function compactly supported in K. (2) There exists a smooth function a ∞ defined on T * R d × S d-1 and R 0 > 0 such that, if |η| > R 0 , then a(x, ξ, η) = a ∞ (x, ξ, η/|η|).

We denote by A the set of such functions and for a ∈ A we write:

(4.1) a ε (x, ξ) := a x, ξ, ξ -σ(ξ) . Given f ∈ L 2 (R d ), we define the two-microlocal Wigner distribution W X,ε f ∈ D (R d ×V ×R d ) by: (4.2) W X,ε f , a := (op ε (a ε )f |f ) L 2 (R d ) , ∀a ∈ A.
Since a ε (x, εξ) = a x, εξ, εξ-σ(εξ) has derivatives that are uniformly bounded in ε, the Calderón-Vaillancourt theorem (see Appendix A) gives the uniform boundedness of the family of operators (op ε (a ε )) ε>0 in L 2 (R d ). In addition, any function a ∈ C ∞ c (R d × V ) can be naturally identified to a function in A which does not depend on the last variable. For such a, one clearly has

W X,ε f , a = R d ×R d a(x, ξ)W ε f (x, ξ)dx dξ.
Putting the above remarks together, one obtains the following.

Proposition 4.1. Let (f ε ) ε>0 be bounded in L 2 (R d ); suppose in addition that this sequence has a semiclassical measure µ. Then,

(W X,ε f ε ) ε>0 is a bounded sequence in D (R d × V × R d ) whose accumulation points µ X satisfy: µ X , a = R d ×R d a(x, ξ)µ(dx, dξ), ∀a ∈ C ∞ c (R d × V ).
The distributions µ X turn out to have additional structure (they are not positive measures on R d × V × R d , though) and can be used to give a more precise description of the restriction µ R d ×X of semiclassical measures. The measure µ X decomposes into two parts: a compact part, which is essentially the restriction of µ X to the interior

R d × V × R d of R d × V × R d ,
and a part at infinity, which corresponds to the restriction to the sphere at infinity R d × V × S d-1 . 4.1. The compact part. On the neighborhood of any point σ ∈ X, one may find a system of p equations on R d for which X is the zero set. Let ϕ(ξ) = 0 be such a system in an open set Ω that we can assume included in the set V where the map σ is defined. Then, a parametrization of N σ X associated to this system of equations is

N σ X = { t dϕ(σ)z, z ∈ R p }.
For σ ∈ X, we define functions of L 2 (N σ X) as square integrable functions

R p z → f (z),
where z is the parameter of a parametrization of N σ X that we fixed a priori.

Besides, one associates with the system ϕ(ξ) = 0 a smooth map ξ → B(ξ) from the neighborhood Ω of σ into the set of d × p matrices such that

(4.3) ξ -σ(ξ) = B(ξ)ϕ(ξ), ξ ∈ Ω. Given a function a ∈ C ∞ c (R d × Ω × R d
) and a point (σ, v) ∈ T X, we can use the system of coordinates ϕ(ξ) = 0 to define an operator acting on f ∈ L 2 (N σ X) given by:

Q ϕ a (σ, v)f (z) = R p ×R p a v + t dϕ(σ) z + y 2 , σ, B(σ)η f (y)e iη•(z-y) dη dy (2π) p .
In other words, Q ϕ a (σ, v) is obtained from a by applying the non-semiclassical Weyl quantization to the symbol

(z, η) → a v + t dϕ(σ)z, σ, B(σ)η ∈ C ∞ c (R p × R p ). We write Q ϕ a (σ, v) = a W v + t dϕ(σ)z, σ, B(σ)D z .
If one changes the system of coordinates into ϕ(ξ) = 0 on some open neighborhood Ω of σ, then, there exists a smooth map R(ξ) defined on the open set Ω ∩ Ω (where both system of coordinates can be used), and valued in the set of invertible p × p matrices, such that ϕ(ξ) = R(ξ)ϕ(ξ). One then observe that the matrix B(ξ) associated with the choice of ϕ is given by

B(ξ) = B(ξ)R(ξ) -1 . Besides, for a ∈ C ∞ c (R d × (Ω ∩ Ω) × R d ), Q ϕ a (σ, v) = R p ×R p a v + t d ϕ(σ) z + y 2 , σ, B(σ)η f (y)e iη•(z-y) dη dy (2π) p = R p ×R p a v + t dϕ(σ) t R(σ) z + y 2 , σ, B(σ)R(σ) -1 η f (y)e iη•(z-y) dη dy (2π) p .
We obtain

Q ϕ a (σ, v) = U (σ)Q ϕ a (σ, v)U * (σ)
, where U (σ) is the unitary operator of L 2 (N σ X) ∼ L 2 (R p ) associated with the linear map from R p into itself : z → t R(σ)z. More precisely,

∀f ∈ L 2 (R p ), U (σ)f (z) = |det R(σ)| p 2 f ( t R(σ)z).
This map is the one associated with the change of parametrization on N σ X induced by turning ϕ into ϕ, and the map (z, ζ) → ( t R(σ)z, R(σ) -1 ζ) is a symplectic transform of the cotangent of R p . This is the standard rule of transformation of pseudodifferential operators through linear change of variables (see [START_REF] Alinhac | Pseudo-differential operators and the Nash-Moser theorem[END_REF] for an example or any textbook about pseudodifferential calculus).

Because of this invariance property with respect to the change of system of coordinates, we shall say that a defines an operator

Q a (σ, v) on L 2 (N σ X). Clearly, Q a (σ, v) is smooth and compactly supported in (σ, v); moreover, Q a (σ, v) ∈ K(L 2 (N σ X)), for every (σ, v) ∈ T X,
where K(L 2 (N σ X)) stands for the space of compact operators on L 2 (N σ X). Proposition 4.2. Let µ X be given by Proposition 4.1. Then there exist a positive measure ν on T * X and a measurable family:

M : T * X (σ, v) -→ M (σ, v) ∈ L 1 + (L 2 (N σ X)), satisfying Tr L 2 (NσX) M (σ, v) = 1, for ν-a.e. (σ, v) ∈ T * X,
and such that, for every a

∈ C ∞ c (R d × V × R d ) one has: µ X , a = T * X Tr L 2 (NσX) (Q a (σ, v)M (σ, v))ν(dσ, dv).
Proof. We suppose that we are given a local system of p equations of X by ϕ(ξ) = 0. Put ξ = (ξ , ξ ) ∈ R p × R d-p . Without loss of generality, we may assume that d ξ ϕ(ξ) is invertible. We consider the smooth valued function B satisfying ξ -σ(ξ) = B(ξ)ϕ(ξ) and we introduce the local diffeomorphism

Φ : ϕ(ξ), ξ → ξ. Note that if ξ = Φ(ζ), ζ = (ζ , ζ ), we have ζ = ϕ(ξ) = ϕ(Φ(ζ)
) and ζ = ξ . We use this diffeomorphism according to the next lemma.

Lemma 4.3. For all f ∈ L 2 (R d ) and a ∈ A,

(op ε (a ε )f , f ) = op ε a t dΦ(ξ) -1 x, Φ(ξ), B (Φ(ξ)) ξ ε U ε f , U ε f + O(ε) f 2 where f → U ε f is an isometry of L 2 (R d ).
The proof of this lemma is in the Appendix C. This lemma reduces the problem to the analysis of the concentration of the bounded family f ε = (U ε f ) on the submanifold Λ 0 = {ξ = 0} which has the additional property to be a vector space. This special case has been studied in [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF] where it is proved (see pages 96-97, Proposition 2) that up to a subsequence, there exist a positive measure ν 0 on T * R d-p and a measurable family of trace 1 operators:

M 0 : T * R d-p (σ, v) -→ M 0 (σ, v) ∈ L 1 + (L 2 (R p )), satisfying for any b ∈ C ∞ c (R 2d+p ), lim ε→0 op ε (b ε ) f ε , f ε = R d-p ×R d-p Tr L 2 (R p ) b W (z, u ), (0, θ ), D z M 0 (u , θ ) dν 0 (du , dθ ).
The reader will find in Appendix B comments on the operator-valued families. Therefore, for compactly supported a ∈ A, and choosing b(x, ξ, η ) = a t dΦ(ξ) -1 x, Φ(ξ), B (Φ(ξ)) η , one obtains

lim ε→0 (op ε (a ε )f ε , f ε ) = R d-p ×R d-p Tr L 2 (R p ) a W t dΦ(0, θ ) -1 (z, u ), Φ(0, θ ), B(Φ(0, θ ))D z × M 0 (u , θ ) dν 0 (du , dθ ).
Note that the map θ → σ = Φ(0, θ ) is a parametrization of X with associated parametrization of T * X,

(θ , u ) → (σ, v) = Φ(0, θ ), t dΦ(0, θ ) -1 (0, u ) .
Since the Jacobian of this mapping is 1, after a change of variable, we obtain an operator valued measurable family M on T * X and a measure ν on T * X such that

lim ε→0 (op ε (a ε )f , f ) = T * X Tr L 2 (R p ) a W t dΦ(0, θ (σ)) -1 (z, 0) + v, σ, B(σ)D z M (σ, v) dν(dσ, dv).
We now take advantage of the fact that ϕ(Φ(ζ)) = ζ for all ζ ∈ R d in order to write

dϕ(Φ(ζ))dΦ(ζ) = (Id, 0). We deduce ∀z ∈ R p , t dΦ(ζ) t dϕ(Φ(ζ))z = (z, 0), which implies ∀z ∈ R p , t dϕ(Φ(ζ))z = t dΦ(ζ) -1 (z, 0). Therefore, lim ε→0 (op ε (a ε )f , f ) = T * X Tr L 2 (R p ) a W t dϕ(σ)z + v, σ, B(σ)D z M (σ, v) dν(dσ, dv) = T * X Tr L 2 (NσX) (Q a (σ)M (σ, v)) dν(dσ, dv).

Measure structure of the part at infinity. To analyze the part at infinity, we use a cut-off function

χ ∈ C ∞ c (R d ) such that 0 ≤ χ ≤ 1, χ(η) = 1 for |η| ≤ 1 and χ(η) = 0 for |η| ≥ 2, and we write W X,ε f , a = W X,ε f , a R + W X,ε f , a R , with (4.4) a R (x, ξ, η) := a(x, ξ, η)χ η R and a R (x, ξ, η) := a(x, ξ, η) 1 -χ η R .
Observe that a R is compactly supported in all variables. We thus focus on the second part, and more precisely on the quantity

lim sup R→∞ lim sup ε→0 + W X,ε f , a R .
We denote by SΛ the compactified normal bundle to Λ, viewed as a submanifold of R d × R d , the fiber of which is T * σ R d × S σ Λ above σ with S σ Λ being obtained by taking the quotient of N σ Λ by the action of R * + by homotheties. Proposition 4.4. Let (f ε ) be a bounded family of L 2 (R d ). There exists a subsequence ε k and a measure γ on SΛ such that for all a ∈ A,

lim R→∞ lim k→+∞ W X,ε k f ε k , a R = R d ×X×S d-1 a ∞ (x, σ, ω)γ(dx, dσ, dω) + R d ×X c ×S d-1 a ∞ x, ξ, ξ -σ(ξ) |ξ -σ(ξ)| µ(dx, dξ),
where X c denotes the complement of the set X in R d .

Proof. We begin by recalling the arguments that prove the existence of the measure γ, which are the same that the one developed in the vector case in [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF]. Since a = a ∞ for |η| large enough, we have a R = a R ∞ as soon as R is large enough and the quantity lim sup

R→∞ lim sup ε→0 + W X,ε f ε , a R
will only depend on a ∞ . Therefore, by considering a dense subset of C c (T * R d × S d-1 ), we can find a subsequence (ε k ) by a diagonal extraction process such that the following linear form on

C c (T * R d × S d-1 ) is well-defined : a ∞ → lim R→∞ lim k→+∞ W X,ε k f ε k , a R .
We then observe that

∀α, β ∈ N d , ∃C α,β > 0, sup R 2d ∂ α x ∂ β ξ a R ε ≤ C α,β (ε |β| + R -|β| ).
This implies that the symbolic calculus on symbols (a R ) ε is semiclassical with respect to the small parameter √ ε 2 + R -2 . To be precise, one has the following weak Gårding inequality: if a ≥ 0, then, for all κ > 0, there exists a constant C κ such that

W X,ε f ε , a R ≥ -κ + C κ ε + 1 R f ε 2 L 2 (R d ) .
We then conclude that the linear form defined above is positive and defines a positive Radon measure ρ. It remains to compute ρ outside X. In this purpose, we set

a R = a R δ + a R,δ with a R δ (x, ξ, η) = a R (x, ξ, η)(1 -χ) ξ -σ(ξ) δ
and we observe that, by the definition of µ:

lim δ→0 lim R→∞ lim ε→0 W X,ε k f ε k , a R δ = R d ×X c ×S d-1 a ∞ x, ξ, ξ -σ(ξ) |ξ -σ(ξ)| µ(dx, dξ),
which concludes the proof of the existence of the measure γ.

Let us now analyze the geometric properties of this measure. We choose a system of local coordinates of Λ and introduce the matrix B as in (4.3). By Lemma 4.3 and the result of [START_REF] Chabu | Semiclassical analysis of dispersion phenomena[END_REF] for vector spaces: up to a subsequence, there exists a measure

γ 0 on R d × R d-p × S p-1 such that lim δ→0 + lim R→∞ lim ε→0 + W X,ε f , a R,δ = R d ×R d-p ×S p-1 a ∞ t dΦ(0, ξ ) -1 x, Φ(0, ξ ), B (Φ(0, ξ )) ω |B (Φ(0, ξ )) ω| γ 0 (dx, dξ, dω).
The mapping ξ → Φ(0, ξ ) is a parametrization of X and the mapping

(x, ξ) → t dΦ(0, ξ ) -1 x, Φ(0, ξ )
is the associated mapping of T * X R d . Therefore, this relation defines a measure γ on T * X × S p-1 such that (4.5) lim

δ→0 + lim R→∞ lim ε→0 + W X,ε f , a R,δ = T * X×S p-1 a ∞ x, σ, B (σ) ω |B (σ) ω| γ(dx, dξ, dω).
Besides, using that (4.6)

Id = dσ(σ 0 ) + B(σ 0 )dϕ(σ 0 )
for any σ 0 ∈ X, we deduce that for any ζ ∈ T σ 0 R d , we have the decomposition

ζ = dσ(σ 0 )ζ + B(σ 0 )dϕ(σ 0 )ζ, with dσ(σ 0 )ζ ∈ T σ X and B(σ 0 )dϕ(σ 0 )ζ ∈ N σ 0 X.
Now, since dϕ is of rank p, one can write any ω ∈ S p-1 as ω = dϕ(σ 0 )ζ and the points B(σ 0 )ω are in N σ 0 X. By identification of γ in (4.5), we deduce that γ(x, σ, •) is a measure on the set

B (σ) ω |B (σ) ω| , ω ∈ S p-1 = N σ X R * + = S σ X,
which completes the proof of the proposition.

TWO MICROLOCAL WIGNER MEASURES AND FAMILIES OF SOLUTIONS TO DISPERSIVE

EQUATIONS

We now consider families of solutions to equation (2.1). As proved in Proposition 3.4, the Wigner measure of the family (u ε (t, •)) concentrates on the set Λ = {∇λ(ξ) = 0}. In order to analyze µ t above Λ, we perform a second microlocalization above the set X = Λ, with average in time. We consider for θ

∈ L 1 (R) the quantities R θ(t) W Λ,ε u ε (t,•) , a dt for symbols a ∈ A. Up to extracting a subsequence ε k , we construct L ∞ maps t → γ t (dx, dσ, dω), t → ν t (dσ, dv), t → M t (σ, v)
valued respectively on the set of positive Radon measures on R d × Λ × S d-1 , on the set of positive Radon measures on T * Λ and finally on the set of measurable families from T * Λ onto the set of positive trace class operators on L 2 (N Λ), such that for all θ ∈ L 1 (R) and for all a ∈ A:

R θ(t) W Λ,ε k u ε k (t,•) , a dt -→ k→+∞ R R d ×Λ×S d-1 θ(t)a ∞ (x, σ, ω)γ t (dx, dσ, dω)dt + R T * Λ θ(t)Tr L 2 (NσΛ) (Q a (σ, v)M t (σ, v)ν t (dσ, dv)dt.
The measures γ t and ν t , and the map M t satisfy additional properties coming from the fact that the family (u ε (t, •)) solves a time-dependent equation. These properties are discussed in the next two sections. We shall see that the measures γ t are invariant under a linear flow and that we can choose the sequence ε k such that the map t → M t is continuous (and even C 1 ).

5.1.

Transport properties of the compact part. Since Λ is the set of critical points of λ, the matrix d 2 λ is intrinsically defined above points of Λ. Thus, using the formalism of the preceding sections,

Q d 2 λ(σ)η•η = d 2 λ(σ)D z • D z .
Proposition 5.1. The map t → ν t is constant and the map

t → M t (σ, v) ∈ C(R; L 1 + (L 2 (N σ Λ)) solves the Heisenberg equation (2.6). Proof. We analyze for a ∈ C ∞ c (R 3d ) the time evolution of the quantity W Λ,ε u ε (t,•) , a . We have d dt W Λ,ε u ε (t,•) , a = 1 iε 2 ([op ε (a ε ), λ(εD)] u ε (t, •), u ε (t, •))+ 1 i ([op ε (a ε ), V ext ] u ε (t, •) , u ε (t, •))+O(ε).
By standard symbolic calculus for Weyl quantization, we have in

L(L 2 (R d )) 1 iε 2 [op ε (a ε ), λ(εD)] = 1 ε op ε (∇λ(ξ) • ∇ x a ε ) + O(ε).
Besides, by Taylor formula and by use of ∇λ(σ(ξ)) = 0, we have

(5.1) ∇λ(ξ) = d 2 λ(σ(ξ)) (ξ -σ(ξ)) + Γ(ξ) (ξ -σ(ξ)) • (ξ -σ(ξ)) ,
where Γ is a smooth matrix. This yields

1 ε ∇λ(ξ) • ∇ x a ε (x, ξ) = b ε (x, ξ) with b(x, ξ, η) = d 2 λ(σ(ξ))η • ∇ x a(x, ξ, η) + Γ(ξ) (ξ -σ(ξ)) • η∇ x a(x, ξ, η).
At this stage of the proof, we see that d dt W Λ,ε u ε (t,•) , a is uniformly bounded in ε, thus using a suitable version of Ascoli's theorem and a standard diagonal extraction argument, we can find a sequence (ε k ) such that the limit exists for all a ∈ C ∞ c (R 3d ) and all time t ∈ [0, T ] (for some T > 0 fixed) with a limit that is a continuous map in time. The transport equation that we are now going to prove shall guarantee the independence of the limit from T > 0.

We observe that for any local system of equations of Λ, ϕ(ξ) = 0, the operator

Q ϕ b satisfies for (σ, v) ∈ T Λ, Q ϕ b (σ, v) = b W v + t dϕ(σ)z, σ, B(σ)D z = op 1 d 2 λ(σ)B(σ)η • ∇ x a(v + t dϕ(σ)z, σ, B(σ)η) .
On the other hand, we observe that, setting

θ(ξ, η) = 1 2 d 2 λ(ξ)η • η, we have i Q ϕ θ (σ), Q ϕ a (σ, v) = i t B(σ)d 2 λ(σ)B(σ)D z • D z , Q ϕ a (σ, v) = op 1 t dϕ(σ) t B(σ)d 2 λ(σ)B(σ)η • ∇ x a(v + t dϕ(σ)z, σ, B(σ)η) , (5.2) 
and we now focus on the matrix t dϕ(σ) t B(σ)d 2 λ(σ)B(σ), and thus on the properties of the hessian d 2 λ(σ).

For ξ ∈ Λ, the bilinear form d 2 λ(ξ) is defined intrinsically on T ξ R d and d 2 λ(ξ) = 0 on T ξ Λ. We deduce from (4.6) that any ζ ∈ T ξ R d satisfies ζ = dσ(ξ)ζ + B(ξ)dϕ(ξ)ζ with dσ(ξ)ζ ∈ T σ Λ. Therefore, ∀ξ ∈ Λ, d 2 λ(ξ) = d 2 λ(ξ)B(ξ)dϕ(ξ). Taking into account this information, equation (5.2) becomes i Q ϕ θ (σ), Q ϕ a (σ, v) = op 1 d 2 λ(σ)B(σ)η • ∇ x a(v + t dϕ(σ)z, σ, B(σ)η) .
We conclude

Q ϕ b (σ, v) = i Q ϕ θ (σ), Q ϕ a (σ, v) . This implies that i∂ t (M t (σ, v)ν t (dσ, dv)) = 1 2 d 2 λ(σ)D z • D z + m Vext(t,•) (v, σ), M t (σ, v) ν t (dσ, dv).
Taking the trace, we get ∂ t ν t = 0, thus ν t is equal to some constant measure ν and M t satisfies equation (2.6), which proves the proposition.

5.2.

Invariance and localization of the measure at infinity. We are concerned with the property of the L ∞ -map t → γ t (dx, dσ, dω) valued in the set of positive Radon measures on SΛ.

We now define a flow on SΛ by setting for s ∈ R

φ s 2 : (x, σ, ω) → (x + s d 2 λ(σ)ω, σ, ω). Proposition 5.2.
The measure γ t is invariant by the flow φ s 2 . Proof. The proof essentially follows the lines of the proof of Theorem 2.5 in [START_REF] Nalini Anantharaman | Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures[END_REF]. We use the cut-off function χ introduced before and set

a R,δ (x, ξ, η) = a(x, ξ, η) χ ξ -σ(ξ) δ 1 -χ η R ; we introduce the smooth symbol b R,δ s (x, ξ, η) = a R,δ x + sd 2 λ(ξ) η |η| , ξ, η , which satisfies (b R s ) ∞ = a ∞ • φ s 2 . Using equation (5.1), we obtain b R,δ s ε (x, ξ) = a R,δ x + s |ξ -σ(ξ)| ∇λ(ξ), ξ, ξ -σ(ξ) ε + δ r R,δ ε (x, ξ)
where for all multi-index α, β ∈ N d , there exists a constant C α,β > 0 such that r R,δ ε satisfies:

sup x,ξ∈R d ∂ α x ∂ β ξ r R,δ ε ≤ C α,β .
As a consequence, W Λ,ε u ε (t,•) , r R,δ ε is uniformly bounded in R, δ, ε and:

W Λ,ε u ε (t,•) , b R,δ s = W Λ,ε u ε (t,•) , b R,δ s + O(δ),
uniformly with respect to R and ε, with

b R,δ s (x, ξ, η) = a R,δ x + s |ξ -σ(ξ)| ∇λ(ξ), ξ, η .
Note that this symbol is smooth because |ξ -σ(ξ)| > R ε on the support of a R,δ . We are going to prove that for all θ ∈ C ∞ c (R),

lim δ→0 + lim R→∞ lim ε→0 + R θ(t) d ds W Λ,ε u ε (t,•) , b R,δ s dt = 0.
Indeed, by the calculus of the preceding section, we have

d ds W Λ,ε u ε (t,•) , b R,δ s = W Λ,ε u ε (t,•) , ∇λ • ∇ x c R,δ s with c R,δ s (x, ξ, η) = 1 |ξ -σ(ξ)| a R,δ x + s |ξ -σ(ξ)| ∇λ(ξ), ξ, η .
The symbol c R,δ s is such that for all multi-index α ∈ N d , there exists a constant C α > 0 for which:

sup x,ξ∈R d ∂ α x (c R,δ s ) ε ≤ C α (Rε) -1 .
This implies in particular:

op ε ((c R,δ s ) ε ) L(L 2 (R d )) ≤ C Rε .
By symbolic calculus, we have

1 iε op ε ((c R,δ s ) ε ), λ(εD) = op ε ∇λ(ξ) • ∇ x (c R,δ s ) ε + O ε R .
We deduce that for all

θ ∈ C ∞ c (R), R θ(t) d ds W Λ,ε u ε (t,•) , b R,δ s dt = R θ(t) 1 iε op ε ((c R,δ s ) ε ), λ(εD) u ε (t, •) , u ε (t, •) dt + O ε R = R θ(t) 1 iε op ε ((c R,δ s ) ε ), λ(εD) + ε 2 V ext (t, x) u ε (t, •) , u ε (t, •) dt + O 1 R = -ε R θ(t) d dt op ε ((c R,δ s ) ε )u ε (t, •) , u ε (t, •) dt + O 1 R = O(ε) + O 1 R .
As a conclusion,

W Λ,ε u ε (t,•) , b R,δ s = W Λ,ε u ε (t,•) , b R,δ s + O(δ) = W Λ,ε u ε (t,•) , b R,δ 0 + O(|s|ε) + O(|s|R -1 ) + O(δ) = W Λ,ε u ε (t,•) , b R,δ 0 + O(|s|ε) + O(|s|R -1 ) + O(δ),
which implies the Proposition.

5.3. Proofs of Theorems 2.1 and 2.2. Remind that Theorem 2.2 implies Theorem 2.1, thus we focus on Theorem 2.2. We first observe that the measure γ t is zero. Indeed, by H2; for σ ∈ Λ, d 2 λ(σ) is one to one on N σ Λ. Therefore, since γ t is a measure on SΛ, the invariance property of Proposition 5.2 and an argument similar to the one of Lemma 3.6 yields that γ t = 0. As a consequence, the semi-classical measure µ t is only given by the compact part and one has for

any a ∈ C ∞ c (R 2d ) and θ ∈ L 1 (R), R θ(t) R 2d a(x, ξ)µ t (dx, dξ) = R θ(t) T * Λ Tr L 2 (NσΛ) (Q a (σ, v)M t (dσ, dv)) dt.
Then, taking θ = 1 [a,b] for a, b ∈ R, a < b, and in view of Proposition 3.2 and of Lemma 3.3, we deduce that for every every φ ∈ C c (R d ) one has for the subsequence defining M t and ν t :

lim ε→0 b a R d φ(x)|u ε (t, x)| 2 dxdt = b a T * Λ Tr L 2 (N ξ Λ) [Q φ (v, ξ)M t (v, ξ)] ν(dv, dξ)dt,
where M t satisfies (2.6). This concludes the proof of Theorem 2.2. We emphasize that the measure ν and the operator valued family M 0 are utterly determined by the initial data.

BLOCH PROJECTORS AND SEMICLASSICAL MEASURES

In this section we prove Theorem 1.2, as a result of the analysis in Section 4. We shall use properties of the operator of restriction L ε defined in (1.7) and of the projector Π n (εD x ). Then, we prove a priori estimates for solutions of equation (1.6) and use them to reduce the dynamics of our original problem to those of equation (1.13) (Corollary 6.8).

Note that, modulo adding a positive constant to equation (1.2), we may assume that P (εD x ) is a non-negative operator. With this in mind, the following estimates, that will be repeatedly used in what follows, hold. Remark 6.1. There exists a constant c > 0 such that:

c -1 U H s ε (R d ×T d ) ≤ εD x s U L 2 (R d ×T d ) + P (εD x ) s/2 U L 2 (R d ×T d ) ≤ c U H s ε (R d ×T d ) , for every U ∈ L 2 (R d × T d
) and ε > 0, where, as usual, ξ = (1 + |ξ| 2 ) 1/2 and where the sets H s ε have been defined in (1.8). 6.1. High frequency behavior of the operator of restriction to the diagonal and of the Bloch projectors. We first focus on the properties of the operator of restriction to the diagonal L ε and prove its boundedness in appropriate functional spaces. Lemma 6.2. Suppose s > d/2, then the operator

L ε : L 2 (R d x ; H s (T d y )) -→ L 2 (R d ) is uniformly bounded in ε. Moreover, if U ε ∈ L 2 (R d x ; H s (T d y )
) satisfies the estimate: (6.1) lim sup

ε→0 + 1 R (εD x )U ε L 2 (R d ;H s (T d )) -→ R→∞ 0,
where 1 R is the characteristic function of {|ξ| > R}, then the sequence

(L ε U ε ) is bounded in L 2 (R d ) and ε-oscillating. Remark 6.3. Suppose that (U ε ) is bounded in H r ε (R d × T d
) for some r > d/2. Then condition (6.1) is satisfied for every d/2 < s < r. This follows from the bound:

1 R (εD x )U ε L 2 (R d ;H s (T d )) ≤ R s-r U ε H r ε (R d ×T d ) . In particular, if ψ ε 0 satisfies item (3) of Assumptions 1.1, then (ψ ε 0 ) is ε-oscillating. Proof. Let U ε ∈ L 2 (R d x ; H s (T d y )
) and write

U ε (x, y) = k∈Z d U ε k (x)e i2πk•y , and U ε 2 L 2 (R d x ;H s (T d y )) = k∈Z d k 2s U k ε 2 L 2 (R d ) .
Then there exist constants C, C d,s > 0 such that

k∈Z d U ε k L 2 (R d ) ≤ C   k∈Z d |k| 2s U ε k 2 L 2 (R d )   1/2 ≤ C d,s U ε L 2 (R d x ;H s (T d y )) ,
and therefore:

(6.2) L ε U ε L 2 (R d ) ≤ k∈Z d U ε k L 2 (R d ) ≤ C d,s U ε L 2 (R d x ;H s (T d y )) .
Let us now show that, under the hypothesis of the proposition, v ε := L ε U ε defines an εoscillating sequence. Given δ > 0, since s > d/2, there exists N δ > 0 such that

|k|>N δ |k| -2s < δ 2 .
Define:

v ε δ (x) = |k|≤N δ U ε k (x)e i2πk• x ε . Clearly, v ε -v ε δ L 2 (R d ) ≤ δ U ε L 2 (R d x ;H s (T d y )
) . Therefore, it suffices to show that for any δ > 0 the sequence (v ε δ ) is ε-oscillating. The Fourier transform of v ε δ is:

v ε δ (ξ) = |k|≤N δ U ε k ξ - 2πk ε . Therefore, 1 R (εD x )v ε δ L 2 (R d ) ≤ |k|≤N δ 1 R (εD x + 2πk)U ε k L 2 (R d ) .
If R > R 0 for R 0 > 0 large enough, one has 1 R (• + 2πk) ≤ 1 R/2 for every |k| ≤ N δ . This allows us to conclude that for R > R 0 :

1 R (εD x )v ε δ L 2 (R d ) ≤ |k|≤N δ 1 R/2 (εD x )U ε k L 2 (R d ) ≤ C d,s 1 R (εD x )U ε L 2 (R d ;H s (T d ))
and the conclusion follows.

We shall also need information on the derivatives with respect to ξ of the operator Π n (ξ). We recall the formula

Π n (ξ) = - 1 2iπ N j=1 χ j (ξ) C j (P (ξ) -z) -1 dz
where the functions χ j ∈ C ∞ (R d /2πZ d ) form a partition of unity and, for j = 1, ..N , C j is a contour in the complex plane separating n (ξ), for ξ ∈ supp χ j , form the remainder of the spectrum. The existence of such contours is guaranteed by the fact that n (ξ) is of constant multiplicity for all ξ ∈ R d and, thus, is separated from the remainder of the spectrum. As a consequence of this formula, of Lemma 6.1 and of the relation

[Π n (εD x ), P (εD x ) s/2 ] = [Π n (εD x ), εD x s ] = 0,
we deduce the following result.

Lemma 6.4. The map ξ → Π n (ξ) is a smooth bounded map from R d into L(L 2 (T d )). In addition, the operator Π n (εD x ) maps the space H s ε (R d × T d ) into itself.

6.2.

A priori estimates on U ε (t, •). In order to derive the desired properties of ψ ε n (t, x), the solution to (1.13), we need to prove some a priori estimates for the solutions of equation (1.6). We will use them for reducing the analysis of ψ ε (t, •) (the solution to our original problem (1.2)) to that of ψ ε n (t, •). Lemma 6.5. Given s ≥ 0, there exists a constant C s > 0 such that any solution

U ε to (1.6) with initial datum U ε 0 ∈ H s (R d × T d ) satisfies: (6.3) U ε (t, •) H s ε (R d ×T d ) ≤ U ε 0 H s ε (R d ×T d ) + C s ε|t|, uniformly in ε > 0.
Corollary 6.6. Lemma 6.5 and Remark 6.3 imply that for all t ∈ R, the family (ψ ε (t, •)) is ε-oscillating.

Proof. In view of Remark 6.1, we are first going to study the families ( εD x U ε ) and (P (εD x ) 1/2 U ε ).

Start noticing that εD x U ε satisfies the equation (6.4)

iε 2 ∂ t ( εD x U ε ) = P (εD x )( εD x U ε ) + ε 2 V ext εD x U ε -ε 2 [V ext , εD x ]U ε .
As a consequence, using the boundedness of ∇ x V ext on R × R d , we obtain by the symbolic calculus of semiclassical pseudodifferential operators, that the source term can be estimated by:

[V ext (t, •), εD x ]U ε (t, •) L 2 (R d ×T d ) ≤ Cε U ε (t, •) L 2 (R d ×T d ) ,
for some constant C > independent of ε > 0 and t ∈ R. Using standard energy estimates, we deduce the existence of a constant C 1 > 0 such that for all t ∈ R,

εD x U ε (t, •) L 2 (R d ×T d ) ≤ εD x U ε 0 L 2 (R d ×T d ) + C 1 ε|t|.
A completely analogous argument yields the estimate:

P (εD x ) 1/2 U ε (t, •) L 2 (R d ×T d ) ≤ P (εD x ) 1/2 U ε 0 L 2 (R d ×T d ) + C 1 ε|t|. A standard recursive argument gives, for all s ∈ N, the existence of a constant C s > 0 such that for all t ∈ R, εD x s U ε (t, •) L 2 (R d ×T d ) + P (εD x ) s/2 U ε (t, •) L 2 (R d ×T d ) ≤ εD x s U ε 0 L 2 (R d ×T d ) + P (εD x ) s/2 U ε 0 L 2 (R d ×T d ) + C s ε|t|,
and the result follows for any s ∈ R + by interpolation.

We now focus on the case where the initial data U ε 0 belongs to a particular Bloch eigenspace:

U ε 0 = Π n (εD x )U ε 0 . We set U ε (t, •) = Π n (εD x )U ε (t, •).
Note that by Lemma 6.4, for any t ∈ R, the family U ε (t, •) is uniformly bounded in H s ε (R d ×T d ). Lemma 6.7. Assume U ε 0 = Π n (εD x )U ε 0 and consider U ε (t, •) as defined above. Then, for all T > 0, there exists C T > 0 such that

sup t∈[0,T ] U ε (t, •) -U ε (t, •) H s ε (T d ×R d ) ≤ C T ε.
Let us prove now Lemma 6.7.

Proof. Note first that, in view of Remark 6.1, it is enough to prove the uniform boundedness in

L 2 (T d × R d ) of U ε (t, •) -U ε (t, •), P (εD x ) s/2 (U ε (t, •) -U ε (t, •)) and εD x s (U ε (t, •) -U ε (t, •)).
We have

U ε (0, •) = U ε (0, •) and U ε solves (6.5) iε 2 ∂ t U ε (t, x) = P (εD x ) U ε (t, x) + ε 2 V ext (t, x) U ε (t, x) + ε 2 B ε (t)U ε (t, x), with B ε (t) = [Π n (εD x ), V ext (t, •)].
The symbolic calculus of semiclassical pseudodifferential operators implies that:

B ε (t)U ε (t, •) L 2 (R d ×T d ) = O(ε), locally uniformly in t.
As for εD x U ε one has:

iε 2 ∂ t ( εD x U ε ) = P (εD x ) εD x U ε + ε 2 V ext εD x U ε + ε 2 C ε εD x U ε -ε 2 [V ext , εD x ] U ε , with, C ε = [Π n (εD x ), εD x V ext εD x -1 ].
Again, the symbolic calculus gives that C ε (t)

εD x U ε (t, •) L 2 (R d ×T d ) = O(ε) locally uni- formly in t.
Taking into account that εD x U ε satisfies equation (6.4) and is bounded in L 2 (R d × T d ), one concludes that:

εD x (U ε (t, •) -U ε (t, •)) L 2 (R d ×T d ) ≤ Cε|t|.
An analogous reasoning holds for P (εD x ) 1/2 (U ε (t, •) -U ε (t, •)). One concludes using an inductive argument following the lines of the end of the proof of Lemma 6.5.

Analysis of the Bloch component

ψ ε n . By the definition of ψ ε n (t, x), we have ψ ε n (t, •) = L ε U ε (t,
•); and the family is bounded in L 2 (R d ) for all t ∈ R. Moreover, as a corollary of Lemma 6.7, the following holds. Corollary 6.8. Suppose that ψ ε and ψ ε n are the respective solutions of equations (1.2) and (1.13) with the same initial datum L ε U ε 0 , where U ε 0 = Π n (εD x )U ε 0 . Then for every T > 0 there exist C T > 0 such that, uniformly in ε,

sup t∈[0,T ] ψ ε (t, •) -ψ ε n (t, •) L 2 (R d ) ≤ C T ε.
6.5. Some comments on initial data that are a finite superposition of Bloch modes. Our results also apply to initial data that are a finite linear combination of the form: (6.6)

ψ ε 0 = n∈N L ε U ε 0,n
with N a finite subset of N such that for all n ∈ N , P (εD x )U ε 0,n = n (εD x )U ε 0,n , for distinct n of constant multiplicity and U ε 0,n uniformly bounded in H s ε (R d × T d ) for all n ∈ N . where a ε is associated with a according to (4.1). We consider a smooth cut-off function χ which is equal to 1 on the support of a so that we have a(x, ξ)χ(ξ) = a(x, ξ) and we write

(op ε (a ε )f , f ) = (2πε) -d R 3d a ε -x, ξ + ξ 2 e i ε x•(ξ-ξ ) F ε f (ξ )F ε f (ξ)χ(ξ)χ(ξ )dξ dξ dx + O(ε).
The rest term O(ε) comes from Taylor formula close to ξ+ξ 2 , the observation that

(ξ j -ξ j )e i ε x•(ξ-ξ ) = ε i ∂ x j e i ε x•(ξ-ξ ) , 1 ≤ j ≤ d,
and the use of integration by parts in x. Similarly, we just need to consider vectors (ξ, ξ ) which are close to the diagonal and if we introduce a smooth function Θ compactly supported on |ξ| ≤ 1 and equal to 1 close to 0, then for some δ > 0 (that will be chosen small enough later), we have We are left with the integral Note that the functions B ± ε are smooth, bounded and with bounded derivatives, uniformly in ε, as soon as the variables θ and εv are in a compact. We obtain

(op ε (a ε )f , f ) = (2πε) -d R 3d
I ε = (2πε) -d R 3d
I ε = (2π) -d R 3d a ε -x, Φ(θ) + ε 2 2 B + ε (θ, v)[v, v] e ix•(dΦ(θ)v+εB - ε (θ,v)[v,v]) × F ε f Φ θ -ε v 2 F ε f Φ θ + ε v 2 J Φ θ + ε v 2 J Φ θ -ε v 2 dθ dθ dx,
where we have omitted the localization functions in θ + ε v 2 and θ -ε v 2 , which makes that the integral is compactly supported in θ and εv Moreover, we have ε|v| ≤ δ on the domain of integration. We shall crucially use this information later.

The change of variable x = t dΦ(θ) -1 u gives

I ε = (2π) -d R 3d a ε -t dΦ(θ) -1 u, Φ(θ) + ε 2 2 B + ε (θ, v)[v, v] ×e iu•v+iεu• t dΦ(θ) -1 B - ε (θ,v)[v,v] F ε f Φ θ -ε v 2 F ε f Φ θ + ε v 2 × J Φ θ + ε v 2 J Φ θ -ε v 2 J -1 Φ (θ) dθ dθ du,
with the same property on the domain of integration (θ in a compact and ε|v| < δ). Note that a ε -t dΦ(θ) -1 u, Φ(θ) +

ε 2 2 B + ε (θ, v)[v, v]
= a -t dΦ(θ) -1 u, Φ(θ) +

ε 2 2 B + ε (θ, v)[v, v], 1 ε B Φ(θ) + ε 2 2 B + ε (θ, v)[v, v] ϕ Φ(θ) + ε 2 2 B + ε (θ, v)[v, v]
= a -t dΦ(θ) -1 u, Φ(θ), B (Φ(θ))

θ ε + εr ε (2) (θ, u, v)[v, v].
The matrix r

ε is supported in a compact independent of ε in the variables (u, θ). Besides, the matrix r

(2) ε is smooth, bounded, and with bounded derivatives, uniformly in ε, as soon as the variable εv is in a compact, which is the case on the domain of integration of the integral I ε . Using Taylor formula on the Jacobian terms, we write

a ε -t dΦ(θ) -1 u, Φ(θ) + ε 2 2 B + ε (θ, v)[v, v] J Φ θ + ε v 2 J Φ θ -ε v 2
= a -t dΦ(θ) -1 u, Φ(θ), B (Φ(θ)) θ ε J Φ (θ) 2 + εr (2) ε (θ, u, v)[v, v] + εr (1) ε (θ, u, v) • v,

where the vector r

ε is supported in a compact independent of ε in the variables (u, θ) and, as r ε (2) , is smooth, bounded, and with bounded derivatives, uniformly in ε on the domain of integration of the integral I ε (where θ is in a compact and ε|v| ≤ δ, δ to be chosen later).

Denote by U ε the isometry of L 2 (R d ) :

f ε → J Φ (•) d 2 F ε f (Φ (•)) , then (op ε (a ε )f , f ) = (op ε ( a ε ) U ε f , U ε f ) + ε (R ε U ε f , U ε f ) , with a ε (u, θ) = a -t dΦ(θ) -1 u, Φ(θ), B (Φ(θ)) θ ε ,
and where R ε is the operator of kernel

(θ, θ ) → (2πε) -d K ε θ + θ 2 , θ -θ ε , with K ε = K (1) ε + K (2)
ε ,

K (1) ε (θ, v) = R d r (1) ε (θ, u, v) • v + r (2) ε (θ, u, v)[v, v] e iu•v+iεu• t dΦ(θ) -1 B - ε (θ,v)[v,v] du, K (2) ε (θ, v) = R d a ε t dΦ(θ) -1 u, Φ(θ) + ε 2 2 B + ε (θ, v)[v, v] e iu•v × 1 ε e iεu• t dΦ(θ) -1 B - ε (θ,v)[v,v] -1 du.
The proof concludes by Schur lemma and the next result.

Lemma C.1. Let us fix δ small enough. Then, for any j ∈ {1, 2}, there exists a constant C j > 0 such that for all ε > 0,

R d sup θ∈R d |K (j) ε (θ, v)|dv ≤ C j .
Indeed, by this Lemma, we obtain that for all ε > 0

(2πε) -d R d sup θ∈R d K ε θ + θ 2 , θ -θ ε dθ = (2π) -d R d sup θ∈R d |K ε (θ -εv, v) |dv ≤ (2π) -d R d sup θ∈R d |K ε (θ, v) |dv ≤ C 1 + C 2 ,
and similarly

(2πε) -d R d sup θ ∈R d K ε θ + θ 2 , θ -θ ε dθ = (2π) -d R d sup θ ∈R d |K ε θ + εv, v |dv ≤ (2π) -d R d sup θ ∈R d |K ε θ , v |dv ≤ C 1 + C 2 ,
By Schur Lemma, these two inequalities yield the boundedness of R ε uniformly in ε as an operator on L 2 (R d ).

Let us now prove Lemma C.1.

Proposition 6 . 10 .

 610 Assume we turn (3) into(6.6) in the hypothesis of Assumption 1.1 and that item (2) of Assumption 1.1 holds for every n with n ∈ N . Then, there exist a subsequence (ε k ) k∈N , positive measures ν n ∈ M + (T * Λ n ), and measurable families of self-adjoint, positive, trace-class operatorsM 0,n : T * ξ Λ n (v, ξ) -→ M 0,n (v, ξ) ∈ L 1 + (L 2 (N ξ Λ n )), Tr L 2 (N ξ Λn) M 0,n (v, ξ) = 1,such that for for every a < b and φ ∈ C c (R d ) one has:)|ψ ε k (t, x)| 2 dxdt = APPENDIX C. PROOF OF LEMMA 4.3We denote by F ε the semi-classical Fourier transform defined for f ∈ L 2 (R d ) byF ε f (ξ) = (2πε) -d/2 f ξ εand we observe that for a ∈ C ∞ c (R 3d ), (op ε (a ε )f , f ) = (2πε) (ξ-ξ ) F ε f (ξ )F ε f (ξ)dξ dξ dx,

a ε -x, ξ + ξ 2 ×

 2 e i ε x•(ξ-ξ ) F ε f (ξ )F ε f (ξ)Θ ξ -ξ δ χ(ξ)χ(ξ )dξ dξ dx + O(ε).

= θ + ε v 2 and ζ = θ -ε v 2 , 1 0d 2 Φ 1 0d 2 Φ θ + εs v 2 ± Φ θ -εs v 2 ( 1 -

 21212221 (ξ-ξ ) F ε f (ξ )F ε f (ξ)χ(ξ)χ(ξ ) (Φ(ζ)-Φ(ζ )) F ε f (Φ(ζ )) × F ε f (Φ(ζ))J Φ (ζ) J Φ (ζ ) χ • Φ(ζ) χ • Φ(ζ )Θ Φ(ζ) -Φ(ζ ) δ dζ dζ dx where ζ → J Φ (ζ) is the Jacobian of the diffemorphism Φ. Setting ζ we have for t ∈ R, Φ(θ + εtv) = Φ(θ) + εtdΦ(θ)v + ε 2 (θ + εtsv)[v, v](1 -s)ds, v)[v, v], Φ(ζ) -Φ(ζ ) = εdΦ(θ)v + ε 2 B - ε (θ, v)[v, v], with B ± ε (θ, v) = s)ds.
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The proof is a direct consequence of Lemma 6.7, since Lemma 6.2 ensures that

.

We now conclude our analysis of the Bloch component ψ ε n (t, •). The following result gathers the remaining information that we will need in order to conclude, together with Corollary 6.8, the proof of Theorem 1.2. Proposition 6.9. The family ψ ε n solves equation (1.13)

Proof. Let us first prove that ψ ε n solves (1.13). We denote by J the set of the indexes of the Bloch eigenfunctions ϕ j (•, ξ) which form an orthonormal basis of Ran Π n (ξ). Define for j ∈ J,

and notice that:

Since U ε solves (6.5) and P (ξ)ϕ j (•, ξ) = n (ξ)ϕ j (•, ξ) for all ξ ∈ R d , the family u ε j solves:

, where:

Since n (ξ) is 2πZ d -periodic, it is easy to check that:

Summing the relations over j ∈ J, this implies (1.13) with

. Now, Lemma 6.2 and the symbolic calculus of pseudodifferential operators gives, for any t ∈ R:

which concludes the proof.

6.4. Proofs of Theorems 1.2. The proof of Theorem 1.2 (which implies Corollary 1.4) easily follows from our results so far.

Proof. By Corollary 6.6, the family (ψ ε (t, •)) is ε-oscillating. Therefore, the weak limits of |ψ ε (t, x)| 2 dx are the projection on R d x of the Wigner measures associated with (ψ ε (t, •)). By Corollary 6.8, the Wigner measures of (ψ ε (t, •)) coincide with those of (ψ ε n (t, •)). Finally, Proposition 6.9 allows us to use the results of Theorem 2.1 for determining the Wigner measure of (ψ ε n (t, •)). [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF] with initial data M 0,n associated with the concentration of ψ ε 0 on Λ n .

Proof. We associate to any n ∈ N their respective Bloch components ψ ε n (t, •) of ψ ε (t, •) as we previously did. We juste have to prove that for all n, n ∈

which implies that the Wigner measure of n∈N ψ ε n is the sum of the Wigner measures of the

APPENDIX A. SEMICLASSICAL PSEUDODIFFERENTIAL OPERATORS

In this appendix we recall a few basic notions on the theory of pseudodifferential operators that we use trough this article. The reader can consult the references [START_REF] Alinhac | Pseudo-differential operators and the Nash-Moser theorem[END_REF][START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Fermanian-Kammerer | Opérateurs pseudo-différentiels semi-classiques[END_REF][START_REF] Martinez | An introduction to semiclassical and microlocal analysis[END_REF][START_REF] Zworski | Semiclassical analysis[END_REF] for additional background and for proofs of the results that follow.

Recall that given a function a ∈ C ∞ (R d × R d ) that is bounded together with its derivatives (we denote the space of all such functions by S), one defines the semiclassical pseudodifferential operator of symbol a obtained through the Weyl quantization rule to be the operator op ε (a) that acts on functions f ∈ S(R d ) by:

These operators are bounded in L 2 (R d ). The Calderón-Vaillancourt theorem [START_REF] Calderón | On the boundedness of pseudo-differential operators[END_REF] ensures the existence of a constant C d > 0 such that for every a ∈ S one has

where

for some J 0 ∈ N depending only on d. We make use repeatedly of the following result, known as the symbolic calculus for pseudodifferential operators.

for some constant C > 0 independent of a, b and ε.

APPENDIX B. TRACE OPERATOR-VALUED MEASURES

In this appendix we recall general considerations on operator-valued measures. Let X be a complete metric space and (Y, σ) a measure space; write H := L 2 (Y, σ) and denote by L 1 (H), K(H) and L(H) the spaces of trace-class, compact and bounded operators on H respectively. A trace-operator valued Radon measure on X is a linear functional:

satisfying the following boundedness condition. For every compact K ⊂ X there exist a constant C K > 0 such that:

Such an operator-valued measure is positive if for every φ ≥ 0, M (φ) is an Hermitian positive operator. Let M be a positive trace operator-valued measure on X, denote by ν ∈ M + (X) the positive real measure defined by:

The Radon-Nikodym theorem for operator valued measures (see, for instance, the appendix in [START_REF] Gérard | Microlocal defect measures[END_REF]) ensures the existence of a ν-locally integrable function:

Note that this formula implies that M can be identified to a positive element of the dual of C 0 (X; K(H)) via:

It can be also shown that every such positive functional arises in this way. Let (e j (x)) j∈N denote an orthonormal basis of H consisting of eigenfunctions of Q(x):

Clearly, both j and e j , j ∈ N, are locally ν-integrable and

where, as usual, |e j (x) e j (x)| denotes the orthogonal projection in H onto e j (x). Moreover, as a consequence of the monotone convergence theorem, the following result easily follows.

Lemma B.1. Let M be a positive trace operator-valued measure on X. Then there exist a non-negative function ρ ∈ L 1 loc (X, ν; L 1 (Y, σ)) such that, for every a ∈ C 0 (X; L ∞ (Y, σ)) one has:

where m a (x) denotes the operator acting on H by multiplication by a(x, •). The density ρ is given by:

Proof. Note first that the functions K (j) ε are compactly supported in the variable θ, uniformly in ε. We are going to prove that for any N > 0, there exists a constant C N,j such that, for |v| > 1,

ε (θ, v) ≤ C N,j . These inequalities are enough to conclude as in the lemma. For proving these inequalities, we crucially use that the domain of integration in u is compact and we shall gain the decrease in v by using the oscillations inside the integral.

Let us first focus on K

and, for |v| > 1, integration by parts give

ε and r

ε have smooth compactly supported derivatives in u, uniformly bounded in ε, we obtain the existence of a constant C N,1 such that |K (1) ε (θ, v)| ≤ |v| -2N C N,1 .

Let us now study K

ε that we turn into

× e iu•v+itεu• t dΦ(θ) -1 B - ε (θ,v) [v,v] dudt.

Once written on this form, one can see that the arguments developed for K

ε apply again since the function

is compactly supported in the variable u, smooth and bounded with derivatives that are bounded uniformly in ε.