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WIGNER MEASURES AND EFFECTIVE MASS THEOREMS

VICTOR CHABU, CLOTILDE FERMANIAN-KAMMERER, AND FABRICIO MACIÀ

ABSTRACT. We study a Schrödinger equation which describes the dynamics of an electron in a
crystal in the presence of impurities. We consider the regime of small wave-lengths comparable
to the characteristic scale of the crystal. It is well-known that under suitable assumptions on the
initial data and for highly oscillating potentials, the wave function can be approximated by the
solution of a simpler equation, the effective mass equation. Using Floquet-Bloch decomposition,
as it is classical in this subject, we establish effective mass equations in a rather general setting.
In particular, Bloch bands are allowed to have degenerate critical points, as may occur in dimen-
sion strictly larger than one. Our analysis leads to a new type of effective mass equations which
are operator-valued and of Heisenberg form and relies on Wigner measure theory and, more pre-
cisely, to its applications to the analysis of dispersion effects.

Keywords: Bloch modes, semi-classical analysis on manifolds, Wigner measures, two-microlocal
measures, Effective mass theory.

1. INTRODUCTION

1.1. The dynamics of an electron in a crystal and the effective mass equation. The dynamics
of an electron in a crystal in the presence of impurities is described by a wave function Ψ(t, x)
that solves the Schrödinger equation:

(1.1)

 i~∂tΨ(t, x) +
~2

2m
∆xΨ(t, x)−Qper (x) Ψ(t, x)−Qext(t, x)Ψ(t, x) = 0,

Ψ|t=0 = Ψ0.

The potential Qper is periodic with respect to some lattice in Rd and describes the interactions
between the electron and the crystal. The external potential Qext takes into account the effects
of impurities on the otherwise perfect crystal. Here ~ denotes the Planck constant and m is the
mass of the electrons. In many cases of physical interest, the ratio ε between the mean spacing of
the lattice and the characteristic length scale of variation of Qext is very small. After performing
a suitable change of units, and rescaling the external potential and the wave function (see for
instance [47]) the Schrödinger equation becomes:

(1.2)

 i∂tψ
ε(t, x) +

1

2
∆xψ

ε(t, x)− 1

ε2
Vper

(x
ε

)
ψε(t, x)− Vext(t, x)ψε(t, x) = 0,

ψε|t=0 = ψε0.

The potential Vper is periodic with respect to a fixed lattice in Rd, which, for the sake of defi-
niteness will be assumed to be Zd.
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Effective Mass Theory consists in showing that, under suitable assumptions on the initial data
ψε0, the solutions of (1.2) can be approximated for ε small by those of a simpler Schrödinger
equation, the effective mass equation, which is of the form:

(1.3) i∂tφ(t, x) +
1

2
〈BDx, Dx〉φ(t, x)− Vext(t, x)φ(t, x) = 0,

where, as usual, Dx = 1
i ∂x. The approximation has to be understood in the sense that any weak

limit of the density |ψε(t, x)|2dxdt is the density |φ(t, x)|2dxdt as ε goes to 0. In equation (1.3),
B is a d× d matrix called the effective mass tensor; it generates the effective Hamiltonian

Heff(x, ξ) =
1

2
Bξ · ξ + Vext(t, x).

The effective mass tensor is an experimentally accessible quantity that can be used to study
the effect of the impurities on the dynamics of the electrons. Both the question of finding those
initial conditions for which the corresponding solutions of (1.2) converge (in a suitable sense)
to solutions to the effective mass equation and that of clarifying the dependence of B on the
sequence of initial data have been extensively studied in the literature [11, 47, 3, 30, 9]. The ef-
fective mass tensor is related to the critical points of the Bloch modes. These are the eigenvalues
of the operator P (ξ) on L2(Td) which is canonically associated with the equation (1.2),

(1.4) P (ξ) =
1

2
|ξ − i∇y|2 + Vper(y), y ∈ Td, ξ ∈ Rd.

We focus here on initial data which are structurally related with one of the Blochs modes in a
sense that we will make precise later; we assume that this Bloch mode is of constant multiplicity
and we introduce a new method for deriving rigorously equation (1.3). The advantage of this
method is that it allows to treat the case where the critical points of the considered Bloch modes
are degenerate, leading to the introduction of a new family of Effective mass equations which
are of Heisenberg type. Our strategy is based on the analysis of the dispersion of PDEs by a
Wigner measure approach which has led us to develop global two microlocal Wigner measures
in this specific context, while they are only defined locally in general ([19, 20]).

Note that different scaling limits for equation (1.1) have been studied in the literature: the
interested reader can consult, among many others, references [25, 28, 47, 31, 10, 2, 14, 46, 16].

1.2. Floquet-Bloch decomposition. The analysis of Schrödinger operators with periodic po-
tentials has a long history that has its origins in the seminal works by Floquet [22] on ordinary
differential equations with periodic coefficients, and by Bloch [12], who developed a spectral
theory of periodic Schrödinger operators in the context of solid state physics. Floquet-Bloch
theory can be used to study the spectrum of the perturbed periodic Schrödinger operator:

−ε
2

2
∆x + Vper

(x
ε

)
+ ε2Vext(t, x),

see for instance [48, 32, 33, 34] and the references therein, and [45, 24, 30] for results in the
semiclassical context. The Floquet-Bloch decomposition gives as a result that the corresponding
Schrödinger evolution can be decoupled in an infinite family of dispersive-type equations for
the so-called Bloch modes. We briefly recall the basic facts that we shall need by following the
approach in [24, 25].
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The Floquet-Bloch decomposition is based on assuming that the solutions to (1.2) depend on
both the “slow” x and the “fast” x/ε variables. The fast variables should moreover respect the
symmetries of the lattice. This leads to the following Ansatz on the form of the solutions ψε

of (1.2):

(1.5) ψε(t, x) = U ε
(
t, x,

x

ε

)
,

where U ε(t, x, y) is assumed to be Zd-periodic with respect to the variable y (and, therefore, that
it can be identified to a function defined on R × Rd × Td, where Td denotes the torus Rd/Zd).
The function U ε then satisfies the equation:

(1.6)

{
iε2∂tU

ε(t, x, y) = P (εDx)U ε(t, x, y) + ε2Vext(t, x)U ε(t, x, y),

U ε|t=0 = U ε0 (x, y), such that ψε0 = LεU ε0 ,

where the operator Lε maps functions F defined on Rd × Td on functions on Rd according to:

(1.7) LεF (x) := F
(
x,
x

ε

)
,

and P (εDx) denotes the operator-valued Fourier multiplier associated with the symbol ξ 7→
P (εξ) defined in (1.4). The initial condition in (1.6) can be interpreted in terms of the natural
embedding L2(Rdx) ↪→ L2(Rdx × Tdy) by taking U ε0 (x, y) = ψε0(x) ⊗ 1(y). One can also have
more elaborated identifications depending on the structure of the initial data, as we shall see
later. Identity (1.5) makes sense, since one can check that, under suitable assumptions on the
initial datum, U ε(t, x, ·) has enough regularity with respect to the variable y (the fact that ψε

must be given by (1.5) following from the uniqueness of solutions to the initial value problem
(1.2)).

Assuming that the function y 7→ Vper(y) is smooth is enough for proving that the operator
P (ξ) is self-adjoint on L2(Td) (with domainH2(Rd)) and has a compact resolvent. For the sake
of simplicity, we shall make here this assumption, even though it can be relaxed into assuming
Vper ∈ Lp(Td) for some convenient set of indices p which authorizes Coulombian singularity
in dimension 3 (see [35]). As a consequence of the fact that P (ξ) has compact resolvent, there
exist a non-decreasing sequence of eigenvalues (the so-called Bloch energies):

%1(ξ) ≤ %2(ξ) ≤ · · · ≤ %n(ξ) ≤ · · · −→ +∞,

and an orthonormal basis of L2(Td) consisting of eigenfunctions (ϕn(ξ, ·))n∈N (called Bloch
waves):

P (ξ)ϕn(y, ξ) = %n(ξ)ϕn(y, ξ), for y ∈ Td.
Moreover, the Bloch energies %n(ξ) are 2πZd-periodic whereas the Bloch waves satisfy

ϕn(y, ξ + 2πk) = e−i2πk·yϕn(y, ξ), for every k ∈ Zd.

This follows from the fact that for every k ∈ Zd, the operator P (ξ+ 2πk) is unitarily equivalent
to P (ξ) since P (ξ+ 2πk) = e−i2πk·yP (ξ)ei2πk·y. It is proved in [49] that the Bloch energies %n
are continuous and piecewise analytic functions of ξ ∈ Rd. Actually, the set {(ξ, %n(ξ)), n ∈
N, ξ ∈ Rd} is an analytic set of R2d. Moreover, if the multiplicity of the eigenvalue %n(ξ) is
equal to the same constant for all ξ ∈ Rd, then %n and the eigenprojector Πn on this mode are
globally analytic functions of ξ. The reader can refer to [34] for a survey on the subject.
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Observing that, via the decomposition in Fourier series, any function U ∈ L2(Rdx × Tdy) can
be written as:

U(x, y) =
∑
k∈Zd

Uk(x)ei2πk·y with ‖U‖2L2(Rd×Td) =
∑
k∈Zd
‖Uk‖2L2(Rd),

we denote by Hs
ε (Rd × Td), for s ≥ 0, the Sobolev space consisting of those functions U ∈

L2(Rd × Td) such that there exists C > 0 and:

(1.8) ∀ε > 0, ‖U‖2Hs
ε (Rd×Td) :=

∑
k∈Zd

∫
Rd

(1 + |εξ|2 + |k|2)s|Ûk(ξ)|2dξ ≤ C,

where Ûk(ξ) =

∫
Rd

e−ix·ξUk(x)dx.

1.3. Main result. We consider the following set of assumptions.

Assumption 1.1. (1) Assume Vper is smooth and real-valued and that Vext is a continuous
function in time taking values in the set of smooth, real-valued, bounded functions onRd
with bounded derivatives.

(2) Assume that %n is a Bloch mode of constant multiplicity and that the set of critical points
of %n

Λn := {ξ ∈ Rd, ∇%n(ξ) = 0}
is a submanifold of Rd.

(3) Assume that the Hessian d2%n(ξ) is of maximal rank above each point ξ ∈ Λn (or
equivalently that Ker d2%n(ξ) = TξΛn for all ξ ∈ Λn).

(4) Assume that the initial data ψε0(x) satisfies

ψε0(x) = U ε0

(
x,
x

ε

)
with Û ε0 (ξ, ·) ∈ Ran Πn(εξ),

with U ε0 uniformly bounded in Hs
ε (Rd × Td) for some s > d/2.

It will be convenient to identify %n to a function defined on (Rd)∗ rather than Rd (via the
standard identification given by duality). Then we define the cotangent bundle of Λn as the
union of all cotangent spaces to Λn

(1.9) T ∗Λn := {(x, ξ) ∈ Rd × Λn : x ∈ T ∗ξ Λn},

each fibre T ∗ξ Λn is the dual space of the tangent space TξΛn. Note that this is well-defined, since
T ∗ξ Λn ⊂ (Rd)∗∗ = Rd. We shall denote by M+(T ∗Λn) the set of positive Radon measures
on T ∗Λn. We also define the normal bundle of Λn which is the union of those linear subspaces
of Rd that are normal to Λn:

(1.10) NΛn := {(z, ξ) ∈ Rd × Λn : z ∈ NξΛn},

where NξΛn consists of those x ∈ (Rd)∗∗ = Rd that annihilate TξΛn. Every point x ∈ Rd
can be uniquely written as x = v + z, where v ∈ T ∗ξ Λn and z ∈ NξΛn. Given a function
φ ∈ L∞(Rd) we write mφ(v, ξ), where v ∈ T ∗ξ Λn, to denote the operator acting on L2(NξΛn)

by multiplication by φ(v + ·). Note that assumption (3) implies that the Hessian of %n defines
an operator d2%n(ξ)Dz ·Dz acting on L2(NξΛn) for any ξ ∈ Λn.
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In the statement below, the weak limit of the energy density are described by means of a time-
dependent family Mn of trace-class operators acting on a certain L2-space. More precisely,
the operators Mn depend on t ∈ R and on ξ ∈ Λn, v ∈ T ∗ξ Λn; for every choice of these
parameters, Mn(t, v, ξ) is a trace-class operator acting on L2 functions of the vector space NξΛ.
Note that Mn(t, ·) can also be viewed as a section of a vector bundle over T ∗Λn, namely:⊔

(v,ξ)∈T ∗Λ L1
+

(
L2(NξΛn)

)
.

Theorem 1.2. Assume the hypotheses of Assumption 1.1. Then, there exist a subsequence
(εk)k∈N, a positive measure νn ∈M+(T ∗Λn), and a measurable family of self-adjoint, positive,
trace-class operator

M0,n : T ∗ξ Λn 3 (v, ξ) 7−→M0,n(v, ξ) ∈ L1
+(L2(NξΛn)), TrL2(NξΛn)M0,n(v, ξ) = 1,

such that for every for every a < b and every φ ∈ Cc(Rd) one has:

lim
k→∞

∫ b

a

∫
Rd
φ(x)|ψεk(t, x)|2dxdt =

∫ b

a

∫
T ∗Λn

TrL2(NξΛn) [mφ(v, ξ)Mn(t, v, ξ)] νn(dv, dξ)dt,

where Mn(·, v, ξ) ∈ C(R;L1
+(L2(NξΛn)) solves the Heisenberg equation:

(1.11)

 i∂tMn(t, v, ξ) +

[
1

2
d2%n(ξ)Dz ·Dz +mVext(t, · )(v, ξ),Mn(t, v, ξ)

]
= 0,

Mn|t=0 = M0,n.

Remark 1.3. We point out that the measure νn and the family of operators M0,n only depend on
the subsequence ψεk0 of initial data. The way of computing them will be made clear in Section 5.

When the critical points of %n(ξ) are all non degenerate, then Λn is discrete and 2πZd-
periodic, T ∗Λn = Λn × {0} and NΛn = Rd. We then have the following corollary.

Corollary 1.4. Assume we have Assumption 1.1 and that the critical points of %n(ξ) are all non
degenerate. Then the measure νn and the operator Mn of Theorem 1.2 above satisfy:

(1) The operatorMn(t, ξ) is the orthogonal projection on ψξ which solves the effective mass
equation:

(1.12) i∂tψξ(t, x) =
1

2
d2%n(ξ)Dx ·Dxψξ(t, x) + Vext(t, x)ψξ(t, x),

with initial data:

ψξ|t=0 is the weak limit in L2(Rd) of the sequence
(

e
− i
εk
ξ·x
ψεk0

)
.

(2) The measure νn is given by

νn =
∑
ξ∈Λn

αξδξ, αξ = ‖ψξ|t=0‖L2(Rd).

This corollary is well known and we refer to the work by Allaire and Piatnitski [3] or to [2]
for similar results in a related problem; in that work homogenization and two-scale convergence
techniques are used to obtain a precise description of the solution profile for data similar to ours
and for Blochs mode having non-degenerated critical points. In [9], Barletti and Ben Abdal-
lah obtained a result similar to Corollary 1.4 by following the approach initiated by Kohn and
Luttinger in [37] consisting in introducing a (non-canonical) basis of modified Bloch functions.
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The starting point in our approach is conceptually closer to that in [47], in the sense that
we analyse the structure of Wigner measures associated to sequences of solutions. The main
novelty here is the use of two-microlocal Wigner measures, that give a more explicit geometric
description of the mechanism that underlies the Effective Mass Approximation, showing that it
is a result of the dispersive effects associated to high-frequency solutions to the semiclassical
Bloch band equations. Moreover, we are able to deal with the presence of non-isolated critical
points on the Bloch energies and to prove Theorem 1.2. We believe our approach is sufficiently
robust to be implemented on a Bloch band, isolated from the remainder of the spectrum, and
consisting of several Bloch modes which may present crossings. We will devote further works
to this specific problem. It is also interesting to notice that our result generalizes to initial
data which are a finite sum of data satisfying (4) of Assumption 1.1. The weak limit of the
energy density associated with the solution corresponding to this new data is the sum of weak
limits of the energy densities of the solution associated with each term of the data, without any
interference (see section 6.5 for a precise statement).

1.4. Strategy of the proof. The proof of Theorem 1.2 relies on the analysis of the solution U ε

to equation (1.6) with initial data U ε0 as introduced in (4) of Assumption 1.1, and more precisely
on its component U εn on the n-th Bloch mode and its restriction ψεn by Lε:

U εn = Πn(εDx)U ε, ψεn = LεU εn.

It is shown in Section 6.3 that the family (ψεn) solves the equation

(1.13)

{
iε2∂tψ

ε
n(t, x)− %n(εDx)ψεn(t, x)− ε2Vext(t, x)ψεn(t, x) = ε2f εn(t, x),

ψεn|t=0(x) = ψε0(x)

with
f εn = Lε [Π(εDx), Vext]U

ε,

There, we prove that

(1.14) ∀T ∈ R, ∃CT > 0, sup
t∈[0,T ]

‖ψε(t, · )− ψεn(t, · )‖L2(Rd) ≤ CT ε.

and

(1.15) ∃C > 0, ∀t ∈ R, ‖f εn(t, · )‖L2(Rd) ≤ Cε.

Equation (1.14) shows that no other Bloch modes is concerned in the decomposition of U ε

and ψε: the mass of ψε remains above the specific mode %n because it is separated from the
other ones. Therefore, a crucial step in this strategy consists in performing a detailed analysis of
the dispersive equation (1.13).

1.5. Structure of the article. Sections 2 to 5 are devoted to the analysis of a dispersive equa-
tion of the form (1.13) in a more general setting. For this, we use pseudodifferential operators
and semi-classical measures (Section 3) and we introduce two-microlocal tools (Section 4) that
allow us to prove the main results of Section 2 in Section 5. Finally, in Section 6 we come
back to the effective mass equations and prove Theorem 1.2 , which requires additional results
on the restriction operator Lε, the projector Πn(ξ) and energy estimates for solutions to (1.6).
Some Appendices are devoted to basic results about pseudodifferential calculus and trace-class
operator-valued measures, and to the proof of technical lemmata.
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2. QUANTIFYING THE LACK OF DISPERSION

As emphasized in the introduction, understanding the limiting behavior as ε → 0 of the
position densities of solutions to the Schrödinger equation (1.2) relies on a careful analysis of
the solutions of equations of the form:
(2.1){

iε2∂tu
ε(t, x) = λ(εDx)uε(t, x) + ε2Vext(t, x)uε(t, x) + ε3gε(t, x), (t, x) ∈ R× Rd,

uε|t=0 = uε0,

where (gε(t, ·)) is locally uniformly bounded with respect to t in L2(Rd).

This equation ceases to be dispersive as soon as λ(ξ) has critical points ξ 6= 0, and this is
always the case if λ is a Bloch energy. Heuristically, one can think that one of the consequences
of a dispersive time evolution is a regularization of the high-frequency effects (that is associated
to frequencies εξ = c 6= 0) caused by the sequence of initial data. These heuristics have been
made precise in many cases; a presentation of our results from this point of view can be found
in [15]. The reader can also find there a detailed account on the literature on the subject.

Here we show that, in the presence of critical points of λ, some of the high-frequency ef-
fects exhibited by the sequence of initial data persist after applying the time evolution (2.1).
We provide a quantitative picture of this persistence by giving a complete description of the
asymptotic behavior of the densities |uε(t, x)|2dxdt associated to a bounded sequence (uε) of
solutions to (2.1). We give an explicit procedure to compute all weak-? accumulation points of
the sequence of positive measures (|uε(t, x)|2dxdt) in terms of quantities that can be obtained
from the sequence of initial data (uε0). These results are of independent interest; we have thus
chosen to present them in a more general framework than what it is necessary in our applications
to Effective Mass Theory.

In order to obtain a non trivial result we must make sure that the characteristic length-scale
of the oscillations carried by the sequence of initial data is of the order of ε. The following
assumption is sufficient for our purposes:

H0 The sequence (uε0) is uniformly bounded in L2(Rd) and ε-oscillating, in the sense that
its energy is concentrated on frequencies smaller or equal than 1/ε :

(2.2) lim sup
ε→0+

∫
|ξ|>R/ε

|ûε0(ξ)|2dξ −→
R→+∞

0.

We shall assume that λ is smooth and grows at most polynomially, and that its set of critical
points is a submanifold of Rd. More precisely, we impose the following hypotheses on λ and V :

H1 Vext ∈ C∞(R×Rd) is bounded together with its derivatives and λ ∈ C∞(Rd) , together
with its derivatives, grows at most polynomially; i.e. there exists N > 0 such that, for
every α ∈ Nd+, one has:

sup
ξ∈Rd
|∂αξ λ(ξ)|(1 + |ξ|N )−1 <∞.

H2 The set
Λ :=

{
ξ ∈ Rd : ∇λ(ξ) = 0

}
is a connected, closed embedded submanifold of Rd of codimension 0 < p ≤ d and the
Hessian d2λ is of maximal rank over Λ.
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Hypothesis H2 implies the existence of tubular coordinates in a neighborhood of Λ. A
stronger version of H2 is to suppose that all critical points of λ are non-degenerate (that is,
the Hessian of λ, d2λ(ξ) is a non-degenerate quadratic form for every ξ ∈ Λ). This implies
that p = d and Λ is a discrete set in Rd; if moreover one has that λ is Zd-periodic, which is the
situation when λ is a Bloch energy, this set is finite modulo Zd. We first state the main result of
this section under this stronger hypothesis.

Theorem 2.1. Suppose that the sequence of initial data (uε0) verifies H0, denote by (uε) the
corresponding sequence of solutions to (2.1). Suppose in addition that H1 is satisfied and all
critical points of λ are non-degenerate. Then there exists a subsequence (uεk0 ) such that for
every a < b and every φ ∈ Cc(Rd) the following holds:

(2.3) lim
k→∞

∫ b

a

∫
Rd
φ(x)|uεk(t, x)|2dxdt =

∑
ξ∈Λ

∫ b

a

∫
Rd
φ(x)|uξ(t, x)|2dxdt,

where uξ solves the following Schrödinger equation:

(2.4) i∂tuξ(t, x) = d2λ(ξ)Dx ·Dxuξ(t, x) + Vext(t, x)uξ(t, x),

with initial data:

uξ|t=0 is the weak limit in L2(Rd) of the sequence
(

e
− i
εk
ξ·x
uεk0

)
.

If Λ = ∅ then the right-hand side of (2.3) is equal to zero.

Note that uξ may be identically equal to zero even if the sequence (uε0) oscillates in the
direction ξ. For instance, if the sequence of initial data is a coherent state:

uε0(x) =
1

εd/4
ρ

(
x− x0√

ε

)
e
i
ε
ξ0·x,

centered at a point (x0, ξ0) in phase space with ρ ∈ C0(Rd), then uξ|t=0 = 0 for every ξ ∈ Rd.
Theorem (2.1) allows us to conclude that the corresponding solutions (uε) converge to zero in
L2

loc(R× Rd).

Theorem 2.1 can be interpreted as a description of the obstructions to the validity of smoothing-
type estimates for the solutions to equation (2.1) in the presence of critical points of the symbol
of the Fourier multiplier. We refer the reader to [15] for additional details concerning this issue
and a simple proof of Theorem 2.1. Here, we obtain Theorem 2.1 as a particular case of a more
general result which requires some geometric preliminaries.

As for the mode Bloch %n in the Introduction, we identify λ to a function defined on (Rd)∗
rather than Rd, and we associate with Λ its cotangent bundle T ∗Λ and its normal bundle NΛ. In
the analogue of Theorem 2.1 in this context, the sum over critical points is replaced by an integral
with respect to a measure over T ∗Λ, and the Schrödinger equation (2.4) becomes a Heisenberg
equation for a time-dependent family M of trace-class operators of

⊔
(v,ξ)∈T ∗Λ L1

+

(
L2(NξΛ)

)
.

Theorem 2.2. Let (uε0) be a sequence of initial data satisfying H0, and denote by (uε) the
corresponding sequence of solutions to (2.1). If H1 and H2 hold, then there exist a subsequence
(uεk0 ), a positive measure ν ∈ M+(T ∗Λ) and a measurable family of self-adjoint, positive,
trace-class operators

M0 : T ∗ξ Λ 3 (v, ξ) 7−→M0(z, ξ) ∈ L1
+(L2(NξΛ)), TrL2(NξΛ)M0(v, ξ) = 1,
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such that for every a < b and every φ ∈ Cc(Rd) one has:
(2.5)

lim
k→∞

∫ b

a

∫
Rd
φ(x)|uεk(t, x)|2dxdt =

∫ b

a

∫
T ∗Λ

TrL2(NξΛ) [mφ(v, ξ)Mt(v, ξ)] ν(dv, dξ)dt,

where t 7→Mt(v, ξ) ∈ C(R;L1
+(L2(NξΛ)) solves the following Heisenberg equation:

(2.6)

 i∂tMt(v, ξ) =

[
1

2
d2λ(ξ)Dz ·Dz +mVext(t,·)(v, ξ),Mt(v, ξ)

]
,

M |t=0 = M0.

Remark 2.3. When hypothesis H2 about the rank of the Hessian d2λ is dropped, then an addi-
tional term appears in (2.5) (see [15]).

When Λ consists of a set of isolated critical points, Theorems 2.1 and 2.2 are completely
equivalent. Note that in this case, T ∗Λ = {0} × Λ and the measure ν (which in this case is a
measure depending on ξ ∈ Rd only) is simply

ν =
∑
ξ∈Λ

αξδξ,

where αξ = ‖uξ|t=0‖2L2(Rd)
. In addition, NξΛ = Rd and the operator Mt(ξ) (which again

does not depend on z) is the orthogonal projection onto uξ(t, ·) in L2(Rd) (recall that uξ solves
the Schrödinger equation (1.12)). These orthogonal projections satisfy the Heisenberg equation
(2.6).

The proof of Theorem 2.2 follows a strategy developed in the references [39, 6, 4] in a differ-
ent (though related) context. As in those references, the measure ν and the family of operators
M0 only depend on the subsequence of initial data (uεk0 ); we will see in Section 3 that they
are defined as two microlocal Wigner measures of (uεk0 ) in the sense of [18, 19, 20, 39]. At
this point, it might be useful to stress out that in this regime the limiting objects M,ν cannot
be computed in terms of the Wigner/semiclassical measure of the sequence of initial data, as it
is the case when dealing with the semiclassical limit. In [15], we have explicitly constructed
sequences of initial data having the same semiclassical measure but such that their time depen-
dent measures differ. This type of behavior was first remarked in this context in the case of the
Schrödinger equation on the torus, see [38, 39].

We also emphasize that the original definition of two-microlocal Wigner measures performed
in [19] and their extension to more general geometric setting [20] were only defined locally. We
prove here that they extend to global objects in the geometric context of closed simply connected
embedded submanifolds of Rd; related constructions were performed in the torus [39, 6, 4, 43]
and the disk [5].

See also, that as soon as Λ has strictly positive dimension (i.e. it is not a union of isolated
critical points), the measure ν may be singular with respect to the z variable, while when Λ con-
sists in isolated points, the weak limit of the densities |ψε(t, x)|2dx are proved to be absolutely
continuous with respect to the measure dx. See [15] for specific examples exhibiting this type
of behavior; see also that reference for examples proving the necessity of hypothesis H2; it is
shown there that different types of behavior can happen whenever the Hessian of λ is not of full
rank on Λ.
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The main idea of the proof comes from the following remark. Setting vε(t, x) = uε(εt, x),
then (vε) solves the semi-classical equation
(2.7){

iε∂tv
ε(t, x) = λ(εDx)vε(t, x) + ε2Vext(t, x)vε(t, x) + ε3gε(t, x), (t, x) ∈ R× Rd,

vε|t=0 = uε0,

which means that, in the preceding analysis, we have performed the semiclassical limit ε → 0
in (2.7) simultaneously with the limit t/ε → +∞. Such analysis, combining high-frequencies
(ε → 0) and long times (t ∼ tε → +∞) is relevant if one wants to understand the behavior of
solutions of (2.7) beyond the Ehrenfest time. This approach was followed in the case of confined
geometries in the references [38, 4, 42]. Note also that in the particular case when λ(ξ) is ho-
mogeneous of degree two, this change of time scale transforms the semiclassical equation (2.7)
into the non-semiclassical one (that is, the one corresponding to ε = 1). Therefore, it is possible
to derive results on the dynamics of the Schrödinger equation via this scaling limit [39, 8, 7, 5].
The reader can consult the survey articles [40, 6] and the introductory lecture notes [41] for
additional details and references on this approach.

3. PSEUDODIFFERENTIAL OPERATORS AND SEMICLASSICAL MEASURES – PRELIMINARIES

In this section we recall some basic facts on Wigner distributions and semiclassical measures,
which are the tools we are going to use to prove Theorem 2.2 and derive preliminary results
about Wigner measures associated with families of solutions of equations of the form (2.1).

3.1. Wigner transform and Wigner measures. Wigner distributions provide a useful way for
computing weak-? accumulation points of a sequence of densities |f ε(x)|2dx constructed from
a L2-bounded sequence (f ε) of solutions of a semiclassical (pseudo) differential equation. They
provide a joint physical/Fourier space description of the energy distribution of functions in Rd.
The Wigner distribution of a function f ∈ L2(Rd) is defined as:

W ε
f (x, ξ) :=

∫
Rd
f
(
x− εv

2

)
f
(
x+

εv

2

)
eiξ·v

dv

(2π)d
,

and has several interesting properties (see, for instance, [23]).
• W ε

f ∈ L2(Rd × Rd).
• Projecting W ε

f on x or ξ gives the position or momentum densities of f respectively :∫
Rd
W ε
f (x, ξ)dξ = |f(x)|2,

∫
Rd
W ε
f (x, ξ)dx =

1

(2πε)d

∣∣∣∣f̂ (ξε
)∣∣∣∣2 .

Note that despite this, W ε
f is not positive in general.

• For every a ∈ C∞c (Rd × Rd) one has:

(3.1)
∫
Rd×Rd

a(x, ξ)W ε
f (x, ξ)dx dξ = (opε(a)f, f)L2(Rd),

where opε(a) is the semiclassical pseudodifferential operator of symbol a obtained
through the Weyl quantization rule:

opε(a)f(x) =

∫
Rd×Rd

a

(
x+ y

2
, εξ

)
eiξ·(x−y)f(y)dy

dξ

(2π)d
.
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If (f ε) is a bounded sequence in L2(Rd) then (W ε
fε) is a bounded sequence of tempered

distributions in S ′(Rd × Rd). This is proved using identity (3.1) combined with the fact that
the operators opε(a) are uniformly bounded by a suitable semi-norm in S(Rd × Rd), see (A.1).
Appendix A contains additional facts on the theory of pseudodifferential operators, as well as
references to the literature.

In addition, every accumulation point of (W ε
fε) in S ′(Rd × Rd) is a positive distribution and

therefore, by Schwartz’s theorem, a positive measure on Rd × Rd. These measures are called
semiclassical or Wigner measures. See references [25, 36, 27, 28] for different proofs of the
results we have presented so far.

Now, if µ ∈M+(Rd×Rd) is an accumulation point of (W ε
fε) along some subsequence (εk)

and (|f εk |2) converges weakly-? towards a measure ν ∈M+(Rd) then one has:

(3.2)
∫
Rd
µ(·, dξ) ≤ ν.

Equality holds if and only if (f ε) is ε-oscillating:

(3.3) lim sup
ε→0+

∫
|ξ|>R/ε

|f̂ ε(ξ)|2dξ −→
R→+∞

0,

see [25, 27, 28]. The hypothesis H0 that we made on the initial data for equation (2.1), is this
ε-oscillating property. Note also that (3.2) implies that µ is always a finite measure of total mass
bounded by supε ‖f ε‖2L2(Rd)

.

Remark 3.1. If ‖〈εDx〉sf ε‖L2(Rd) is uniformly bounded for some constant s > 0, then the
family f ε is ε-oscillating.

3.2. Wigner measure and family of solutions of dispersive equations. We will now consider
Wigner distributions associated to solutions of the evolution equation (2.1) where Vext and λ
satisfy hypothesis H1 and (gε(t, ·)) is locally uniformly bounded with respect to t in L2(Rd).

When the sequence (uε0) of initial data is uniformly bounded in L2(Rd), so is the correspond-
ing sequence (uε(t, ·)) of solutions to (2.1) for every t ∈ R. Therefore the sequence of Wigner
distributions (W ε

uε(t,·)) is bounded in C(R;S ′(Rd × Rd)). Nevertheless, its time derivatives are
unbounded and, in general, one cannot hope to find a subsequence that converges pointwise (or
even almost everywhere) in t (see Proposition 3.4 below). This difficulty can be overcome if one
considers the time-average of the Wigner distributions.

Proposition 3.2. Let (uε) be a sequence of solutions to (2.1) issued from an L2(Rd)-bounded
family of initial data (uε0). Then there exist a subsequence (εk) tending to zero as k → ∞
and a t-measurable family µt ∈ M+(Rd × Rd) of finite measures, with total mass essentially
uniformly bounded in t ∈ R, such that, for every θ ∈ L1(R) and a ∈ C∞c (Rd × Rd):

lim
k→∞

∫
R×Rd×Rd

θ(t)a(x, ξ)W εk
uεk (t,·)(x, ξ)dx dξ dt =

∫
R×Rd×Rd

θ(t)a(x, ξ)µt(dx, dξ)dt.

If moreover, the families (uε0) and gε(t, ·) are ε-oscillating, then for every θ ∈ L1(R) and
φ ∈ C∞c (Rd):

lim
k→∞

∫
R

∫
Rd
θ(t)φ(x)|uεk(t, x)|2dx dt =

∫
R

∫
Rd×Rd

θ(t)φ(x)µt(dx, dξ)dt.



12 V. CHABU, C. FERMANIAN, AND F. MACIÀ

This result is proved in [38], Theorem 1; see also Appendix B in [42]. Note that its proof uses
the following observation.

Remark 3.3. Let (uε(t, ·)) be a sequence of solutions to (2.1) with ε-oscillating sequence of
initial data (uε0) and assume gε(t, ·) is ε-oscillating for all time t ∈ R. Then, uε(t, ·) also is
ε-oscillating for all t ∈ R.

3.3. Localisation of Wigner measures on the critical set. The fact that (uε(t, ·)) is a sequence
of solutions to (2.1) imposes restrictions on the measures µt that can be attained as a limit of their
Wigner functions. In the region in the phase space Rdx × Rdξ where equation (2.1) is dispersive
(i.e. away from the critical points of λ) the energy of the sequence (uε(t, ·)) is dispersed at
infinite speed to infinity. These heuristics are made precise in the following result.

Proposition 3.4. Let (uε(t, ·)) be a sequence of solutions to (2.1) issued from an L2(Rd)-
bounded and ε-oscillating sequence of initial data (uε0), and suppose that the measures µt are
given by Proposition 3.2. Then, for almost every t ∈ R the measure µt is supported above the
set of critical points of λ :

suppµt ⊂ Λ = {(x, ξ) ∈ Rd × Rd : ∇λ(ξ) = 0}.

The result of Proposition 3.4 follows from a geometric argument : the fact that uε are solutions
to (2.1) translates in an invariance property of the measures µt.

Lemma 3.5. For almost every t ∈ R, the measure µt is invariant by the flow

φ1
s : Rd × Rd 3 (x, ξ) 7−→ (x+ s∇λ(ξ), ξ) ∈ Rd × Rd, s ∈ R.

This means that for every function a on Rd × Rd that is Borel measurable one has:∫
Rd×Rd

a ◦ φ1
s(x, ξ)µt(dx, dξ) =

∫
Rd×Rd

a(x, ξ)µt(dx, dξ), s ∈ R.

This result is part of Theorem 2 in [38]. We reproduce the argument here for the reader’s
convenience, since we are going to use similar techniques in the sequel.

Proof of Lemma 3.5. It is enough to show that, for all a ∈ C∞c (Rd × Rd) and θ ∈ C∞c (R), the
quantity

Rε(θ, a) :=

∫
R×Rd×Rd

θ(t)
d

ds
(a ◦ φ1

s(x, ξ))

∣∣∣∣
s=0

W εk
uεk (t,·)(x, ξ)dx dξ dt

tends to 0 for the subsequence εk of Proposition 3.2. Note that

d

ds
(a ◦ φ1

s)

∣∣∣∣
s=0

= ∇ξλ · ∇xa = {λ, a};

therefore, by the symbolic calculus of semiclassical pseudodifferential operators, Proposition A.1:

opε

(
d

ds
(a ◦ φ1

s)

∣∣∣∣
s=0

)
=

i

ε
[λ(εD) , opε(a)] +OL(L2(Rd))(ε)

and, using the fact that uε solves (2.1):
i

ε

∫
R
θ(t) ([λ(εD), opε(a)]uε(t, ·), uε(t, ·)) dt+O(ε)
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= −ε
∫
R
θ(t)

d

dt
(opε(a)uε(t, ·), uε(t, ·)) dt = ε

∫
R
θ′(t) (opε(a)uε(t, ·), uε(t, ·)) dt = O(ε).

This estimate together with identity (3.1) show that Rε(θ, a) = O(ε), which gives the result that
we wanted to prove. �

Proposition 3.4 follows easily from Lemma 3.5 and the following elementary fact.

Lemma 3.6. Let Ω ⊂ Rd and Φs : Rd × Ω −→ Rd × Ω a flow satisfying: for every compact
K ⊂ Rd×Ω such that K contains no stationary points of Φ there exist constants α, β > 0 such
that:

α|s| − β 6 |Φs(x, ξ)| 6 α|s|+ β, ∀(x, ξ) ∈ K.
Let µ be a finite, positive Radon measure on Rd × Ω that is invariant by the flow Φs. Then µ is
supported on the set of stationary points of Φs.

Proof. It suffices to show that µ(K) = 0 for every compact set K ⊂ Rd×Ω as in the statement
of the lemma. By the assumption made on Φs, it is possible to find sk → +∞ such that Φsk(K),
k ∈ N, are mutually disjoint. The invariance property of µ implies that µ(Φsk(K)) = µ(K) and
therefore, for every N > 0:

µ

(
N⋃
k=1

Φsk(K)

)
= Nµ(K).

Since µ is finite, we must have µ(K) = 0. �

4. TWO-MICROLOCAL WIGNER DISTRIBUTIONS

The localization result for semiclassical measures that we obtained in the preceding section
is still very far from the conclusions of Theorems 2.1 and 2.2. In particular, Proposition 3.4
does not explain how the measures µt depend on the sequence of initial data of the sequence
of solutions (uε(t, ·)). For obtaining more information, we use two-microlocal tools that we
introduce in a rather general framework in this section.

From now on, we assume that X is a connected, closed embedded submanifold of (Rd)∗ with
codimension p > 0. Given any σ ∈ X , TσX and NσX will stand for the cotangent and normal
spaces ofX at σ respectively (as defined in (1.9) and (1.10)). The tubular neighborhood theorem
(see for instance [29]) ensures that there exists an open neighborhood U of {(σ, 0) : σ ∈ X} ⊆
NX such that the map:

U 3 (σ, v) 7−→ σ + v ∈ (Rd)∗,
is a diffeomorphism onto its image V . Its inverse is given by:

V 3 ξ 7−→ (σ(ξ), ξ − σ(ξ)) ∈ U,
for some smooth map σ : V −→ X . When X = {ξ0} consists of a single point, the function σ
is constant, identically equal to ξ0.

We extend the phase space T ∗Rd := Rdx × (Rd)∗ξ with a new variable η ∈ Rd, where Rd

is the compactification of Rd obtained by adding a sphere Sd−1 at infinity. The test functions
associated with this extended phase space are functions a ∈ C∞(T ∗Rdx,ξ × Rdη) which satisfy
the two following properties:
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(1) There exists a compactK ⊂ T ∗Rd such that, for all η ∈ Rp, the map (x, ξ) 7→ a(x, ξ, η)
is a smooth function compactly supported in K.

(2) There exists a smooth function a∞ defined on T ∗Rd × Sd−1 and R0 > 0 such that, if
|η| > R0, then a(x, ξ, η) = a∞(x, ξ, η/|η|).

We denote by A the set of such functions and for a ∈ A we write:

(4.1) aε(x, ξ) := a

(
x, ξ,

ξ − σ(ξ)

ε

)
.

Given f ∈ L2(Rd), we define the two-microlocal Wigner distributionWX,ε
f ∈ D′(Rd×V ×Rd)

by:

(4.2)
〈
WX,ε
f , a

〉
:= (opε(aε)f |f)L2(Rd), ∀a ∈ A.

Since aε(x, εξ) = a
(
x, εξ, εξ−σ(εξ)

ε

)
has derivatives that are uniformly bounded in ε, the

Calderón-Vaillancourt theorem (see Appendix A) gives the uniform boundedness of the fam-
ily of operators (opε(aε))ε>0 in L2(Rd). In addition, any function a ∈ C∞c (Rd × V ) can be
naturally identified to a function in A which does not depend on the last variable. For such a,
one clearly has 〈

WX,ε
f , a

〉
=

∫
Rd×Rd

a(x, ξ)W ε
f (x, ξ)dx dξ.

Putting the above remarks together, one obtains the following.

Proposition 4.1. Let (f ε)ε>0 be bounded in L2(Rd); suppose in addition that this sequence has
a semiclassical measure µ. Then, (WX,ε

fε )ε>0 is a bounded sequence inD′(Rd×V ×Rd) whose
accumulation points µX satisfy:〈

µX , a
〉

=

∫
Rd×Rd

a(x, ξ)µ(dx, dξ), ∀a ∈ C∞c (Rd × V ).

The distributions µX turn out to have additional structure (they are not positive measures on
Rd × V × Rd, though) and can be used to give a more precise description of the restriction
µeRd×X of semiclassical measures. The measure µX decomposes into two parts: a compact
part, which is essentially the restriction of µX to the interior Rd× V ×Rd of Rd× V ×Rd, and
a part at infinity, which corresponds to the restriction to the sphere at infinity Rd × V × Sd−1.

4.1. The compact part. On the neighborhood of any point σ ∈ X , one may find a system of p
equations on Rd for which X is the zero set. Let ϕ(ξ) = 0 be such a system in an open set Ω
that we can assume included in the set V where the map σ is defined. Then, a parametrization
of NσX associated to this system of equations is

NσX = { tdϕ(σ)z, z ∈ Rp}.

For σ ∈ X , we define functions of L2(NσX) as square integrable functions

Rp 3 z 7→ f(z),

where z is the parameter of a parametrization of NσX that we fixed a priori.



15

Besides, one associates with the system ϕ(ξ) = 0 a smooth map ξ 7→ B(ξ) from the neigh-
borhood Ω of σ into the set of d× p matrices such that

(4.3) ξ − σ(ξ) = B(ξ)ϕ(ξ), ξ ∈ Ω.

Given a function a ∈ C∞c (Rd × Ω × Rd) and a point (σ, v) ∈ TX , we can use the system of
coordinates ϕ(ξ) = 0 to define an operator acting on f ∈ L2(NσX) given by:

Qϕa (σ, v)f(z) =

∫
Rp×Rp

a

(
v + tdϕ(σ)

z + y

2
, σ, B(σ)η

)
f(y)eiη·(z−y) dη dy

(2π)p
.

In other words,Qϕa (σ, v) is obtained from a by applying the non-semiclassical Weyl quantization
to the symbol

(z, η) 7→ a
(
v + tdϕ(σ)z, σ,B(σ)η

)
∈ C∞c (Rp × Rp).

We write
Qϕa (σ, v) = aW

(
v + tdϕ(σ)z, σ,B(σ)Dz

)
.

If one changes the system of coordinates into ϕ̃(ξ) = 0 on some open neighborhood Ω̃ of σ,
then, there exists a smooth map R(ξ) defined on the open set Ω ∩ Ω̃ (where both system of
coordinates can be used), and valued in the set of invertible p × p matrices, such that ϕ̃(ξ) =

R(ξ)ϕ(ξ). One then observe that the matrix B̃(ξ) associated with the choice of ϕ̃ is given by
B̃(ξ) = B(ξ)R(ξ)−1. Besides, for a ∈ C∞c (Rd × (Ω ∩ Ω̃)× Rd),

Qϕ̃a (σ, v) =

∫
Rp×Rp

a

(
v + tdϕ̃(σ)

z + y

2
, σ, B̃(σ)η

)
f(y)eiη·(z−y) dη dy

(2π)p

=

∫
Rp×Rp

a

(
v + tdϕ(σ) tR(σ)

z + y

2
, σ, B(σ)R(σ)−1η

)
f(y)eiη·(z−y) dη dy

(2π)p
.

We obtain
Qϕ̃a (σ, v) = U(σ)Qϕa (σ, v)U∗(σ),

where U(σ) is the unitary operator of L2(NσX) ∼ L2(Rp) associated with the linear map
from Rp into itself : z 7→ tR(σ)z. More precisely,

∀f ∈ L2(Rp), U(σ)f(z) = |detR(σ)|
p
2 f( tR(σ)z).

This map is the one associated with the change of parametrization onNσX induced by turning ϕ
into ϕ̃, and the map (z, ζ) 7→ ( tR(σ)z,R(σ)−1ζ) is a symplectic transform of the cotangent
of Rp. This is the standard rule of transformation of pseudodifferential operators through linear
change of variables (see [1] for an example or any textbook about pseudodifferential calculus).

Because of this invariance property with respect to the change of system of coordinates, we
shall say that a defines an operator Qa(σ, v) on L2(NσX). Clearly, Qa(σ, v) is smooth and
compactly supported in (σ, v); moreover, Qa(σ, v) ∈ K(L2(NσX)), for every (σ, v) ∈ TX ,
where K(L2(NσX)) stands for the space of compact operators on L2(NσX).

Proposition 4.2. Let µX be given by Proposition 4.1. Then there exist a positive measure ν on
T ∗X and a measurable family:

M : T ∗X 3 (σ, v) 7−→M(σ, v) ∈ L1
+(L2(NσX)),

satisfying
TrL2(NσX)M(σ, v) = 1, for ν-a.e. (σ, v) ∈ T ∗X,
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and such that, for every a ∈ C∞c (Rd × V × Rd) one has:〈
µX , a

〉
=

∫
T ∗X

TrL2(NσX)(Qa(σ, v)M(σ, v))ν(dσ, dv).

Proof. We suppose that we are given a local system of p equations of X by ϕ(ξ) = 0. Put
ξ = (ξ′, ξ′′) ∈ Rp×Rd−p. Without loss of generality, we may assume that dξ′ϕ(ξ) is invertible.
We consider the smooth valued function B satisfying ξ − σ(ξ) = B(ξ)ϕ(ξ) and we introduce
the local diffeomorphism

Φ :
(
ϕ(ξ), ξ′′

)
7→ ξ.

Note that if ξ = Φ(ζ), ζ = (ζ ′, ζ ′′), we have ζ ′ = ϕ(ξ) = ϕ(Φ(ζ)) and ζ ′′ = ξ′′. We use this
diffeomorphism according to the next lemma.

Lemma 4.3. For all f ∈ L2(Rd) and a ∈ A,

(opε(aε)f , f) =

(
opε

(
a

(
tdΦ(ξ)−1x,Φ(ξ), B (Φ(ξ))

ξ′

ε

))
Uεf , Uεf

)
+O(ε)‖f‖2

where f 7→ Uεf is an isometry of L2(Rd).

The proof of this lemma is in the Appendix C. This lemma reduces the problem to the analysis
of the concentration of the bounded family f̃ ε = (Uεf) on the submanifold Λ0 = {ξ′ = 0}
which has the additional property to be a vector space. This special case has been studied in [15]
where it is proved (see pages 96-97, Proposition 2) that up to a subsequence, there exist a positive
measure ν0 on T ∗Rd−p and a measurable family of trace 1 operators:

M0 : T ∗Rd−p 3 (σ, v) 7−→M0(σ, v) ∈ L1
+(L2(Rp)),

satisfying for any b ∈ C∞c (R2d+p),

lim
ε→0

(
opε(bε)f̃

ε , f̃ ε
)

=

∫
Rd−p×Rd−p

TrL2(Rp)

(
bW
(
(z, u′′), (0, θ′′), Dz

)
M0(u′′, θ′′)

)
dν0(du′′, dθ′′).

The reader will find in Appendix B comments on the operator-valued families. Therefore, for
compactly supported a ∈ A, and choosing b(x, ξ, η′) = a

(
tdΦ(ξ)−1x,Φ(ξ), B (Φ(ξ)) η′

)
, one

obtains

lim
ε→0

(opε(aε)f
ε , f ε)

=

∫
Rd−p×Rd−p

TrL2(Rp)

(
aW
(
tdΦ(0, θ′′)−1(z, u′′),Φ(0, θ′′), B(Φ(0, θ′′))Dz

)
×M0(u′′, θ′′)

)
dν0(du′′, dθ′′).

Note that the map θ′′ 7→ σ = Φ(0, θ′′) is a parametrization ofX with associated parametrization
of T ∗X ,

(θ′′, u′′) 7→ (σ, v) =
(
Φ(0, θ′′),t dΦ(0, θ′′)−1(0, u′′)

)
.
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Since the Jacobian of this mapping is 1, after a change of variable, we obtain an operator valued
measurable family M on T ∗X and a measure ν on T ∗X such that

lim
ε→0

(opε(aε)f , f)

=

∫
T ∗X

TrL2(Rp)

(
aW
(
tdΦ(0, θ′′(σ))−1(z, 0) + v, σ,B(σ)Dz

)
M(σ, v)

)
dν(dσ, dv).

We now take advantage of the fact that ϕ(Φ(ζ)) = ζ ′ for all ζ ∈ Rd in order to write

dϕ(Φ(ζ))dΦ(ζ) = (Id, 0).

We deduce
∀z ∈ Rp, tdΦ(ζ) tdϕ(Φ(ζ))z = (z, 0),

which implies
∀z ∈ Rp, tdϕ(Φ(ζ))z = tdΦ(ζ)−1(z, 0).

Therefore,

lim
ε→0

(opε(aε)f , f) =

∫
T ∗X

TrL2(Rp)

(
aW
(
tdϕ(σ)z + v, σ,B(σ)Dz

)
M(σ, v)

)
dν(dσ, dv)

=

∫
T ∗X

TrL2(NσX) (Qa(σ)M(σ, v)) dν(dσ, dv).

�

4.2. Measure structure of the part at infinity. To analyze the part at infinity, we use a cut-off
function χ ∈ C∞c (Rd) such that 0 ≤ χ ≤ 1, χ(η) = 1 for |η| ≤ 1 and χ(η) = 0 for |η| ≥ 2, and
we write 〈

WX,ε
f , a

〉
=
〈
WX,ε
f , aR

〉
+
〈
WX,ε
f , aR

〉
,

with

(4.4) aR(x, ξ, η) := a(x, ξ, η)χ
( η
R

)
and aR(x, ξ, η) := a(x, ξ, η)

(
1− χ

( η
R

))
.

Observe that aR is compactly supported in all variables. We thus focus on the second part, and
more precisely on the quantity

lim sup
R→∞

lim sup
ε→0+

〈
WX,ε
f , aR

〉
.

We denote by SΛ the compactified normal bundle to Λ, viewed as a submanifold of Rd×Rd,
the fiber of which is T ∗σRd × SσΛ above σ with SσΛ being obtained by taking the quotient of
NσΛ by the action of R∗+ by homotheties.

Proposition 4.4. Let (f ε) be a bounded family of L2(Rd). There exists a subsequence εk and a
measure γ on SΛ such that for all a ∈ A,

lim
R→∞

lim
k→+∞

〈
WX,εk
fεk , aR

〉
=

∫
Rd×X×Sd−1

a∞(x, σ, ω)γ(dx, dσ, dω)

+

∫
Rd×Xc×Sd−1

a∞

(
x, ξ,

ξ − σ(ξ)

|ξ − σ(ξ)|

)
µ(dx, dξ),

where Xc denotes the complement of the set X in Rd.
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Proof. We begin by recalling the arguments that prove the existence of the measure γ, which are
the same that the one developed in the vector case in [15]. Since a = a∞ for |η| large enough,
we have aR = aR∞ as soon as R is large enough and the quantity

lim sup
R→∞

lim sup
ε→0+

〈
WX,ε
fε , aR

〉
will only depend on a∞. Therefore, by considering a dense subset of Cc(T ∗Rd×Sd−1), we can
find a subsequence (εk) by a diagonal extraction process such that the following linear form on
Cc(T ∗Rd × Sd−1) is well-defined

` : a∞ 7→ lim
R→∞

lim
k→+∞

〈
WX,εk
fεk , aR

〉
.

We then observe that

∀α, β ∈ Nd, ∃Cα,β > 0, sup
R2d

∣∣∣∂αx ∂βξ (aR)ε∣∣∣ ≤ Cα,β(ε|β| +R−|β|).

This implies that the symbolic calculus on symbols (aR)ε is semiclassical with respect to the
small parameter

√
ε2 +R−2. To be precise, one has the following weak Gårding inequality: if

a ≥ 0, then, for all κ > 0, there exists a constant Cκ such that〈
WX,ε
fε , aR

〉
≥ −

(
κ+ Cκ

(
ε+

1

R

))
‖f ε‖2L2(Rd).

We then conclude that the linear form ` defined above is positive and defines a positive Radon
measure ρ̃. It remains to compute ρ̃ outside X . In this purpose, we set

aR = aRδ + aR,δ with aRδ (x, ξ, η) = aR(x, ξ, η)(1− χ)

(
ξ − σ(ξ)

δ

)
and we observe that, by the definition of µ:

lim
δ→0

lim
R→∞

lim
ε→0

〈
WX,εk
fεk , aRδ

〉
=

∫
Rd×Xc×Sd−1

a∞

(
x, ξ,

ξ − σ(ξ)

|ξ − σ(ξ)|

)
µ(dx, dξ),

which concludes the proof of the existence of the measure γ.

Let us now analyze the geometric properties of this measure. We choose a system of local
coordinates of Λ and introduce the matrix B as in (4.3). By Lemma 4.3 and the result of [15] for
vector spaces: up to a subsequence, there exists a measure γ̃0 on Rd × Rd−p × Sp−1 such that

lim
δ→0+

lim
R→∞

lim
ε→0+

〈
WX,ε
f , aR,δ

〉
=

∫
Rd×Rd−p×Sp−1

a∞

(
tdΦ(0, ξ′′)−1x,Φ(0, ξ′′),

B (Φ(0, ξ′′))ω

|B (Φ(0, ξ′′))ω|

)
γ̃0(dx, dξ, dω).

The mapping ξ′′ 7→ Φ(0, ξ′′) is a parametrization of X and the mapping

(x, ξ) 7→
(
tdΦ(0, ξ′′)−1x,Φ(0, ξ′′)

)
is the associated mapping of T ∗XRd. Therefore, this relation defines a measure γ̃ on T ∗X×Sp−1

such that

(4.5) lim
δ→0+

lim
R→∞

lim
ε→0+

〈
WX,ε
f , aR,δ

〉
=

∫
T ∗X×Sp−1

a∞

(
x, σ,

B (σ)ω

|B (σ)ω|

)
γ̃(dx, dξ, dω).
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Besides, using that

(4.6) Id = dσ(σ0) +B(σ0)dϕ(σ0)

for any σ0 ∈ X , we deduce that for any ζ ∈ Tσ0Rd, we have the decomposition

ζ = dσ(σ0)ζ +B(σ0)dϕ(σ0)ζ, with dσ(σ0)ζ ∈ TσX and B(σ0)dϕ(σ0)ζ ∈ Nσ0X.

Now, since dϕ is of rank p, one can write any ω ∈ Sp−1 as ω = dϕ(σ0)ζ and the points B(σ0)ω
are in Nσ0X . By identification of γ in (4.5), we deduce that γ(x, σ, ·) is a measure on the set{

B (σ)ω

|B (σ)ω|
, ω ∈ Sp−1

}
= NσX�R∗+ = SσX,

which completes the proof of the proposition. �

5. TWO MICROLOCAL WIGNER MEASURES AND FAMILIES OF SOLUTIONS TO DISPERSIVE
EQUATIONS

We now consider families of solutions to equation (2.1). As proved in Proposition 3.4, the
Wigner measure of the family (uε(t, ·)) concentrates on the set Λ = {∇λ(ξ) = 0}. In order to
analyze µt above Λ, we perform a second microlocalization above the set X = Λ, with average
in time. We consider for θ ∈ L1(R) the quantities∫

R
θ(t)

〈
WΛ,ε
uε(t,·), a

〉
dt

for symbols a ∈ A. Up to extracting a subsequence εk, we construct L∞ maps

t 7→ γt(dx, dσ, dω), t 7→ νt(dσ, dv), t 7→Mt(σ, v)

valued respectively on the set of positive Radon measures on Rd × Λ × Sd−1, on the set of
positive Radon measures on T ∗Λ and finally on the set of measurable families from T ∗Λ onto
the set of positive trace class operators on L2(NΛ), such that for all θ ∈ L1(R) and for all
a ∈ A:∫
R
θ(t)

〈
WΛ,εk
uεk (t,·), a

〉
dt −→

k→+∞

∫
R

∫
Rd×Λ×Sd−1

θ(t)a∞(x, σ, ω)γt(dx, dσ, dω)dt

+

∫
R

∫
T ∗Λ

θ(t)TrL2(NσΛ)(Qa(σ, v)Mt(σ, v)νt(dσ, dv)dt.

The measures γt and νt, and the map M t satisfy additional properties coming from the fact that
the family (uε(t, ·)) solves a time-dependent equation. These properties are discussed in the
next two sections. We shall see that the measures γt are invariant under a linear flow and that we
can choose the sequence εk such that the map t 7→Mt is continuous (and even C1).

5.1. Transport properties of the compact part. Since Λ is the set of critical points of λ, the
matrix d2λ is intrinsically defined above points of Λ. Thus, using the formalism of the preceding
sections,

Qd2λ(σ)η·η = d2λ(σ)Dz ·Dz.

Proposition 5.1. The map t 7→ νt is constant and the map

t 7→Mt(σ, v) ∈ C(R;L1
+(L2(NσΛ))

solves the Heisenberg equation (2.6).
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Proof. We analyze for a ∈ C∞c (R3d) the time evolution of the quantity
〈
WΛ,ε
uε(t,·), a

〉
. We have

d

dt

〈
WΛ,ε
uε(t,·), a

〉
=

1

iε2
([opε(aε), λ(εD)]uε(t, ·), uε(t, ·))+1

i
([opε(aε), Vext]u

ε(t, ·) , uε(t, ·))+O(ε).

By standard symbolic calculus for Weyl quantization, we have in L(L2(Rd))
1

iε2
[opε(aε), λ(εD)] =

1

ε
opε(∇λ(ξ) · ∇xaε) +O(ε).

Besides, by Taylor formula and by use of∇λ(σ(ξ)) = 0, we have

(5.1) ∇λ(ξ) = d2λ(σ(ξ)) (ξ − σ(ξ)) + Γ(ξ) (ξ − σ(ξ)) · (ξ − σ(ξ)) ,

where Γ is a smooth matrix. This yields
1

ε
∇λ(ξ) · ∇xaε(x, ξ) = bε(x, ξ)

with
b(x, ξ, η) = d2λ(σ(ξ))η · ∇xa(x, ξ, η) + Γ(ξ) (ξ − σ(ξ)) · η∇xa(x, ξ, η).

At this stage of the proof, we see that d
dt

〈
WΛ,ε
uε(t,·), a

〉
is uniformly bounded in ε, thus using a

suitable version of Ascoli’s theorem and a standard diagonal extraction argument, we can find a
sequence (εk) such that the limit exists for all a ∈ C∞c (R3d) and all time t ∈ [0, T ] (for some
T > 0 fixed) with a limit that is a continuous map in time. The transport equation that we are
now going to prove shall guarantee the independence of the limit from T > 0.

We observe that for any local system of equations of Λ, ϕ(ξ) = 0, the operator Qϕb satisfies
for (σ, v) ∈ TΛ,

Qϕb (σ, v) = bW
(
v + tdϕ(σ)z, σ,B(σ)Dz

)
= op1

(
d2λ(σ)B(σ)η · ∇xa(v + tdϕ(σ)z, σ,B(σ)η)

)
.

On the other hand, we observe that, setting

θ(ξ, η) =
1

2
d2λ(ξ)η · η,

we have

i
[
Qϕθ (σ), Qϕa (σ, v)

]
= i

[
tB(σ)d2λ(σ)B(σ)Dz ·Dz , Q

ϕ
a (σ, v)

]
= op1

(
tdϕ(σ) tB(σ)d2λ(σ)B(σ)η · ∇xa(v + tdϕ(σ)z, σ,B(σ)η)

)
,(5.2)

and we now focus on the matrix tdϕ(σ) tB(σ)d2λ(σ)B(σ), and thus on the properties of the
hessian d2λ(σ).

For ξ ∈ Λ, the bilinear form d2λ(ξ) is defined intrinsically on TξRd and d2λ(ξ) = 0 on TξΛ.
We deduce from (4.6) that any ζ ∈ TξRd satisfies

ζ = dσ(ξ)ζ +B(ξ)dϕ(ξ)ζ with dσ(ξ)ζ ∈ TσΛ.

Therefore,
∀ξ ∈ Λ, d2λ(ξ) = d2λ(ξ)B(ξ)dϕ(ξ).

Taking into account this information, equation (5.2) becomes

i
[
Qϕθ (σ), Qϕa (σ, v)

]
= op1

(
d2λ(σ)B(σ)η · ∇xa(v + tdϕ(σ)z, σ,B(σ)η)

)
.
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We conclude
Qϕb (σ, v) = i

[
Qϕθ (σ), Qϕa (σ, v)

]
.

This implies that

i∂t(Mt(σ, v)νt(dσ, dv)) =

[
1

2
d2λ(σ)Dz ·Dz +mVext(t,·)(v, σ),Mt(σ, v)

]
νt(dσ, dv).

Taking the trace, we get ∂tνt = 0, thus νt is equal to some constant measure ν and Mt satisfies
equation (2.6), which proves the proposition. �

5.2. Invariance and localization of the measure at infinity. We are concerned with the prop-
erty of the L∞-map t 7→ γt(dx, dσ, dω) valued in the set of positive Radon measures on SΛ.
We now define a flow on SΛ by setting for s ∈ R

φs2 : (x, σ, ω) 7→ (x+ s d2λ(σ)ω, σ, ω).

Proposition 5.2. The measure γt is invariant by the flow φs2.

Proof. The proof essentially follows the lines of the proof of Theorem 2.5 in [4]. We use the
cut-off function χ introduced before and set

aR,δ(x, ξ, η) = a(x, ξ, η)χ

(
ξ − σ(ξ)

δ

)(
1− χ

( η
R

))
;

we introduce the smooth symbol

bR,δs (x, ξ, η) = aR,δ
(
x+ sd2λ(ξ)

η

|η|
, ξ, η

)
,

which satisfies (bRs )∞ = a∞ ◦ φs2. Using equation (5.1), we obtain(
bR,δs

)
ε

(x, ξ) = aR,δ
(
x+

s

|ξ − σ(ξ)|
∇λ(ξ), ξ,

ξ − σ(ξ)

ε

)
+ δ rR,δε (x, ξ)

where for all multi-index α, β ∈ Nd, there exists a constant Cα,β > 0 such that rR,δε satisfies:

sup
x,ξ∈Rd

∣∣∣∂αx ∂βξ rR,δε

∣∣∣ ≤ Cα,β.
As a consequence, 〈WΛ,ε

uε(t,·), r
R,δ
ε 〉 is uniformly bounded in R, δ, ε and:

〈WΛ,ε
uε(t,·), b

R,δ
s 〉 = 〈WΛ,ε

uε(t,·), b̃
R,δ
s 〉+O(δ),

uniformly with respect to R and ε, with

b̃R,δs (x, ξ, η) = aR,δ
(
x+

s

|ξ − σ(ξ)|
∇λ(ξ), ξ, η

)
.

Note that this symbol is smooth because |ξ − σ(ξ)| > Rε on the support of aR,δ. We are going
to prove that for all θ ∈ C∞c (R),

lim
δ→0+

lim
R→∞

lim
ε→0+

∫
R
θ(t)

d

ds
〈WΛ,ε

uε(t,·), b̃
R,δ
s 〉dt = 0.

Indeed, by the calculus of the preceding section, we have
d

ds
〈WΛ,ε

uε(t,·), b̃
R,δ
s 〉 = 〈WΛ,ε

uε(t,·),∇λ · ∇xc
R,δ
s 〉
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with

cR,δs (x, ξ, η) =
1

|ξ − σ(ξ)|
aR,δ

(
x+

s

|ξ − σ(ξ)|
∇λ(ξ), ξ, η

)
.

The symbol cR,δs is such that for all multi-index α ∈ Nd, there exists a constant Cα > 0 for
which:

sup
x,ξ∈Rd

∣∣∣∂αx (cR,δs )ε

∣∣∣ ≤ Cα(Rε)−1.

This implies in particular: ∥∥∥opε((c
R,δ
s )ε)

∥∥∥
L(L2(Rd))

≤ C

Rε
.

By symbolic calculus, we have

1

iε

[
opε((c

R,δ
s )ε), λ(εD)

]
= opε

(
∇λ(ξ) · ∇x(cR,δs )ε

)
+O

( ε
R

)
.

We deduce that for all θ ∈ C∞c (R),∫
R
θ(t) d

ds 〈WΛ,ε
uε(t,·), b̃

R,δ
s 〉dt

=

∫
R
θ(t)

(
1

iε

[
opε((c

R,δ
s )ε), λ(εD)

]
uε(t, ·) , uε(t, ·)

)
dt+O

( ε
R

)
=

∫
R
θ(t)

(
1

iε

[
opε((c

R,δ
s )ε), λ(εD) + ε2Vext(t, x)

]
uε(t, ·) , uε(t, ·)

)
dt+O

(
1

R

)
= −ε

∫
R
θ(t)

d

dt

(
opε((c

R,δ
s )ε)u

ε(t, ·) , uε(t, ·)
)
dt+O

(
1

R

)
= O(ε) +O

(
1

R

)
.

As a conclusion,

〈WΛ,ε
uε(t,·), b

R,δ
s 〉 = 〈WΛ,ε

uε(t,·), b̃
R,δ
s 〉+O(δ)

= 〈WΛ,ε
uε(t,·), b̃

R,δ
0 〉+O(|s|ε) +O(|s|R−1) +O(δ)

= 〈WΛ,ε
uε(t,·), b

R,δ
0 〉+O(|s|ε) +O(|s|R−1) +O(δ),

which implies the Proposition. �

5.3. Proofs of Theorems 2.1 and 2.2. Remind that Theorem 2.2 implies Theorem 2.1, thus we
focus on Theorem 2.2. We first observe that the measure γt is zero. Indeed, by H2; for σ ∈ Λ,
d2λ(σ) is one to one on NσΛ. Therefore, since γt is a measure on SΛ, the invariance property
of Proposition 5.2 and an argument similar to the one of Lemma 3.6 yields that γt = 0. As a
consequence, the semi-classical measure µt is only given by the compact part and one has for
any a ∈ C∞c (R2d) and θ ∈ L1(R),∫

R
θ(t)

∫
R2d

a(x, ξ)µt(dx, dξ) =

∫
R
θ(t)

∫
T ∗Λ

TrL2(NσΛ) (Qa(σ, v)Mt(dσ, dv)) dt.
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Then, taking θ = 1[a,b] for a, b ∈ R, a < b, and in view of Proposition 3.2 and of Lemma 3.3,
we deduce that for every every φ ∈ Cc(Rd) one has for the subsequence defining Mt and νt:

lim
ε→0

∫ b

a

∫
Rd
φ(x)|uε(t, x)|2dxdt =

∫ b

a

∫
T ∗Λ

TrL2(NξΛ) [Qφ(v, ξ)Mt(v, ξ)] ν(dv, dξ)dt,

where Mt satisfies (2.6). This concludes the proof of Theorem 2.2. We emphasize that the
measure ν and the operator valued family M0 are utterly determined by the initial data.

6. BLOCH PROJECTORS AND SEMICLASSICAL MEASURES

In this section we prove Theorem 1.2, as a result of the analysis in Section 4. We shall use
properties of the operator of restriction Lε defined in (1.7) and of the projector Πn(εDx). Then,
we prove a priori estimates for solutions of equation (1.6) and use them to reduce the dynamics
of our original problem to those of equation (1.13) (Corollary 6.8).

Note that, modulo adding a positive constant to equation (1.2), we may assume that P (εDx)
is a non-negative operator. With this in mind, the following estimates, that will be repeatedly
used in what follows, hold.

Remark 6.1. There exists a constant c > 0 such that:

c−1‖U‖Hs
ε (Rd×Td) ≤ ‖ 〈εDx〉s U‖L2(Rd×Td) + ‖P (εDx)s/2U‖L2(Rd×Td) ≤ c‖U‖Hs

ε (Rd×Td),

for every U ∈ L2(Rd × Td) and ε > 0, where, as usual, 〈ξ〉 = (1 + |ξ|2)1/2 and where the sets
Hs
ε have been defined in (1.8).

6.1. High frequency behavior of the operator of restriction to the diagonal and of the Bloch
projectors. We first focus on the properties of the operator of restriction to the diagonal Lε and
prove its boundedness in appropriate functional spaces.

Lemma 6.2. Suppose s > d/2, then the operator

Lε : L2(Rdx;Hs(Tdy)) −→ L2(Rd)

is uniformly bounded in ε.
Moreover, if U ε ∈ L2(Rdx;Hs(Tdy)) satisfies the estimate:

(6.1) lim sup
ε→0+

‖1R(εDx)U ε‖L2(Rd;Hs(Td)) −→
R→∞

0,

where 1R is the characteristic function of {|ξ| > R}, then the sequence (LεU ε) is bounded in
L2(Rd) and ε-oscillating.

Remark 6.3. Suppose that (U ε) is bounded in Hr
ε (Rd × Td) for some r > d/2. Then condi-

tion (6.1) is satisfied for every d/2 < s < r. This follows from the bound:

‖1R(εDx)U ε‖L2(Rd;Hs(Td)) ≤ Rs−r‖U ε‖Hr
ε (Rd×Td).

In particular, if ψε0 satisfies item (3) of Assumptions 1.1, then (ψε0) is ε-oscillating.

Proof. Let U ε ∈ L2(Rdx;Hs(Tdy)) and write

U ε(x, y) =
∑
k∈Zd

U εk(x)ei2πk·y,
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and
‖U ε‖2L2(Rdx;Hs(Tdy)) =

∑
k∈Zd
〈k〉2s ‖Ukε‖2L2(Rd).

Then there exist constants C,Cd,s > 0 such that

∑
k∈Zd
‖U εk‖L2(Rd) ≤ C

∑
k∈Zd
|k|2s‖U εk‖2L2(Rd)

1/2

≤ Cd,s‖U ε‖L2(Rdx;Hs(Tdy)),

and therefore:

(6.2) ‖LεU ε‖L2(Rd) ≤
∑
k∈Zd
‖U εk‖L2(Rd) ≤ Cd,s‖U ε‖L2(Rdx;Hs(Tdy)).

Let us now show that, under the hypothesis of the proposition, vε := LεU ε defines an ε-
oscillating sequence. Given δ > 0, since s > d/2, there exists Nδ > 0 such that∑

|k|>Nδ

|k|−2s < δ2.

Define:
vεδ(x) =

∑
|k|≤Nδ

U εk(x)ei2πk·
x
ε .

Clearly,
‖vε − vεδ‖L2(Rd) ≤ δ‖U ε‖L2(Rdx;Hs(Tdy)).

Therefore, it suffices to show that for any δ > 0 the sequence (vεδ) is ε-oscillating. The Fourier
transform of vεδ is:

v̂εδ(ξ) =
∑
|k|≤Nδ

Û εk

(
ξ − 2πk

ε

)
.

Therefore,
‖1R(εDx)vεδ‖L2(Rd) ≤

∑
|k|≤Nδ

‖1R(εDx + 2πk)U εk‖L2(Rd).

If R > R0 for R0 > 0 large enough, one has 1R(· + 2πk) ≤ 1R/2 for every |k| ≤ Nδ. This
allows us to conclude that for R > R0:

‖1R(εDx)vεδ‖L2(Rd) ≤
∑
|k|≤Nδ

‖1R/2(εDx)U εk‖L2(Rd) ≤ Cd,s‖1R(εDx)U ε‖L2(Rd;Hs(Td))

and the conclusion follows. �

We shall also need information on the derivatives with respect to ξ of the operator Πn(ξ). We
recall the formula

Πn(ξ) = − 1

2iπ

N∑
j=1

χj(ξ)

∮
Cj

(P (ξ)− z)−1dz

where the functions χj ∈ C∞(Rd/2πZd) form a partition of unity and, for j = 1, ..N , Cj is
a contour in the complex plane separating %n(ξ), for ξ ∈ suppχj , form the remainder of the
spectrum. The existence of such contours is guaranteed by the fact that %n(ξ) is of constant
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multiplicity for all ξ ∈ Rd and, thus, is separated from the remainder of the spectrum. As a
consequence of this formula, of Lemma 6.1 and of the relation

[Πn(εDx), P (εDx)s/2] = [Πn(εDx), 〈εDx〉s] = 0,

we deduce the following result.

Lemma 6.4. The map ξ 7→ Πn(ξ) is a smooth bounded map from Rd into L(L2(Td)). In
addition, the operator Πn(εDx) maps the space Hs

ε (Rd × Td) into itself.

6.2. A priori estimates on U ε(t, ·). In order to derive the desired properties of ψεn(t, x), the
solution to (1.13), we need to prove some a priori estimates for the solutions of equation (1.6).
We will use them for reducing the analysis of ψε(t, ·) (the solution to our original problem (1.2))
to that of ψεn(t, ·).

Lemma 6.5. Given s ≥ 0, there exists a constant Cs > 0 such that any solution U ε to (1.6) with
initial datum U ε0 ∈ Hs(Rd × Td) satisfies:

(6.3) ‖U ε(t, ·)‖Hs
ε (Rd×Td) ≤ ‖U ε0‖Hs

ε (Rd×Td) + Csε|t|,

uniformly in ε > 0.

Corollary 6.6. Lemma 6.5 and Remark 6.3 imply that for all t ∈ R, the family (ψε(t, ·)) is
ε-oscillating.

Proof. In view of Remark 6.1, we are first going to study the families

(〈εDx〉U ε) and (P (εDx)1/2U ε).

Start noticing that 〈εDx〉U ε satisfies the equation

(6.4) iε2∂t(〈εDx〉U ε) = P (εDx)(〈εDx〉U ε) + ε2Vext 〈εDx〉U ε − ε2[Vext, 〈εDx〉]U ε.

As a consequence, using the boundedness of ∇xVext on R × Rd, we obtain by the symbolic
calculus of semiclassical pseudodifferential operators, that the source term can be estimated by:

‖[Vext(t, ·), 〈εDx〉]U ε(t, ·)‖L2(Rd×Td) ≤ Cε‖U ε(t, ·)‖L2(Rd×Td),

for some constant C > independent of ε > 0 and t ∈ R. Using standard energy estimates, we
deduce the existence of a constant C1 > 0 such that for all t ∈ R,

‖ 〈εDx〉U ε(t, ·)‖L2(Rd×Td) ≤ ‖ 〈εDx〉U ε0‖L2(Rd×Td) + C1ε|t|.

A completely analogous argument yields the estimate:

‖P (εDx)1/2U ε(t, ·)‖L2(Rd×Td) ≤ ‖P (εDx)1/2U ε0‖L2(Rd×Td) + C1ε|t|.

A standard recursive argument gives, for all s ∈ N, the existence of a constant Cs > 0 such that
for all t ∈ R,

‖ 〈εDx〉s U ε(t, ·)‖L2(Rd×Td) + ‖P (εDx)s/2U ε(t, ·)‖L2(Rd×Td) ≤

‖ 〈εDx〉s U ε0‖L2(Rd×Td) + ‖P (εDx)s/2U ε0‖L2(Rd×Td) + Csε|t|,

and the result follows for any s ∈ R+ by interpolation. �
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We now focus on the case where the initial data U ε0 belongs to a particular Bloch eigenspace:
U ε0 = Πn(εDx)U ε0 . We set

Ũ ε(t, ·) = Πn(εDx)U ε(t, ·).
Note that by Lemma 6.4, for any t ∈ R, the family Ũ ε(t, ·) is uniformly bounded inHs

ε (Rd×Td).

Lemma 6.7. Assume U ε0 = Πn(εDx)U ε0 and consider Ũ ε(t, ·) as defined above. Then, for all
T > 0, there exists CT > 0 such that

sup
t∈[0,T ]

∥∥∥U ε(t, ·)− Ũ ε(t, ·)∥∥∥
Hs
ε (Td×Rd)

≤ CT ε.

Let us prove now Lemma 6.7.

Proof. Note first that, in view of Remark 6.1, it is enough to prove the uniform boundedness in
L2(Td × Rd) of

U ε(t, ·)− Ũ ε(t, ·), P (εDx)s/2(U ε(t, ·)− Ũ ε(t, ·)) and 〈εDx〉s(U ε(t, ·)− Ũ ε(t, ·)).

We have U ε(0, ·) = Ũ ε(0, ·) and Ũ ε solves

(6.5) iε2∂tŨ
ε(t, x) = P (εDx)Ũ ε(t, x) + ε2Vext(t, x)Ũ ε(t, x) + ε2Bε(t)U ε(t, x),

with
Bε(t) = [Πn(εDx), Vext(t, ·)].

The symbolic calculus of semiclassical pseudodifferential operators implies that:

‖Bε(t)U ε(t, ·)‖L2(Rd×Td) = O(ε), locally uniformly in t.

As for 〈εDx〉Ũ ε one has:

iε2∂t(〈εDx〉Ũ ε) = P (εDx)〈εDx〉Ũ ε + ε2Vext〈εDx〉Ũ ε + ε2Cε〈εDx〉U ε− ε2[Vext, 〈εDx〉]Ũ ε,
with,

Cε = [Πn(εDx), 〈εDx〉Vext〈εDx〉−1].

Again, the symbolic calculus gives that ‖Cε(t)〈εDx〉U ε(t, ·)‖L2(Rd×Td) = O(ε) locally uni-
formly in t. Taking into account that 〈εDx〉U ε satisfies equation (6.4) and is bounded in
L2(Rd × Td), one concludes that:

‖〈εDx〉(U ε(t, ·)− Ũ ε(t, ·))‖L2(Rd×Td) ≤ Cε|t|.

An analogous reasoning holds for P (εDx)1/2(U ε(t, ·) − Ũ ε(t, ·)). One concludes using an
inductive argument following the lines of the end of the proof of Lemma 6.5. �

6.3. Analysis of the Bloch component ψεn. By the definition of ψεn(t, x), we have

ψεn(t, ·) = LεŨ ε(t, ·);
and the family is bounded in L2(Rd) for all t ∈ R. Moreover, as a corollary of Lemma 6.7, the
following holds.

Corollary 6.8. Suppose that ψε and ψεn are the respective solutions of equations (1.2) and (1.13)
with the same initial datum LεU ε0 , where U ε0 = Πn(εDx)U ε0 . Then for every T > 0 there exist
CT > 0 such that, uniformly in ε,

sup
t∈[0,T ]

‖ψε(t, ·)− ψεn(t, ·)‖L2(Rd) ≤ CT ε.
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The proof is a direct consequence of Lemma 6.7, since Lemma 6.2 ensures that

‖ψε(t, ·)− ψεn(t, ·)‖L2(Rd) ≤ C‖U ε(t, ·)− Ũ ε(t, ·)‖L2(Rd,Hs(Td)).

We now conclude our analysis of the Bloch component ψεn(t, ·). The following result gathers
the remaining information that we will need in order to conclude, together with Corollary 6.8,
the proof of Theorem 1.2.

Proposition 6.9. The family ψεn solves equation (1.13){
iε2∂tψ

ε
n(t, x)− %n(εDx)ψεn(t, x)− ε2Vext(t, x)ψεn(t, x) = ε2f εn(t, x),

ψεn|t=0(x) = ψε0(x)

with (1.15): ‖f εn(t, ·)‖L2(Rd) ≤ Cε for all t ∈ R, ε > 0.

Proof. Let us first prove that ψεn solves (1.13). We denote by J the set of the indexes of the Bloch
eigenfunctions ϕj(·, ξ) which form an orthonormal basis of Ran Πn(ξ). Define for j ∈ J ,

uεj(t, x) :=

∫
Td
ϕj(y, εDx)Ũ ε(t, x, y)dy,

and notice that:

ψεn(t, x) = (LεŨ ε)(t, x) =
∑
j∈J

ϕj

(x
ε
, εDx

)
uεj(t, x).

Since Ũ ε solves (6.5) and P (ξ)ϕj(·, ξ) = %n(ξ)ϕj(·, ξ) for all ξ ∈ Rd, the family uεj solves:

iε2∂tu
ε
j(t, x) = %n(εDx)uεj(t, x) + ε2Vext(t, x)uεj(t, x) + ε2gεj (t, x),

where:

gεj (t, x) :=

∫
Td

[ϕj(y, εDx), Vext(t, x)]U ε(t, x, y)dy.

Since %n(ξ) is 2πZd-periodic, it is easy to check that:

[Lεϕj(·, εDx), %n(εDx)] = 0.

Summing the relations over j ∈ J , this implies (1.13) with f εn = Lε[Πn(εDx), Vext]U
ε. Now,

Lemma 6.2 and the symbolic calculus of pseudodifferential operators gives, for any t ∈ R:

‖f εn(t, ·)‖L2(Rd) ≤ C ‖[Πn(εDx), Vext(t, ·)]U ε(t, ·)‖L2(Rd;Hs(Td)) ≤ C
′ε‖U ε(t, ·)‖L2(Rd;Hs(Td)),

which concludes the proof. �

6.4. Proofs of Theorems 1.2. The proof of Theorem 1.2 (which implies Corollary 1.4) easily
follows from our results so far.

Proof. By Corollary 6.6, the family (ψε(t, ·)) is ε-oscillating. Therefore, the weak limits of
|ψε(t, x)|2dx are the projection on Rdx of the Wigner measures associated with (ψε(t, ·)). By
Corollary 6.8, the Wigner measures of (ψε(t, ·)) coincide with those of (ψεn(t, ·)). Finally,
Proposition 6.9 allows us to use the results of Theorem 2.1 for determining the Wigner mea-
sure of (ψεn(t, ·)). �
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6.5. Some comments on initial data that are a finite superposition of Bloch modes. Our
results also apply to initial data that are a finite linear combination of the form:

(6.6) ψε0 =
∑
n∈N

LεU ε0,n

with N a finite subset of N such that for all n ∈ N , P (εDx)U ε0,n = %n(εDx)U ε0,n, for distinct
%n of constant multiplicity and U ε0,n uniformly bounded in Hs

ε (Rd × Td) for all n ∈ N .

Proposition 6.10. Assume we turn (3) into (6.6) in the hypothesis of Assumption 1.1 and that
item (2) of Assumption 1.1 holds for every %n with n ∈ N . Then, there exist a subsequence
(εk)k∈N, positive measures νn ∈M+(T ∗Λn), and measurable families of self-adjoint, positive,
trace-class operators

M0,n : T ∗ξ Λn 3 (v, ξ) 7−→M0,n(v, ξ) ∈ L1
+(L2(NξΛn)), TrL2(NξΛn)M0,n(v, ξ) = 1,

such that for for every a < b and φ ∈ Cc(Rd) one has:

lim
k→∞

∫ b

a

∫
Rd
φ(x)|ψεk(t, x)|2dxdt

=
∑
n∈N

∫ b

a

∫
T ∗Λn

TrL2(NξΛn) [mφ(v, ξ)Mn(t, v, ξ)] νj(dv, dξ)dt,

where Mn(·, v, ξ) ∈ C(R;L1
+(L2(NξΛn)) solves the Heisenberg equation (1.11) with initial

data M0,n associated with the concentration of ψε0 on Λn.

Proof. We associate to any n ∈ N their respective Bloch components ψεn(t, ·) of ψε(t, ·) as we
previously did. We juste have to prove that for all n, n′ ∈ N , n 6= n′,∫

R
θ(t) (opε(a)ψεn(t, ·), ψεn′(t, ·))−→

ε→0
0,

which implies that the Wigner measure of
∑

n∈N ψ
ε
n is the sum of the Wigner measures of

the ψεn. We take a ∈ C∞c (R2d) and ã = (%n − %n′)−1a ∈ C∞c
(
R2d
)
; then, for all t ∈ R,

(opε(a)ψεn(t, ·), ψεn′(t, ·)) = (opε(ã)%n(εDx)ψεn(t, ·), ψεn′(t, ·))
− (opε(ã)ψεn(t, ·), %n′(εDx)ψεn′(t, ·)) +O(ε)

from which we deduce:

(opε(a)ψεn(t, ·), ψεn′(t, ·)) = iε2 d

dt
(opε(ã)ψεn(t, ·), ψεn′(t, ·)) +O(ε).

Therefore, if θ ∈ C∞c (R), then∫
R
θ(t) (opε(a)ψεn(t, ·), ψεn′(t, ·)) dt = O(ε) + iε2

∫
R
θ(t)

d

dt
(opε(ã)ψεn(t, ·), ψεn′(t, ·)) dt

= O(ε)− iε2

∫
R
θ′(t) (opε(ã)ψεn(t, ·), ψεn′(t, ·)) dt = O(ε).

�
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APPENDIX A. SEMICLASSICAL PSEUDODIFFERENTIAL OPERATORS

In this appendix we recall a few basic notions on the theory of pseudodifferential operators
that we use trough this article. The reader can consult the references [1, 17, 21, 44, 50] for
additional background and for proofs of the results that follow.

Recall that given a function a ∈ C∞(Rd × Rd) that is bounded together with its derivatives
(we denote the space of all such functions by S), one defines the semiclassical pseudodifferential
operator of symbol a obtained through the Weyl quantization rule to be the operator opε(a) that
acts on functions f ∈ S(Rd) by:

opε(a)f(x) =

∫
Rd×Rd

a

(
x+ y

2
, εξ

)
eiξ·(x−y)f(y)dy

dξ

(2π)d
.

These operators are bounded in L2(Rd). The Calderón-Vaillancourt theorem [13] ensures the
existence of a constant Cd > 0 such that for every a ∈ S one has

(A.1) ‖opε(a)‖L(L2(Rd)) ≤ CdN(a),

where
Nd(a) :=

∑
α∈N2d,|α|≤J0

sup
Rd×Rd

|∂αx,ξa|

for some J0 ∈ N depending only on d. We make use repeatedly of the following result, known
as the symbolic calculus for pseudodifferential operators.

Proposition A.1. Let a, b ∈ S, then

opε(a)opε(b) = opε(ab) +
ε

2i
opε({a, b}) + ε2R(2)

ε ,

with {a, b} = ∇ξa · ∇xb−∇xa · ∇ξb and

[opε(a), opε(b)] =
ε

i
opε({a, b}) + ε3R(3)

ε ,

‖R(j)
ε ‖L(L2(Rd)) ≤ C sup

|α|+|β|=j
Nd(∂

α
ξ ∂

β
xa)Nd(∂

β
ξ ∂

α
x b), j = 1, 2,

for some constant C > 0 independent of a, b and ε.

APPENDIX B. TRACE OPERATOR-VALUED MEASURES

In this appendix we recall general considerations on operator-valued measures. Let X be a
complete metric space and (Y, σ) a measure space; write H := L2(Y, σ) and denote by L1(H),
K(H) and L(H) the spaces of trace-class, compact and bounded operators onH respectively. A
trace-operator valued Radon measure on X is a linear functional:

M : C0(X) −→ L1(H)

satisfying the following boundedness condition. For every compact K ⊂ X there exist a con-
stant CK > 0 such that:

Tr |M(φ)| ≤ CK sup
K
|φ|, ∀φ ∈ C0(K).
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Such an operator-valued measure is positive if for every φ ≥ 0, M(φ) is an Hermitian positive
operator. Let M be a positive trace operator-valued measure on X , denote by ν ∈ M+(X) the
positive real measure defined by:∫

X
φ(x)ν(dx) = TrM(φ), ∀φ ∈ C0(X).

The Radon-Nikodym theorem for operator valued measures (see, for instance, the appendix in
[26]) ensures the existence of a ν-locally integrable function:

Q : X 7−→ L1(H), TrQ(x) = 1, Q(x) positive Hermitian for ν-a.e.x ∈ X,

such that:

M(φ) =

∫
X
φ(x)Q(x)ν(dx), ∀φ ∈ C0(X).

Note that this formula implies that M can be identified to a positive element of the dual of
C0(X;K(H)) via:

〈M,T 〉 ≡
∫
X

Tr[T (x)M(dx)] :=

∫
X

Tr(T (x)Q(x))ν(dx), T ∈ C0(X;K(H)).

It can be also shown that every such positive functional arises in this way. Let (ej(x))j∈N denote
an orthonormal basis ofH consisting of eigenfunctions of Q(x):

Q(x)ej(x) = %j(x)ej(x),
∞∑
j=1

%j(x) = 1, ν-a.e..

Clearly, both %j and ej , j ∈ N, are locally ν-integrable and

Q(x) =

∞∑
j=1

%j(x)|ej(x)〉〈ej(x)|, ν-a.e.,

where, as usual, |ej(x)〉〈ej(x)| denotes the orthogonal projection inH onto ej(x). Moreover, as
a consequence of the monotone convergence theorem, the following result easily follows.

Lemma B.1. Let M be a positive trace operator-valued measure on X . Then there exist a
non-negative function ρ ∈ L1

loc(X, ν;L1(Y, σ)) such that, for every a ∈ C0(X;L∞(Y, σ)) one
has: ∫

X
Tr[ma(x)M(dx)] =

∫
X

∫
Y
a(x, y)ρ(x, y)σ(dy)ν(dx),

where ma(x) denotes the operator acting on H by multiplication by a(x, ·). The density ρ is
given by:

ρ(x, y) =

∞∑
j=1

%j(x)|ej(x, y)|2.
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APPENDIX C. PROOF OF LEMMA 4.3

We denote by Fε the semi-classical Fourier transform defined for f ∈ L2(Rd) by

Fεf(ξ) = (2πε)−d/2f̂

(
ξ

ε

)
and we observe that for a ∈ C∞c (R3d),

(opε(aε)f , f) = (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
e
i
ε
x·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)dξ dξ′ dx,

where aε is associated with a according to (4.1). We consider a smooth cut-off function χ which
is equal to 1 on the support of a so that we have a(x, ξ)χ(ξ) = a(x, ξ) and we write

(opε(aε)f , f) =

(2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
e
i
ε
x·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)χ(ξ)χ(ξ′)dξ dξ′ dx+O(ε).

The rest term O(ε) comes from Taylor formula close to ξ+ξ′

2 , the observation that

(ξj − ξ′j)e
i
ε
x·(ξ−ξ′) =

ε

i
∂xj

(
e
i
ε
x·(ξ−ξ′)

)
, 1 ≤ j ≤ d,

and the use of integration by parts in x. Similarly, we just need to consider vectors (ξ, ξ′)
which are close to the diagonal and if we introduce a smooth function Θ compactly supported
on |ξ| ≤ 1 and equal to 1 close to 0, then for some δ > 0 (that will be chosen small enough
later), we have

(opε(aε)f , f) = (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
× e

i
ε
x·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)Θ

(
ξ − ξ′

δ

)
χ(ξ)χ(ξ′)dξ dξ′ dx+O(ε).

We are left with the integral

Iε = (2πε)−d
∫
R3d

aε

(
−x, ξ + ξ′

2

)
e
i
ε
x·(ξ−ξ′)Fεf(ξ′)Fεf(ξ)χ(ξ)χ(ξ′)

×Θ

(
ξ − ξ′

δ

)
dξ dξ′ dx

= (2πε)−d
∫
R3d

aε

(
−x, Φ(ζ) + Φ(ζ ′)

2

)
e
i
ε
x·(Φ(ζ)−Φ(ζ′))Fεf(Φ(ζ ′))

×Fεf(Φ(ζ))JΦ(ζ) JΦ(ζ ′)χ ◦ Φ(ζ)χ ◦ Φ(ζ ′)Θ

(
Φ(ζ)− Φ(ζ ′)

δ

)
dζ dζ ′ dx

where ζ 7→ JΦ(ζ) is the Jacobian of the diffemorphism Φ. Setting

ζ = θ + ε
v

2
and ζ ′ = θ − εv

2
,

we have for t ∈ R,

Φ(θ + εtv) = Φ(θ) + εtdΦ(θ)v + ε2

∫ 1

0
d2Φ(θ + εtsv)[v, v](1− s)ds,
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whence
1

2

(
Φ(ζ) + Φ(ζ ′)

)
= Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v],

Φ(ζ)− Φ(ζ ′) = εdΦ(θ)v + ε2B−ε (θ, v)[v, v],

with

B±ε (θ, v) =

∫ 1

0
d2
(

Φ
(
θ + εs

v

2

)
± Φ

(
θ − εsv

2

))
(1− s)ds.

Note that the functions B±ε are smooth, bounded and with bounded derivatives, uniformly in ε,
as soon as the variables θ and εv are in a compact. We obtain

Iε = (2π)−d
∫
R3d

aε

(
−x,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
eix·(dΦ(θ)v+εB−ε (θ,v)[v,v])

×Fεf
(

Φ
(
θ − εv

2

))
Fεf

(
Φ
(
θ + ε

v

2

))
JΦ

(
θ + ε

v

2

)
JΦ

(
θ − εv

2

)
dθ dθ′ dx,

where we have omitted the localization functions in θ + εv2 and θ − εv2 , which makes that the
integral is compactly supported in θ and εv Moreover, we have ε|v| ≤ δ on the domain of
integration. We shall crucially use this information later.

The change of variable x =t dΦ(θ)−1u gives

Iε = (2π)−d
∫
R3d

aε

(
− tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
×eiu·v+iεu· tdΦ(θ)−1B−ε (θ,v)[v,v]Fεf

(
Φ
(
θ − εv

2

))
Fεf

(
Φ
(
θ + ε

v

2

))
× JΦ

(
θ + ε

v

2

)
JΦ

(
θ − εv

2

)
J−1

Φ (θ) dθ dθ′ du,

with the same property on the domain of integration (θ in a compact and ε|v| < δ). Note that

aε

(
− tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
= a

(
− tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v],

1

ε
B

(
Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
ϕ

(
Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

))
= a

(
− tdΦ(θ)−1u,Φ(θ), B (Φ(θ))

θ′

ε

)
+ εrε

(2)(θ, u, v)[v, v].

The matrix r(2)
ε is supported in a compact independent of ε in the variables (u, θ). Besides, the

matrix r(2)
ε is smooth, bounded, and with bounded derivatives, uniformly in ε, as soon as the

variable εv is in a compact, which is the case on the domain of integration of the integral Iε.
Using Taylor formula on the Jacobian terms, we write

aε

(
− tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
JΦ

(
θ + ε

v

2

)
JΦ

(
θ − εv

2

)
= a

(
− tdΦ(θ)−1u,Φ(θ), B (Φ(θ))

θ′

ε

)
JΦ(θ)2 + εr(2)

ε (θ, u, v)[v, v] + εr(1)
ε (θ, u, v) · v,
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where the vector r(1)
ε is supported in a compact independent of ε in the variables (u, θ) and,

as rε(2), is smooth, bounded, and with bounded derivatives, uniformly in ε on the domain of
integration of the integral Iε (where θ is in a compact and ε|v| ≤ δ, δ to be chosen later).

Denote by Uε the isometry of L2(Rd) :

f ε 7→ JΦ(·)
d
2Fεf (Φ (·)) ,

then
(opε(aε)f , f) = (opε (ãε)Uεf , Uεf) + ε (RεUεf , Uεf) ,

with

ãε(u, θ) = a

(
− tdΦ(θ)−1u,Φ(θ), B (Φ(θ))

θ′

ε

)
,

and where Rε is the operator of kernel

(θ, θ′) 7→ (2πε)−dKε

(
θ + θ′

2
,
θ − θ′

ε

)
,

with Kε = K
(1)
ε +K

(2)
ε ,

K(1)
ε (θ, v) =

∫
Rd

(
r(1)
ε (θ, u, v) · v + r(2)

ε (θ, u, v)[v, v]
)

eiu·v+iεu· tdΦ(θ)−1B−ε (θ,v)[v,v]du,

K(2)
ε (θ, v) =

∫
Rd
aε

(
tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
eiu·v

× 1

ε

[
eiεu·

tdΦ(θ)−1B−ε (θ,v)[v,v] − 1
]
du.

The proof concludes by Schur lemma and the next result.

Lemma C.1. Let us fix δ small enough. Then, for any j ∈ {1, 2}, there exists a constant Cj > 0
such that for all ε > 0, ∫

Rd
sup
θ∈Rd
|K(j)

ε (θ, v)|dv ≤ Cj .

Indeed, by this Lemma, we obtain that for all ε > 0

(2πε)−d
∫
Rd

sup
θ∈Rd

∣∣∣∣Kε

(
θ + θ′

2
,
θ − θ′

ε

)∣∣∣∣ dθ′ = (2π)−d
∫
Rd

sup
θ∈Rd
|Kε (θ − εv, v) |dv

≤ (2π)−d
∫
Rd

sup
θ∈Rd
|Kε (θ, v) |dv ≤ C1 + C2,

and similarly

(2πε)−d
∫
Rd

sup
θ′∈Rd

∣∣∣∣Kε

(
θ + θ′

2
,
θ − θ′

ε

)∣∣∣∣ dθ = (2π)−d
∫
Rd

sup
θ′∈Rd

|Kε

(
θ′ + εv, v

)
|dv

≤ (2π)−d
∫
Rd

sup
θ′∈Rd

|Kε

(
θ′, v

)
|dv ≤ C1 + C2,

By Schur Lemma, these two inequalities yield the boundedness of Rε uniformly in ε as an
operator on L2(Rd).

Let us now prove Lemma C.1.
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Proof. Note first that the functions K(j)
ε are compactly supported in the variable θ, uniformly

in ε. We are going to prove that for any N > 0, there exists a constant CN,j such that, for
|v| > 1,

(1 + |v|2)N
∣∣∣K(j)

ε (θ, v)
∣∣∣ ≤ CN,j .

These inequalities are enough to conclude as in the lemma. For proving these inequalities, we
crucially use that the domain of integration in u is compact and we shall gain the decrease in v
by using the oscillations inside the integral.

Let us first focus on K(1)
ε . Since θ is in a compact and B−ε is bounded, we have∣∣v + ε tdΦ(θ)−1B−ε (θ, v)[v, v]

∣∣ ≥ |v| −Mδ|v|

for some constant M . Therefore, if δM < 1/2, we have∣∣v + ε tdΦ(θ)−1B−ε (θ, v)[v, v]
∣∣ > 1

2
|v|,

and, for |v| > 1, integration by parts give

K(1)
ε (θ, v) =

∫
Rd

∣∣v + ε tdΦ(θ)−1B−ε (θ, v)[v, v]
∣∣−2N

(
∆N
u r

(1)
ε (θ, u, v) · v + ∆N

u r
(2)
ε [v, v]

)
× eiu·v+iεu· tdΦ(θ)−1B−ε (θ,v)[v,v]du.

Since r(1)
ε and r(2)

ε have smooth compactly supported derivatives in u, uniformly bounded in ε,
we obtain the existence of a constant CN,1 such that

|K(1)
ε (θ, v)| ≤ |v|−2NCN,1.

Let us now study K(2)
ε that we turn into

K(2)
ε (θ, v) = i

∫ 1

0

∫
Rd
u tdΦ(θ)−1B−ε (θ, v)aε

(
tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
× eiu·v+itεu· tdΦ(θ)−1B−ε (θ,v)[v,v]dudt.

Once written on this form, one can see that the arguments developed for K(1)
ε apply again since

the function

u 7→ u tdΦ(θ)−1B−ε (θ, v)aε

(
tdΦ(θ)−1u,Φ(θ) +

ε2

2
B+
ε (θ, v)[v, v]

)
is compactly supported in the variable u, smooth and bounded with derivatives that are bounded
uniformly in ε. �
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[12] Felix Bloch. Über die Quantenmechanik der Electronen in Kristallgittern. Z. Phys, 52:555–600, 1928.
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[27] Patrick Gérard and Éric Leichtnam. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math.

J., 71(2):559–607, 1993.
[28] Patrick Gérard, Peter A. Markowich, Norbert J. Mauser, and Frédéric Poupaud. Homogenization limits and

Wigner transforms. Comm. Pure Appl. Math., 50(4):323–379, 1997.
[29] Morris W. Hirsch. Differential topology, volume 33 of Graduate Texts in Mathematics. Springer-Verlag, New

York, 1994. Corrected reprint of the 1976 original.



36 V. CHABU, C. FERMANIAN, AND F. MACIÀ
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[31] Frank Hövermann, Herbert Spohn, and Stefan Teufel. Semiclassical limit for the Schrödinger equation with a
short scale periodic potential. Comm. Math. Phys., 215(3):609–629, 2001.

[32] Peter Kuchment. The mathematics of photonic crystals. In Mathematical modeling in optical science, volume 22
of Frontiers Appl. Math., pages 207–272. SIAM, Philadelphia, PA, 2001.

[33] Peter Kuchment. On some spectral problems of mathematical physics. In Partial differential equations and
inverse problems, volume 362 of Contemp. Math., pages 241–276. Amer. Math. Soc., Providence, RI, 2004.

[34] Peter Kuchment. An overview of periodic elliptic operators. Bull. Amer. Math. Soc. (N.S.), 53(3): 343–414,
2016.
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