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Abstract

We study the empirical measure associated to a sample of size n and
modified by N iterations of the raking-ratio method. This empirical mea-
sure is adjusted to match the true probability of sets in a finite parti-
tion which changes each step. We establish asymptotic properties of the
raking-ratio empirical process indexed by functions as n — +oo, for NV
fixed. We study nonasymptotic properties by using a Gaussian approx-
imation which yields uniform Berry-Esseen type bounds depending on
n, N and provides estimates of the uniform quadratic risk reduction. A
closed-form expression of the limiting covariance matrices is derived as
N — +4o00. In the two-way contingency table case the limiting process has
a simple explicit formula.
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1 Introduction

1.1 The raking-ratio method

In survey analysis, statistics, economics and computer sciences the raking-ratio
iterative procedure aims to exploit the knowledge of one or several marginals
of a discrete multivariate distribution to fit the data after sampling. Despite
many papers from the methodological and algorithmic viewpoint, and chapters
in classical textbooks for statisticians, economists or engineers, no probabilistic
study is available to take into account that the entries of the algorithm are
random and the initial discrete measure is empirical. We intend to fill this gap.
Let us first describe the algorithm, usually considered with deterministic entries,
then recall the few known results and state the open question to be addressed.

The raking-ratio algorithm. A sample is drawn from a population P for
which k > 2 marginal finite discrete distributions are explicitly known. Initially,
each data point has a weight 1/n. The ratio step of the algorithm consists in
computing new weights in such a way that the modified empirical joint distri-
bution has the currently desired marginal. The raking step consists in iterating
the correction according to another known marginal law, changing again all the
weights. The k margin constraints are usually treated in a periodic order, only
one being fulfilled at the same time. The raking-ratio method stops after N
iterations with the implicit hope that the previous constraints are still almost
satisfied. See Section [.1| for an elementary numerical example with k& = 2 and
Section [T.4] for notation and mathematical definition of the algorithm.

The limit. This algorithm was called iterative proportions by Deming and
Stephan [10] who first introduced it. They showed that the k margins converge



to the desired ones as N — +o0o. They even claimed that if the frequencies of
a multiway contingency table are raked periodically as N — +o0o they converge
to the frequencies minimizing the chi-square distance to the initial frequencies,
under the k margin constraints. Two years later, Stephan [25] observed that it is
wrong and modified the algorithm accordingly to achieve the chi-square distance
minimization. Lewis [I8] and Brown [7] studied the case of Bernoulli marginals
from the Shannon entropy minimization viewpoint. When k = 2 a two-way
contingency table can be viewed as a matrix. Sinkhorn [22] 23] proved that a
unique doubly stochastic matrix can be obtained from each positive square ma-
trix by alternately normalizing its rows and its columns, which shows that the
algorithm converges in this special case. Finally Ireland and Kullback [I6] gen-
eralized previous arguments to rigorously justify that the raking-ratio converges
to the unique projection of the empirical measure in Shannon-Kullback-Leibler
relative entropy on the set of discrete distributions satisfying the k margin con-
straints. From a numerical viewpoint, the rate of convergence of the algorithm
is geometric, see Franklin and Lorentz [15].

Remark A. When minimizing contrasts such as discrimination information, chi-
square distance or likelihood, the minimizers are not explicit due to the non-
linearity of sums of ratios showing up in derivatives. This is why converging
algorithms are used in practice. In the case of the iterative proportions algo-
rithm each step is easily and fastly computed. What has been studied concerns
the convergence when the iterations N — +o00, with n fixed and initial empirical
frequencies treated as deterministic entries. When the sample size n — +o0,
these entries are close to P itself, which satisfies the marginal constraints, hence
one expects that the number N of iterations necessary to converge is small. We
shall study the Ny first iterations in the statistical setting n — +o0c.

Non explicit bias and variance. The initial values being empirical frequen-
cies the converged solution of the algorithm as N — +oco is a joint distributions
fulfilling the marginal requirements that still deviates from the true population
distribution P, and moreover in a rather complicated way. The modified empir-
ical distribution satisfying only the marginal constraint of the current iteration,
there is a permanent bias with respect to other margins, and hence with P. The
exact covariance matrix and bias vector of the random weights after IV itera-
tions are tedious to compute. For instance, estimates for the variance of cell
probabilities in the case of a two-way contingency table are given by Brackstone
and Rao [6] for N < 4, Konijn [I7] or Choudhry and Lee [§] for N = 2. Bankier
[2] proposed a recursive linearization technique providing an estimator of the
asymptotic variance of weights. In Binder and Théberge [4] the variance of the
converged solution requires to calculate weights at each iteration.

Open question. Since exact computations lead to intractable formulas for the
bias and variance of frequencies and statistics as simple as means, an important
open problem is to identify leading terms when n is large compared to N. We
derive comprehensive explicit formulas as n — 400 for N < Ny and Ny fixed,
then for N — +oo. In order to further analyze the raking ratio method it is
moreover desirable to control simultaneously large classes of statistics and hence



to work at the empirical measure level rather than with the empirical weights or
a single statistic only. This is the main motivation for the forthcoming general
study of empirical measures indexed by functions and modified through auxiliary
information given by partitions.

1.2 Statistical motivation

Representative sample. In a survey analysis context, the raking-ratio method
modifies weights of a contingency table built from a sample of size n in order
to fit exactly given marginals. Such a strict margin correction is justified when
a few properties of the finite population under study are known, like the size
of sub-populations. The modified sample frequencies then reflect the marginal
structure of the whole population. If the population is large or infinite the in-
formation may come from previous and independent statistical inference, from
structural properties of the model or from various experts.

Remark B. Making the sample representative of the population is an ad hoc
approach based on common sense. The mathematical impact is twofold. On
the one hand all statistics are affected by the new weights in terms of bias,
variance and limit law so that practitioners may very well be using estimators,
tests or confident bands that have lost their usual properties. On the other
hand, replacing marginal frequencies with the true ones may smooth sample
fluctuations of statistics correlated to them while leaving the uncorrelated ones
rather unaffected. These statements will be quantified precisely at Section

Remark C. Fitting after sampling is a natural method that has been re-invented
many times in various fields, and was probably used long time ago. Depending
on the setting it may be viewed as stratification, calibration, iterating propor-
tional fitting, matrix scaling and could be used to deal with missing data. Many
fitting methods may be reduced to a raking-ratio type algorithm. We initially
called it auxiliary information of partitions as we re-invented it as a special case
of the nonparametric partial information problem stated in Section [I.3]

Remark D. An asymptotic approach is no more relevant in survey analysis when
the underlying population is rather small. In the small population case, the way
the sample is drawn has a so deep impact that it may even become the main
topic. A study of calibration methods for finite population can be found in
Deville and Sarndal [111, [12]. This is beyond the scope of our work.

Quadratic risk reduction. Modifying marginals frequencies of a sample may
induce serious drawbacks. One should ask whether or not the estimation risk
can be controlled. Typically, a statistic has more bias when sample weights are
changed by using raking, calibration or stratification methods after sampling.
In the spirit of Remark B, a variance reduction is expected if the statistic of
interest is strongly correlated to the k known discrete marginal variables. Now,
evaluating the quadratic risk of a specific statistic requires tedious expansions
for the bias, variance and correlations of weights, whence the very small N
studied in the literature. Likewise, no global risk reduction property has been



established as n — 400 and no multivariate or uniform central limit theorem.
These results are established at Propositions [ to [0}

Contributions. In this paper we consider classes of empirical means raked N
times, sampled jointly from any population. We derive closed-form expressions
of their Gaussian limits and their limiting covariances as n — +o0o then N —
+o00. We also quantify the uniform risk reduction phenomenon and provide
sharp statistical estimation tools such as uniform Berry-Esseen type bounds.
In particular, a Donsker invariance principle for the raked empirical process
provides joint limiting laws for additive statistics built from empirical means,
and this can be extended to non linear estimators by applying the delta method,
argmax theorems or plug-in approaches as in the classical setting — see [27], [28].

Organization of the paper. In Section we relate the raking-ratio prob-
lem to nonparametric auxiliary information. The raking-ratio empirical process
aglN) (F) is defined in Section Usual assumptions on an indexing class F
of functions are given in Section [2.1] In Section we state our results for
S (F) when the number N of iterations is fixed. Our main theorem is a
nonasymptotic strong approximation bound which yields the uniform central
limit theorem with rate as n — +o00, as well as an uniform control of the bias
and the covariances for fixed n. The approximating Gaussian process is studied
in Section [2.3] which establishes the uniform risk reduction phenomenon pro-
vided the iterations are stopped properly. In Section [2.4] in the two partitions
case we characterize explicitly the limiting process as N — +o00. All statements

are proved in Sections [3] and 4l The provides a few examples.

1.3 An auxiliary information viewpoint

Let Xi,..., X,, be independent random variables with unknown law P on some
measurable space (X,.A). Assumptions like separability or Haussdorf property
are not necessary for this space. Let ¢, denote the Dirac mass at z € X and
consider the empirical measure P,, =n~'>""" | dx, on A.

Auxiliary information. Our interest for the raking-ratio method came while
investigating how to exploit various kinds of partial information on P to make
P,, closer to P. The auxiliary information paradigm is as follows. Usually what
is assumed on P is formulated in terms of technical or regularity requirements.
Sometimes it is relevant to assume that P satisfies simple properties that could
be tested or estimated separately. Consider the following two extreme situa-
tions. First, a parametric model provides a tremendous amount of information
by specifying P = Py up to a finite dimensional parameter 6, so that P, can
be replaced with the most likely Py, (x, ... x,) among the model. Notice that
IP,, is used to minimize the empirical likelihood, but the resulting Py (x, .. x.)
is of a very different nature, far from the initial and discrete P,, thanks to the
valuable parametric information. On the opposite, in a purely nonparametric
setting the information mainly comes from the sample itself, so that only slight
modifications of P,, are induced by weak hypotheses on P — like support, regu-
larity, symmetry, logconcavity, Bayesian model, semi-parametric model, etc. In



between, we would like to formalize a notion of a priori auxiliary information
on P based on partial but concrete clues to be combined with the knowledge
of P,,. Such clues may come from experts, models, former inference, statistical
learning or distributed data. A generic situation one can start with is when the
probabilities P(A;) of a finite number of sets A; € A are known — which in a
parametric setting already determines 6 then P.

Information from one partition. If the A; form a finite partition of X then
the auxiliary information coincides with one discrete marginal distribution and a
natural nonparametric redesign PV of P,, is the following. Let A(1 . A,g“

A be a partition of X such that P(A1)) = (P(Agl)),...,P(Ag}lz)) is known.
According to Proposition [I| below, the random measure

mi P(A(l)
1 — =
]Pn - nz (A(l) Z 5Xm (11)
Jj= 7/ xealM

satisfies the auxiliary information P(l)(A(l)) = P(A;l)), for 1 < j < mq, and
is the relative entropy projection of P, on these m; constraints. The random
ratios in 1’ induce a bias between IP’%U and P. We prove that the bias of

ag) = \/ﬁ(IP’nl) — P) vanishes uniformly and that the limiting Gaussian process

of agll) has a smaller variance than the P-Brownian bridge.

Extension to N partitions. If some among the sets A; are overlapping then
the information comes from several marginal partitions. It is not obvious how to
optimally combine these sources of information since there is no explicit modifi-
cation of P, matching simultaneously several finite discrete marginals. In other
words there is no closed form expression of the relative entropy projection of P,
on several margin constraints. An alternative consists in recursively updating
the current modification P%Nﬁl) of IP,, onto IP’%N) according to the next known
marginal P(AM)) = (P(AEN)), . .,P(Ag,]LVN))) exactly as in for P from
P”) =P, and P (AM). This coincides with the Deming and Stephan’s iterative
procedure, that is the raking-ratio algorithm, as formalized in Section

1.4 Information from N finite partitions

The raking-ratio empirical measure. For all N € N, let my > 2 and
AN = {AgN),...,A%VN)} C A be a partition of X for which we are given
the auxiliary information P(AM)) = (P(AgN))7 e ,P(AgnNA?)) to be exploited.
Assume that

pN = min P(A(N)) >0, Ne€N, (1.2)

1<j<mnN
and ANND £ AN2) jf N1 — Na| = 1, otherwise AN = AV2) g allowed. For
N = 0 there is no information and mg = 1, A©® = {X}, P(A©) = {1}, py = 1.
For any measurable real function f write P%O)(f) =P.(f) =n" 30, F(Xi),



P(f) = [, fdP and a(o)(f) = /n(P (0)(f) — P(f)). In P allocates the

random weight P(Agl))/n]P’n( (1)) to each X, € A () Hence

(1))

U RACIVETE b X

J=1x, A<1>n]P>n(A )

mi P(A(l) mi P(A(l))

_ — (0)

- ZP (1) Z fx - ZP(O) 4D Py (flA(”)'
A\ 7 S =D (al)

Let define recursively, for N € N,, the N-th raking-ratio empirical measure

o p(AY)
N _ N-1
]P)’El )(f) _Z (Nfl)J (N) ]P)7(1 )(f]-A;N))v (13)
= P (A

and the N-th raking-ratio empirical process
oM (f) = V@ (f) = P(f)- (14)
For A € A we also write a%N)(A) = a%N)(lA). By 1' we have for all V € N,

PV (AM) = P(AY), oMMy =0, 1<j<my,  (15)

as desired. Both weights and support {X1,..., X, } of the discrete probability
measure P are random since l) also reads

P(AM)

P ({X,}) = P%N*“({XMW’

for X; € AEN)
A few more formulas concerning oz,(lN) and IP’(N) are derived in Section
Iterated Kullback projections. The random discrete measures IP’(l) . ,]P’,(zN)

are well defined provided that

min  min P, (A(k)) 0, (1.6)
1<k<N 1< <my

which almost surely holds for all n large enough and N fixed, by (1.2)) and the
law of large numbers. Given two probability measures @,, and @ supported by
{Xi, ..., X,,} we define the relative entropy of @,, and @ — see for instance [9] —

to be
& W log [ QnUXiD
dr(Qn || Q) = ;QA{XZW & ( QX)) ) '

Proposition 1. If @ holds then

E»(N)—argmm{dK( D1Q): QAN = P(AN), supp(Q):{Xl,...,Xn}}.



As a consequence, the formula means that the N-th iteration IP’%N) is the
Shannon-Kullback-Leibler projection of PV under the constraint P(AWN),
Therefore the raking-ratio method is an iterated maximum likelihood procedure.
A mixture of conditional empirical processes. By introducing, for A € A

such that P(A4) > 0 and IE”%N)(A) > 0, the conditional expectations

P (1) P(f1a)
EN(fl4) = - E(fl4) = , (L.7)
" P (A) P(A)
we see that (1.3]) further reads
my mN
N _ N N N
BO(f) = D PAFEN (14, P(r) =D PATE(ATY).
j=1 j=1
Therefore (|1.4) can also be formulated into
S pr 4, (V1)
ol () =D PAT)ay (),
j=1
oV () = Vit (BN (71N — E(f14)) (18)
Each 04,(1],\;71) is the conditional empirical process of P%Nﬁl) on a set A;N) of the

new partition AN). Their mixture with weights P(AMY)) is o™ In view of
E

1) and 1) we have to study the consequences of (|1.5)) on P%Nﬁl)(flAﬁm)
and EQV (f|A;N)) as n — +oo, for f £ 1 ,mv).
J

Bias and variance problem. The processes o™ from lb are not cen-

n,J

tered due to the factors 1/]P’£LN_1)(A§-N)) in 1) and 1) In general it holds

-1 - : :
£ (E(Y(7]4) - B(f14)) =E (W I <P;N—1>(A> r <A>>> a

except for (A, f) = (AEAN*D, 1 ,v-n) hence o) is no more centered if N > 1.

This unavoidable bias is induced by to globally compensate for the local
cancellation of the variance of P} (AN)) = P(AMN)). The bias tends to spread
through since the information P(AM)) is applied to the biased pV-Y
instead of the unbiased P,. The variance of IP%N)( f) for the step functions
f = 14 being null if A € A™ one expects that V(o (f)) < V(i (f)) for
many more functions f. Our results show that, uniformly over a large class of
functions, the bias vanishes asymptotically and the variance decreases, as well

as the quadratic risk, thus E((P%N)(f) - P(f))?) < E((P%O)(f) — P(f))?) for n
large.



2 Main results

2.1 The raking-ratio empirical and Gaussian processes

Let M denote the set of measurable real valued functions on (X, A). Consider
a class 7 C M such that sup;cz |f| < M < 400 and satisfying the pointwise
measurability condition often used to avoid measurability problems. Namely,
limy,—s 400 fm(x) = f(x) for all x € X and f € F where {f,,} C F. depends on
f and F, C F is countable. With no loss of generality also assume that

lafeF, AcAN =AD U .UAM | feF. (2.1)

In addition F is assumed to have either a small uniform entropy, like Vapnik-
Chervonenkis classes — for short, VC-classes — or a small P-bracketing entropy,
like many classes of smooth functions. These entropy conditions are defined
below and named (VC) and (BR) respectively For a probability measure
on (X,A) and f,g € M define d)(f,9) = [,(f — 9)?dQ. Let N(F,e,dg)
be the minimum number of balls having dg-radius € needed to cover F. Let
N )(F,e,dp) be the least number of e-brackets necessary to cover F, of the

form [g—,g+]={f:9- < f<g+} withdp(9-,94) <e€

Hypothesis (VC). For c¢g > 0, vg > 0 it holds supgy N (F,€,dq) < co/e™
where the supremum is taken over all discrete probability measures Q on (X, A).

Hypothesis (BR). Forby > 0, 9 € (0,1) it holds Nj |(F,e,dp) < exp(b3/e*™).

If one modifies a class F satisfying (VC) or (BR) by adding functions necessary
to also satisfy the condition then (VC) or (BR) still holds with a new
constant ¢y or by respectively. Many properties and examples of VC-classes or
classes satisfying (BR) can be found in Pollard [19], Van der Vaart and Well-
ner [27] or Dudley [I4]. Uniform boundedness is the less crucial assumption and
could be replaced by a moment condition allowing some truncation arguments,
however adding technicalities.

Let ¢>°(F) denote the set of real-valued functions bounded on F, endowed with
the supremum norm ||-|| z. The raking-ratio empirical process oY) defined at
is now denoted a(N)( F) = {a%N)( f): f€F}. Under (VC) or (BR) F is
a P—Donsker class — see Sections 2.5.1 and 2.5.2 of [27]. Thus a£?) (F) converges
weakly in ¢>°(F) to the P-Brownian bridge G indexed by F, that we denote
G(F) ={G(f) : f € F}. Hence G(F) is a Gaussian process such that f — G(f)
is linear and, for any f,g € F,

E(G(f) =0, Cov(G(f),G(g)) = P(fg9) — P(f)P(9)- (2.2)

As for oiY) we write G(© (F) = G(F) and, for short, G(A) = G(14) if A €
A. Remind . Let us introduce a new centered Gaussian process G(N) (F)
indexed by F that we call the N-th raking-ratio P-Brownian bridge and that is



defined recursively, for any N € N, and f € F, by

mpy
_ N - N
G (f) =GN (f) = Y E(AT )GV D (AFY). (2.3)
=1
The distribution of G®V) is given in Proposition Lastly, the following notation
will be useful,

ot =V(f(X)) = P(f*) = P(f)?, oF=supa}. (2.4)
feF

Notice that JJ% = V(a%o) (f) = V(GO(f)).

2.2 General properties

We now state asymptotic and nonasymptotic properties that always hold after
raking Ny times. The i.i.d. sequence {X,} is defined on a probability space
(Q, T,P) so that P implicitly leads all convergences when n — +o00 and (X, .A)
is endowed with P = PX1. For all N < N, the information P(.A(N)) satisfies
(L.2). Most of the subsequent constants can be bounded by using only Ny and

Pvo) = JRin, Py = Jmin, | Juin P47 > 0. (2:5)

Write L(z) = log(max(e, z)) and define ky, = H%‘;l(l + Mmpy).
Proposition 2. If F satisfies (VC) or (BR) then for all Ny € N it holds

o)

lim sup "

1
S ——
n—+oo y/2L o L(n) ogNgNo

Remark E. The limiting constant sy, < (1 + M/p(NO))NO is large, and possibly
largely suboptimal, except for Ny = 0 where kg = 1 coincides with the classical
law of the iterated logarithm — from which the proposition follows.

H < KN,OF @.S.
].'

The next result shows that the nonasymptotic deviation probability for HaELN) l=
can be controlled by the deviation probability of ||a£LO) |l which in turn can be
bounded by using Talagrand [26], van der Vaart and Wellner [27] or more recent
bounds from empirical processes theory. However, since the partition changes at
each step the constants are penalized by factors similar to kn, above, involving

No No No
PNU = H PN, 1\41\[(J = H mpy, SNO = Z my. (26)
N=1 N=1 N=1

Proposition 3. If F is pointwise measurable, bounded by M then for any Ny €
N, any n € N, and any A > 0 we have

P ( sup
0K N<No

o

AP
aglN)H > A) < 2N Ny My, P (‘ No )
_F

> TE A A
+Sno (1= povy)”

10



Under (BR) it holds, for n > ng and Ao < A\ < Dgy/n,

IE”( sup
0<N< Ny
where the positive constants Dy, D1, Dy, ng, Ao are defined at (@) Under
(VC) it holds, for n > ng and Mg < A\ < 2M+/n,

P < sup
0NNy

where the positive constants D3, Dy, ng, \g are defined at )

) H; > A) < Dyexp(=D2A%) + S, (1= pvy)) "

a;me > )\) < DsA™ exp(—DaA?) + Sn (1 - povgy)" s

Remark F. Clearly, to avoid drawbacks Ny should be fixed as n increases, and
F limited to the bare necessities for the actual statistical problem. In this case,
Proposition 3| shows that ||o<nN°)|| 7 is of order Cy/logn with probability less
than 1/n? and C' > 0. Concentration of measure type probability bounds for

||oz$LN°)||}- - E(||a£LNO)||;) are more difficult to handle due to the mixture 1’

of processes a

n,j  involving unbounded random coefficients.

Our main result is that the raking-ratio empirical processes a%o), . a%NO) jointly

converge weakly at some explicit rate to the raking-ratio P-Brownian bridges
GO, ...,GW™o) defined at (2.3) and studied in Section The RNo*1_valued
version can be stated as follows.

Proposition 4. If F satisfies (VC) or (BR) then for all Ng € N, as n — +00
the sequence (o) (F), ey ozg,,N“)(f)) converges weakly to (GO (F), ..., GINo) (F))
on Lo (F — RNoFL),

By using Berthet and Mason [3] we further obtain the following upper bound
for the speed of Gaussian approximation of oy in |-l = distance. The powers
provided at their Propositions 1 and 2 are a = 1/(2 + 51p), = (44 5v9) /(4 +

10v) and v = (1 — rg)/2r¢ — they could be slightly improved.

Theorem 2.1. Let 6y > 0. If F satisfies (VC) then write v, = (logn)?/n®.
If F satisfies (BR) then write v, = 1/(logn)Y. In both cases, one can define
on the same probability space (U, T,P) a sequence {X,,} of independent random
variables with law P and a sequence {G,} of versions of G satisfying the fol-
lowing property. For any Ny = 0 there exists ng € N and dy > 0 such that we
have, for all n > ng,

P ( sup
0< NNy
where GgN) is the version of GN) derived from G%O) = G, through .

Remark G. Applied with 6y > 1, Theorem [2.1] makes the study of weak conver-

gence of functions of aglN)(}" ) easier by substituting (G%N) to aslN) through

1
aglN) - G’szN)H 2 dO”n) < 0,
F nvo

. 1
limsup— sup

oM — G%N)H <dop < +o00  a.s.
n—+oo Un 0NNy F

11



then exploiting the properties induced by as in Section For instance
the finite dimensional laws of G(V) are computed explicitly at Proposition For
nonasymptotic applications, given a class F of interest it is possible to compute
crude bounds for ng and dp since most constants are left explicit in our proofs
as well as in [3]. Indeed dy depends on py, from ([2.5)), on Py,, My,, Sn, from
, on vy, o, ro, by from (VC) or (BR), on Ny, M, 0, and on some universal
constants from the literature.

Clearly, Theorem implies that the speed of weak convergence of a%N) to
i

GWM) in Lévy-Prokhorov distance dyp is at least dgv, — see (3.11f) and Section
11.3 of [I3] for a definition of this metric. More deeply, from Theorem [2.1] we
derive the following rates of uniform convergence for the bias and the variance.

Proposition 5. If F satisfies (VC) or (BR) then for Ny € N it holds

- vn (V)
- — <
lﬁilif o 0N ;gg‘E (IF’" (f)) P(f)’ < do,

where v, — 0 and dy are the same as in Theorem [2.1], and

) n
limsup — sup
n—+oo Un fgeF

B (P01~ PUNEL) - L)) ~ £ Cov (G, 6V ()

—limsup ™ sup ‘Cov (B (1), BN (g) — ~Cov (G<N><f>7G<N>(g>)‘ </ 2door.
n—+oo Un fgeF n s

By Proposition the bias process E(a%N)(f)) = \/H(E(IPSLN)(f)) — Pf) vanishes
at the uniform rate 1/y/n. The covariance of GMY) is computed in Section
and the quadratic risk is estimated at Remark I.

A second consequence of Theorem is uniform Berry-Esseen type bounds.
Let ® denote the distribution function of the centered standardized normal law.

Proposition 6. Assume that F satisfies (VC) or (BR), fit Ny € N and let
do > 0, v, = 0 be defined as in Theorem[2.1] If Fo C F is such that

o2 :mf{V(G(N)(f)) ;fefo,ogNgNo} >0,

then for any dy > dy there exists ny € N such that for alln > nq,

(NV)
Py, - P
max _ sup sup |P \/HM <z | —2(z)| < L11,1. (2.7)
OSN<SNo fe Fy zeR v (G(N) (f)) \/ﬂdo

Let L be a collection of real valued Lipschitz functions ¢ defined on Lo (F) with
Lipschitz constant bounded by C7 < +00 and such that @(G(N)) has a density
bounded by Co < +00 for all0 < N < Ny. Then for allp € L, n > nq,

My < z) — (M) < ‘ < . :
onax Zié[z iieig P ((p(an ) < x) P (@(G ) < x) < d1C1Cqv,.  (2.8)

12



Remark H. The formula ([2.7)) is a special case of the second one ([2.8) and reads

d;
Un-
V2moy "

The functions f € F overdetermined by the knowledge of P(AN)) have a small
V(GM)(f)) and are excluded from F,. Proposition @ is especially useful under
(VC) since vy, is then polynomialy decreasing, thus allowing larger C;Cs and L.
An example is given in Section[3] Whenever the class F is finite, the density of
the transform ¢(G(F)) of the finite dimensional Gaussian vector G(F) is easily
computed. The conditions for of Proposition@ are fulfilled if, for example,
all random variables o(G(F)) can be controlled by discretizing the small entropy
class F, by bounding their densities then by taking limits accordingly.

max Ssup su ]P’(ozglN) éx)—P(G(N) <x>‘<
oSy, SIP S (f) (f)

2.3 Limiting variance and risk reduction

In this section we study the covariance structure of GMV)(F) from , for N
fixed. The following matrix notation is introduced to shorten formulas. The
brackets [] refer to column vectors built from the partition A®) appearing
inside. Let V! denote the transpose of a vector V. For k < N write

t t
E |fAD] = (B(f14%),.. E(f14%) . 6 [A®] = (6(4),....6(al))

and, for [ < k < N define the matrix P 4040 to be
P(AY nAD)
P(A{")

Write Idy the identity matrix k& x k. Remind that V(G(f)) = P(f?) — (P(f))?,
P(A®)t = P[A®)] and P(Agk) N A§k)) = 0 if ¢ # j. The covariance matrix of
the Gaussian vector G[A®)] is V(G[A®]) = diag(P(A®))) — P(AF)t P(AR),
Let - denote a product between a square matrix and a vector. Finally define

(PAw)\A(z))i,j = P(A§k)|f41(-l)) = ;1< <imy, 1 <j <my.

oM (1) = E[11A%)] +

L 1
§ (=1)"P 4004 P g0 400 P aap a0 B {f|«4( L)} .
ISL<N—k
k<li<l2<..<lp<N

(2.9)

An explicit expression for G(V) is given in Lemma and the closed form for the
covariance function of GWV)(F) is as follows.

Proposition 7. For all N € N the process GWN)(F) is Gaussian, centered and
linear with covariance function defined to be, for (f,g) € F2,

N
Cov (6M(1), 6™ (9)) = Cov (G(1),G(9)) ~ 3 ¥V (1) -V (G1AM]) - 2" (g).

k=1

13



Proposition [7] implies the following variance reduction phenomenon.

Proposition 8. For any {f1,..., fm} C F and N € N the covariance matrices
=) = VI(GM(£1), ... GMN)(fr))) are such that 2O s s positive definite.

Remark I. In particular we have V(G (f)) < V(GO(f)) = o}, f € F. The
asymptotic risk reduction after raking is quantified by combining Propositions
and [8] Given 9 > 0 and 0 < 0¢ < oF there exists some ng = ng(gg, F) such
that if n > ngy then any f € F with initial quadratic risk a?/n > og/n has a
new risk, after raking N times, equal to

E (@) = P()?) = LA + (o),

n

where v, — 0 and dy are as in Theorem [2.1] and

(N)
A(f) = WGU*Q("C)) €[0,1],
f
sup_ le(f)[ < (1 +€o)\/§doafa
fEF, o500 T 90

N
V(6M() = a2 =S e () v (GlAM]) oV (p),  (210)
k=1

so that the risk is reduced whenever A(f) < 1 and n is large enough.

When N; > Ny > 0 it is not automatically true that the covariance structure
of a%Nl)(}' ) decreases compared to that of agN")(]:). According to the next
statement, a simple sufficient condition is to rake two times along the same

cycle of partitions.
Proposition 9. Let Ny, N1 € N be such that N1 > 2Ny and
AWo=R) — AN1=K) = for 0 < k < No.
Then it holds V(G (£)) < V(GPN(f)) for all f € F and S5 — 50 s
positive definite for all {f1,..., fm} C F.

Remark J. In Appendix |.2[ a counter-example with Ny = Ny + 1 shows that
the variance does not decrease for all functions at each iteration. This case is
excluded from Proposition [J]since Ny = Ny + 1 < 2Ny if Ny > 1 and, whenever
Ny =1 and N; = 2 the requirement AM0) = AN is not allowed.

2.4 The case of two marginals

We now consider the original method where k partitions are raked in a periodic
order. Let us focus on the case k = 2 of the two-way contingency table. The
Deming and Stephan algorithm coincides with the Sinkhorn-Knopp algorithm

14



for matrix scaling [24]. Denote A = AM) = {A;,...,A,,,} and B = A? =
{Bi,...; Bm,} the two known margins, thus A(zm'H) = A and AC™ = B.
Likewise for 1 < i < mq and 1 < j < mg rewrite (Pyg)i; = P(A;|B;),
(Pgja)ij = P(Bj|A;) and

K
=
!
§
=
@
N

3
&=
=
=
I

- . E(.ﬂAl)a"'7]E(f|Am1))t’
G[B] = (G(B1),...,G(Bm,))",  ElfIB] = (E(f|B1), ... E(f|Bm,))"-
The matrix P 45Ppj4 is m1 X m1 and P 4P 45 is ma x ma. A sum with a

negative upper index is null, a matrix with a negative power is also null, and a
square matrix with power zero is the identity matrix. For N € N, define

S en(f) = Z PyaPas)" - (EIfIA] — Pya-E[f|B]) ismy x 1, (2.11)
k=0

N
ngﬁgd = Z PA|BPB|A - (E[f|B] = P a5 - E[f|A]) is ma x 1, (2.12)
sggd(f) - S} N ot PeaPas) T E[fIA] is my x 1, (2.13)
Siven () = S5ha + (PasPsA)" T - E[f]B] is ma x 1. (2.14)

Proposition 10. Let m € N. We have

G (f) = G(f) — ST ()t GIA] = SSm.2)(f)E-GBl,  (2.15)
GV (f) = G(f) — S0 () GIA] - S5 () - GIB). (2.16)

Remark K. The limiting process G(N) evaluated at f is then simply G(f) with
a correction depending on the Gaussian vectors G[A] and G[B] through the two
deterministic matrices P 45 and Pp4 carrying the information and operating
on the conditional expectation vectors E[f|.A] and E[f|B].

The following assumption simplifies the limits and ensures a geometric rate of

. N
convergence for matrices SZ( ev)en and S§ O)dd as N — +oo.

Hypothesis (ER). The matrices P 4 5P |4 and Pp 4P 45 are ergodic.

Remark L. Notice that (ER) holds whenever the matrices have strictly positive
coefficients. This is true for P 4 3Pp4 if Z;ﬂ:zl P(ANB;)P(B;NA") > 0 for
all A, A’ € A hence if each pair A, A’ € A is intersected by some B € B with
positive probability. The latter requirement is for instance met if X = R?, P
has a positive density and the partitions concern two distinct coordinates.

Proposition 11. Under (ER) the matrices S5 (f) and Sl(];gd(f) forl=1,2

l,even

converge uniformly on F to Si even(f) and S odd(f) satisfymg

Sl,odd(f) = Sl,even(f) + P [.ﬂy S2,even(f) = S2,odd(f) + Py [f],

15



where Py[f] = (P(f),..., P(f))" are m; x 1 vectors. More precisely, given any
vector norms ||+||m, for 1 =1,2, there exists ¢, >0 and 0 < A\; < 1 such that

sup Hsheyen(f) - Sl,even(f)” < Cl)\{va
my

sup || S0 = StoaalN)]| < and.

fer my

The main result of this section is the simple expression of the limiting process for
a two partitions raking procedure. Let dy, p denote the Lévy-Prokhorov distance.
The matrices S1 even(f), S2,0ad(f) and scalars A1, Ay are as in Proposition
Theorem 2.2. Under (ER) the sequence {G™N)(F)} defined at converges
almost surely to the centered Gaussian process G(oo)(]-') defined to be

G (f) = G(f) = Steven(f)" - GLA] = Sz,0aa(f) - GIB], f € F.
Moreover we have, for all N large and c3 > 0 depending on A1, Ay, P(A), P(B),
de(G(N), G(Oo)) < c;;x/ﬁmax()\l, )\Q)N/2.

Theorem 2.2 may be viewed as a stochastic counterpart of the deterministic rate
obtained by Franklin and Lorentz [I5] for the Sinkhorn algorithm. Mixing both
approaches could strengthen the following two remarks.

Remark M. The matrices P 43, Ppl4 and the vectors E[f|A], E[f|B] are not
known without additional information. They can be estimated uniformly over
F as n — +oo0 to evaluate the distribution of GV) and G(°), thus giving access
to adaptative tests or estimators. Since A1, Ay and c3 are related to eigenvalues
of P 43Pp4 and Py 4P 45 they can be estimated adaptively at rate 1/y/n in
probability. This in turn provides an evaluation of dyp(G™), G(>)),

Remark N. In the case of an auxiliary information reduced to P(A), P(B) one
should use A = {A, A°}, B = {B, B}, estimate the missing P(AN B) in P 45,
P34 and the conditional expectations on the four sets, then Si even, 52,0da. If
the probabilities of more overlapping sets are known the above characterization
of the limiting process G(*)(F) can be generalized to a recursive raking among
k partitions {A;, AS} in the same order.

3 Proofs of general results

3.1 Raking formulas
Write

_ . . (N))
Bu.zva = {og%léljvo s Fn (AJ > 0} ’ (3.1)

and By, n = Q\ By n,. By 1) the probability that o) is undefined is

No
P( ”CLNO) g Z mn (1 _pN)n g SN(J (1 _p(No))n
N=1
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On B, n, we have, by 1' and since AY) is a partition,

aM(f)
= VPN (f) - P(f))

mN (A(N)) (N )
:\/ﬁ Zm flA(N) ZP(fIA(N))

g [P PL) o

= JE:I W(A(N)) (f].A(N)) WQLN 1)(A§N))
my  p A(N)

= Z P(N—(l)J(A(zV))a( ((f ]E(f|A(N )1 A(N)) . (3.2)
j=1-n J

By (1.7)) this implies (1.8)) since for any A € A,
alV I (f1a) = E(f|A)afN D (A) = POV (f14) — E(FJABY TV (A).

Define A? = {Q} and, for N > 1,
N 1 2 N .
) _ {A A=AV AP LAY G <my k< N}. (3.3)

For any A € AéN), ]P’%N) associates to each X; € A the weight

N (k)
P(A
WgN)(A) = ! H (k (1)jk ()k) :
k I]P (A )

Ik

The case N = 1 yields 1) By induction on lb 1] and since A%N) is a

refined finite partition of X', we get

(3.4)

MM N+1 N
+ (A( +1)) X
2 parn o Ulage)
]:
MmN 41 (A(N-H)

B Z W Z ZW(N) AmA(N“)(X)

AG.A(N) =1

PNED(f)

I
M: -
I,

MN+1
) D Y Lypanen (X)W (An AR
i=1 AeAUV) j=1
n
=3 FX) YD LaX)wN D (A).
=1 AeAg\Hl)
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3.2 Proof of Proposition
The partition A%N) is defined at ij By using || it holds, for N > 1

dic (B || BV

(N-1)
(N-1) o T({X))
ZP e < P (X)) )

Z wr(zN_l)(A)
DB Zlmm log<M>

AealN v i=1

my IP’(N 1) A(N) n
=> log (EN))>Z]P> x> 1A0A§_N>(Xi)

j=1 P(A AN~V
ma PN=1) (4 ()
S ] 65
=1 P(A;™)
since .A[(qN_l) is a partition of X'. Hence the contrast between PV and PV

the same on {X1,..., X, } as on AY). Now, by convexity of —log(z) it follows,
for any probability distribution @ supported by {X7, ..., X, },

aic (P01 Q)
- QUXD |\ E e
PR (W) 2 BTN g0 ()
(N

n

:*gpﬁN“(AEN))Zi( s Ly (X;) log (Q({XZ’}) )

=P YA BV (X))
> ZNP%NA)(AJ(,N))log (Z % A (XZ-))
j=1 % 1 7
P V(A7)

— N— (N) N-1 N
ZP( A log (P(A(N))> dx (P% ) I ]P)Ez )) )
J

where the final identification relies on 1) and IP’%N) =P on AW

3.3 Proof of Proposition

The classical law of the iterated logarithm holds for the empirical process a( )
indexed by F under (VC) and (BR). See Alexander [I], in particular Theorem
2.12 for (BR) and Theorem 2.13 based on Theorem 2.8 that uses in its proof
the consequence of Lemma 2.7, which is indeed (VC). Namely, for any € > 0,
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with probability one there exists n(w) such that, for all n > n(w),

n

H[PO — PllF <1 n = g [ mg——
unl[Brn” = Pllr <1e u 20ZLo L(n)’

where 0% = supr V(f) < M?. Let 1 < N < Np. By ([1.3) it holds
PAM) R
]:

N N- (N—1
POV (f) — P ZP )flA(m) )A

Jj=1

=Y ENI(f AR (P<A§-N>> — PN
j=1

Since PYY) is a probability measure we have ||IP’$L )(flA NF < < MPY )(A) hence
[ERV (1 457 < M and [BE(f) = PRV ()] < My |[PRTY — Pl
Also observe that (1.2) combined with the fact that A®Y) is a partition implies
my < 1/pny and py = pny = P(n,)- Therefore

e A A M ki
<up (14+ Mmy) HIP;N*U - PHF
<o 7]
F
where, for N > 0,

:ﬂ (1+ Mmpy) < ﬂ<1+) <(1+ M >N07

which by (3.6) remains true for N = Ny = 0. This proves that, given Ny € N
and for all € > 0,

n
limsup,/——~ sup
n——+o00o 2L o L(n) 0NNy

PNV PH (1+e)knor a.s.
and Proposition [2] follows.

3.4 Proof of Proposition

Step 1. We work on B, n, from (3.1)), which means that all the probabilities
considered below concern events that we implicitly assume to be intersected
with By, n,. By (L.8) and (3.2) we have, for N > 1,

1

(N-1)
an j (f) = —
) ]P1(~LN 1) (AgN))

oV ((F ~ B4, 0)
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with [B(£14)] < M, and

P (o

>/\ <P %PA(N) >ZPA(N)
j=1

S ()

Each term in the latter sum satisfies, for any positive numbers K < P(Ag»N))
and K’ < P(AYY) ~ K,

1 - (N) (N)
P<W‘QQN V() = E(fIA)alN D (A] )Hf> >\>

}P’((H—M H (N- UH >K/\>+]P>( 1)(A(N))<K)

MK
< (N71)H S (N=1)( gA(N)y « _pet
\P<a" FOI+ M HP(O‘” (477 < K\/ﬁ)
AK
< 2P ‘ :
( 1+M> (37)
where the last bound holds provided that K'/n > AK/(1 4+ M). Define
1
= 0,1), K= K' =pn(1—
6 1+)\/(1+M)\/H€(7 )7 ﬁpNa pN( B)a

where py is defined in (1.2)). Since py < 1/2 for any N > 1 it holds K’ > 0 and
K'\/n=AK/(1+ M). We have shown that for any N > 1,

- /\ﬂpzv
P (o] 2 2) <2 ( oV >
(Joill. 2 2) < 2o (o 0]| > 557

Applying (3.7) again with A turned into the smaller ABpy / (1+M ) then iterating
backward from Ny we get, for Py, = H%‘;l pn and My, = HN ,my < 1/Pp,,

APy
i H (No) ‘ > 0 . (3.8
(JJat . (3.8)

0)

> A) < 2N My, P ( a
F

(14 M + X//n)No

The latter upper bound being increasing with Ny we conclude that

No
o], 33) < P (o], ) <00 (o] >5).

Step 2. By Theorem 2.14.25 of van der Vaart and Wellner [27] or Corollary 2
of 5], for n > 1, t > 0, we have for some universal constants D] > 0, D} > 0,

>t
P (Il > D} (n +1)) < exp (-ngin< " ﬁ))
oy M

P max
0<N<No
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where, by the last maximal inequality in Theorem 2.14.2 of [27] applied to F

with envelop function constant to M, it holds
1 o !

ﬁZf(Xi) gM/ \/1+10gN[](]:7M5,dp)d5.
i=1 F 0

Under (BR), we have u,, < C with C = M(1+b/(1—1¢)). For Ay = 2D|C we
get, for any n > 0 and A\g < A < 2D} 0%\/n/M,

A
P (ol > ) <P <|a£?>||f - D, <un ¥ w)) < exp (~D{A?),

where DY = D} /4(D})?0%. Therefore, according to (3.8)), taking
oy Dy,
M (1+ M + Dyg)?No’

pn =E

Do Dy = No2NoMy,, Dy =

(3.9)

yields ]P)(HlaX()gNgNO HO&%NO)H]: > )\) <D, exp (—Dg)\Q) for \g < A < Do\/ﬁ

Step 3. By Theorem 2.14.9 in [27], under (VC) there exists a constant D(cg)
such that, for ¢y large enough and all ¢t > ¢y,

D Vo 2 2
P (’ ‘ = t) < (co)t exp _2 .
F Mo M2
Denote ;1 , and Mg, the two solutions of APy, = to(1+ M + \/y/n)™Ne. Notice

that, for n large, A1, is close to to(1 + M)No /Py, and Ay, = O(nNo/2(No=1)),
Combined with (3.8]) it ensues that for some ng, \p it holds, for all n > ng and

ol

Ao < A < 2M/m, P(maxo< nen, |l [|7 = A) < DA™ exp(—D4A2) where
No2No M D(co)Pny \™° 2P}
Dy = D02 My, (Dleo)Puo\ " 2N g
(1+ M)voNo \ " M, /oo M2(3M + 1)2No

Finally, at each step, add Sy, (1 — p(NO))n to take By, y from 1) into account.

3.5 Proof of Proposition 4] and Theorem

Theorem [2.1|implies Proposition 4{since the weak convergence on (¢£*°(F), ||-|| =)

is metrized by the Lévy-Prokhorov distance between aglN) and G%N) which is

inf {5 > 0: P (4) < PO (4%) 4, P (4) < B (45) + 5} < dovn.
(3.11)
To see this, recall that we have v,, > 1/n% for 6y > 1/2 and v,, — 0 in Theorem

remind (1.6)) and (3.1]) then observe that
P (a,(lN) S A) <P ({Q%N) € A} N {Ha%m — GglN)H}_ < dovn} N Bn,N())

e ({Jo 7] e )+ 5

1
N Vn n
< P(G; e A )+ v + Sn, (1 —p(NO)) )
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which obviously remains true by exchanging agb and G . Since v, is the
slowest sequence as n — +o0o0, if ng satisfies vy, > l/n + SNO (1 —p(NO))no
then v, > 1/n% + Sy, (1 —p(NO))n for all n > ng. Whence 1'

We next establish Theorem 2.1} Fix Ny € N.
Step 1. Let introduce the transforms, for f € 7/, N > 1 and 1 < j < my,

do0f = (F=E(F147)) 1,00,
mn mN
N
oo f = oumf=F—> E(f AL 0.
j=1 j=1 !
It holds P(¢(n)f) = P(¢(;,n)f) = 0 and, since AW) is a partition of X,

(oG, )P nyg) =0, 1<j#j <mpy. (3.12)

Moreover, the Lo(P) property of conditional expectations yields, with the no-

tation (2.4),

2
ToumF = (f(y N)) qus(mf f(N Z ot S Uf (3.13)

Next consider the class of backward iterated transforms

NY = ¢ © .. 0 Oy (F),
Hiny = U1<k<N Ulgjgmk D(ik) © P(k+1) © - 0 D) (F),

where ¢(pq1y0...opn) = idif k=N > 1 and F) = H(o) = F. Also write

Fo = UogNgNo Fny and Ho = UogNgNo H(n). By iterating lj it comes

0%, < 0%, < 0% We first show that properties of F transfer to F(n), H() for
1.’

0 < N < Ny and thus to Fy and Hg. Remind the constants defined at (2.6

Lemma 1. Assume . If F is pointwise measurable and bounded by M
then Finy and Hny (resp. Fo and Ho) are pointwise measurable and bounded
by (2M)N /Py (resp. (2M)No /Py, ). If (VO) (resp. (BR)) holds then Fy and
Ho also satisfies (VC) (resp. (BR)) with the same power vy (resp. ro) as F.

Proof. If F is uniformly bounded by M then for N < Ny we have
1 2M
sup su =sup max Ssu ; <M1+ —
up Sup o) [ up, max XP\(Iﬁ(],N)f’ ( pN> o

thus, by backward induction from Ny to 1, Fn,) and H(y,) are uniformly
bounded by (2M)" /Py. It readily follows that Fy and H, are bounded by
(2M)No /Py, . Assume that fi € F, converges pointwise on X to f € F. From

lim 1A§,N>(X)fk(X) = 1A§_N>(X)f(X) and P(1A§,N>\fk|) <P(fel) <M

k——+4oc0
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we deduce by dominated convergence that limy_, 4 o0 E(f% | Ag.N)) =E(f | A;N)).

Thus ¢(; n) fr converges pointwise to ¢ nyf and ¢y fi = D520 by fr to
ooy f = Z;n:Nl é¢,nyf. By iterating this reasoning backward from N to 1 we
obtain that F(yy and H ) are pointwise measurable, by using the countable

classes ¢(1) o ... © ¢(n)(Fx) and UlgngUKjgmk(b(j,k 0 P(y1) © -- © PN (Fx)
respectively. Assume next that F satisfies (VC). By (3.12)) we have

Bomfome) = [ (TP 0ums —d6me)) 40
Q ¥ =1 Js Js

= dj(bim fr b6 9)

j=1

=§A§N) (F—9-E(G—914™)) dQ

mn 5
<;A;N)(f—g—(Qf—Qg)) aQ

= dQQ(fa g) - (Qf - Qg)za

thus dg(f, 9) < € implies d%(gzﬁ(N)f, dny9) < d%(f, g) < 2. If F can be covered
by N (F,e,dq) balls of dg-radius ¢ centered at some g then ¢(yy(F) can be
covered by the same number of balls, centered at the corresponding ¢(n)g and
hence the same number of centers ¢y o ... o ¢(x)g suffices to cover Fny. All
the @(; k) © P(kt1) © .- © P(n)g are needed to cover Hyy, that is Sy N (F,e,dg).
This shows that Fy (resp. Hg) obeys (VC) with the same power vy and a

constant ¢o(Ng + 1) (resp. ¢ Z%‘;O Sn). Assume now that F satisfies (BR).
If g- < f < g+ then we have

- N
h(j,N) = lA;N)g, - 1A§N)E (g+ | Ag )>
< ¢(j,N)f < 1A;N)g+ — ].A;N)E (g_ | AS»N)) = h;;‘,N)’
and the Ly(P)-size of the new bracket [h(_j’N), hz;.,N)] is
2
21— _ (N)
dP(h(ij)th;’N)) = A(N) (g+ —g— +E(g+ —g— ‘ Aj )) dP

= P(Lym (g4 = 9-)°) + P(AT)E(gy — g | A7)’

+2E(g4 —g- | A7) P(L o0 (94— 9-)).
If dp(g+,9-) < € the Holder inequality yields P(lA(N) (g4 —g_)) <e P(A§.N))
and E(g4 — g | AE-N)) <eg/ P(A§N)) hence

d%’(h(;’]\[)vh?;7]\7)) g P(lAE_N)(g-‘r - g_)2) + 3527
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so that o) f = 270 b f € (A, h(N)] where h(N) =2 h(j ) satisfies

2

d7 ( (N (N) de jN)v (]N)) d? (g g+)+3mN€ <Admpye”.

It ensues N[ ](qf)(N)(.F),&,dp) < N[ ](f, E/Qw/mN,dp) and N[ ](.F(N),E,dp) <
Np(F, e/2N/My,dp). To cover B k) © Pkt1) © - © D) (F) one needs at most
mN| ](.F,E/QN_k,/mkH...mN, dp) brackets. We have proved that
N (Fo,e.dp) < (No + 1)Np(F,e/2V /My, dp),
Nij(Ho,e,dp) < Sny N |(F, /2N /My, dp).
Therefore Fy, Ho satisfy (BR) with power ro and constant 270No M};}’O bg. O
Step 2. By (3.2) we have

my (A(N))
oM (f) = Zm Vognf) =N om f) + TN (),
(3.14)
o | P(AM)
Iy ZQn J N (¢(J nf)s (i, N) = m - L

Under the convention that ¢(ny1) © ¢(ny = id, iterating (3.14) leads to

oM (f) = aELO)(Qb(l) o..0opnf)+ FN(,

=

FME) =D TP besry 0 0 b )

k=1

Clearly the terms 1“5{“) carry out some bias and variance distortion. However
the following lemma states that aS{)) (F(ny) is the main contribution to a( )(.7: )

and f V) (F) is an error process.
Lemma 2. Consider the sequence v, defined at Theorem [2.1 If F satisfies
(VC) or (BR) then there exists Cy < +oo such that we almost surely have, for

all n large enough, maxo< N<N, HF%N)H]: < CoLo L(n)/\/n. Moreover, for any
¢ >0 and 0 > 0 there exists n3((,0) such that we have, for all n > n3((,0),

1
(N) <
P <0<I§1v22XN F57 F > CU") = onf’

Proof. (i) Let us apply Propositionto F and, thanks to Lemma to Hp and
H(ny- So for all € > 0 we have for all n large enough,

(N-1) (N) ‘ <
(5 325, 8 )] < o RL TN+
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The following statements are almost surely true, for all n large enough. On the
one hand, for e =2 —1> 0,

(N=1) 4(N) ‘ _
| Jhax | max ‘an (A7) < by =205kN,\/ Lo L(n). (3.15)

On the other hand, having oy, < o7 by (3.13),

max max max
1<N<Ny 1<kSN 1<j<my,

k—1
o] )(%,k) O P(k41) © .- © ¢(N)f)’ < 15%2)1(\[0

agme

By (3.15), ¢n(4,N) =1/ (1 + a%N_l)(AﬁN))/P(AEN))ﬁ) — 1 satisfies

, vn
P < .
| Juax | max lgn (4, N)| b PNy < 2, (3.16)

which implies

N
N
”F% )H <k 11%?222,6 |4n (J: & a (6 © Brsn) © 0 by )] 5
(3.17)
2
max F%N)H < L max ot~ 1)H 265, SNy
1<KN<No F \/ﬁp(zvo) % 1<k<No = Vg

The almost sure result then holds with Cy = 803—/{?\70 SNo/P(No)-

(ii) We now work on the event B, n, of (3.1 . There obviously exists nqy such
that if n > ny then Sy, (1 — p(ny))" < 1/4n?. We can also find £ > 0 so
small that n?%/\/n = o(v,,) as n — +o00. Therefore, whatever ¢ > 0 there exists
na(k, SNy, €, F, P) such that (v, > 2Sn,n*" /p(n,yv/n for any n > ny. Choosing
n > max(ni,ns) we deduce as for and that

0<N< Ny
P({S max a(Nfl)H max i, N)| | > Cv
( Mo R, Ll g, i Nan G 1 ) > Gon

§P<< max  max |qn(j,N)> >

1<NENy 1<j<mu

ozglN_l)H > n“) .
Ho

By Proposition [3| we see that under (VC) or (BR) the latter probability can be
made less than 1/8n? for any n > n3(¢,0) and ns3(¢,0) large enough. Clearly
n3(¢,0) depends on (,0,n1,ns and on the entropy of Hg thus all constants in
Lemma [I] and Proposition [3] are involved. [

max

2nr > P <
P(No) VT 1<N<No

Q%Nq) H

< 2P max
1NN,

Step 3. Fix § > 0. By Lemma [I] we can apply Propositions 1 and 2 of Berthet
and Mason [3] to Fo, which ensures the following Gaussian approximation. For
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some constant cg(Fo, P) > 0 and ng(Fo, P) > 0 we can build on a probability
space (2, T,P) a version of the sequence {X,,} of independent random variables

with law P and a sequence {Gq(lo)} of coupling versions of G(® in such a way
that, for all n > ng(Fo, P),

JERT

1
Fo > CQ(‘FO,P)'()") g W (318)

Keep in mind that constants ng and ¢y only depend on the entropy of Fy through
the constants M, ¢, vy, by, r9. By choosing 6 > 1, dg > cg(Fo, P) then applying
Borel-Cantelli lemma to (3.18)), it almost surely holds, for all n large enough,

-]

< dgvy,. (3.19)
Fo

Step 4. Let 6y > 0. We work under the event B,, n, of (3.1]) with a probability
at least 1—1/ 4nP provided that n > n;. The process G(¥) being linear on F we

see that the recursive definition 1’ applied to the version G%O) of G reads
G (f) = GV (¢(ny f). This combined with (3.14) readily gives

1<HJ%IaéXNg asLN) B GSLN) H

= max o (@) = 6N D 00 ) + TV

= Juax Hozglo) (61) © . 0 dwy f) — G (b1 © oo 0 ) f) + F%N)(f)H}_
<[ - 60|+ max 15l (3.20)

Remind that v, > L(n)/y/n and Lemma [2[ holds. By (3.19) and (3.20) we

almost surely have, for all n large enough and dy = 2d,,,

LoL(n)
1<NEN, Vn

By Lemmas [l and [2} (3.18)) and (3.20), for ng > max(ni,n3(¢, 6p), ng,(Fo, P))

and dy > ¢g, (Fo, P) + ¢ we have, for all n > ny,

< dovy.

oM _ G Hf < dgyvn + Co

1
A= G0 > o) < g WAl o) <

P max < Py
1<N<Ny 2nbo 0<N<Ny

To conclude observe that the parameters No, M, My, , Sny, Pny, P(No)s 0os Y0, €05 Tos bo
have been used at one or several steps to finally define ng and dj.

nbo’

3.6 Proof of Proposition
Theorem [2.1] implies, for f € F,

PN (f) - P(f) = —=GM (f) + ——RM(f), (3.21)

vn vn
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Where G )isa sequence of versions of the centered Gaussian process GXV) from

and the random sequence r$") = ||R(N)||]-' satisfies
MO
< HG;N)H +2M+/n, lim —— <dy a.s.
F F

n—+oo Uy,

a0 <], oo
F

We have to be a little careful with the expectation, variance and covariance of

the coupling error process R;N).

Step 1. Since GSIN) (f) is centered the bias is controlled by

sup V7

fer Un

(N)

(R;N)(f))‘ <E <r:n ) . (3.22)

Write a, = /K logn where K > 0 and 6y > 1 from Theoremcan be chosen
as large as needed. Then, for § > 1, € > 0 and k € N* consider the events

ho= <t ron), 5= {fot)], <o)

Cop = {0" 1y < HGWHF <0an}.

E (IP);N) ) ‘ = sup
fer

By Theorem [2.1] . (AS) < 1/n% and v, > a,/+/n for all n large enough, hence

1 7’7(1N) TéN) 7’§LN)
) (T;M) —E 14, | +E lacnp, | +E Lacnpe
Un Un Un Un

(V)
n+2M n
<do+e+ MP(A;HE(T 13;)

Un Un

+oo Tv(zN)
Sdy+2e+) B ——1e,, |-

k=1 m

By Propositions [7|and [8), G(N)(f) is a centered Gaussian process indexed by F
such that, under (VC) or (BR), it holds

E (HG(N)HF) < 400, ?EEV(G(MU)) < 0% < +o0,

B(Je®])) <t =oz+u (o] ) <o @)

Thus, by Borell’s inequality — see Appendix A.2 of [27] — for any version G
of GV, we have

P (HGWHF > )\) < 2exp (—8223?) . (3.24)

27



Therefore we have, since 8 > 1 and v,, > 4M/+/n > 2a,,/n for n large enough,

(V) gk oM
2 (Bh.) < Bt ) < (o], >0t

Un Un

(akflan)2
< 20kn exp <_SC'_27__ s

and the following series is converging to an arbitrarily small sum,

a2 too . g2(k—=1) _ 1 )
E <2 S 0 —
Z o) <o (=g ) e (- (g ) )
Klogn\ X k o(k— 1
< — _p2(k—1) <
< nexp( 80]2: >k§1269 exp( 0 ) vl

where § < K/8C% — 1. Tt follows that (3.22) is ultimately bounded by dy.

Step 2. Starting from (3.21)) and the bias and variance decomposition, the
quadratic risk is in turn controlled by

E(BY() - PUH?) — v (€())

= [E(B00) - PO + 2V (RO) + 200w (BX().RN(D))
(3.25)

(i) By Step 1, the first right-hand term is the squared bias, of order d3v2/n.

Concerning the second right-hand term in , we bound E(R( )( f)?). Fix
€ > 0 and assume that n is large enough for the followmg statements. By setting

stV = (rﬁlN))2 then using v, > an/v/n, an, = Ky/logn < y/n we get, for y = 2,

) JV) SV) SV)
—supE(RW)(f)?) SE(Z 14, ) 4B Z1acnm, | +E [ Ztacnm:
fer v, v, " ’U n n

n n n

2 (N)
< (do+e)”+ <M> P(A7) +E (Sv 1B$L>

Un n
Y sV)
< (do+26)2+( 1Og\nf> Z]E< i

+oo
< (do + 3¢)* + Zﬁ%nz]}” (HG;N)H}_ > Gk_lan) < (do + 4¢)?,
k=1

where the series is equal to its first term n? exp (—a% / 80;_-) times a convergent
series, by using (3.24) as for Step 1 with K > 16C%. We have shown that

1 1
limsup — sup V (R;N)(f)) < limsup —E (ssLN)> < d2. (3.26)

n—+oo Up feF n—+oo Up
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(i) Concerning the covariance term in (3.25) it holds

Cov (M (1), BN ()| = -

— B (6 (NRM())|
~k (|6 )

=Ta,(f) +Tacnp, (f) + Tacnpe: (f),

1

Un

N

where Tp(f) = E(1p|GV(£)[rSY) fvn) for D € {An, AS N By, A N BS}. We
have, by Proposition [7] and

Ta, (f) <E (|6V(0)] (do + )1, )
= o+ 207 (5 (N)EAN 0. 1) < 1 2do + ).

By using again P(AS) < 1/n? we see that

2M+/n + ay,
——— | lagnm,

Un

N

<e.

o (20) 2
