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Abstract

We study the empirical measure associated to a sample of size n and
modified by N iterations of the raking-ratio method. The empirical mea-
sure is adjusted to match the true probability of sets in a finite parti-
tion which changes each step. We establish asymptotic properties of the
raking-ratio empirical process indexed by functions as n → +∞, for N
fixed. A closed-form expression of the limiting covariance matrices is de-
rived as N → +∞. The nonasymptotic Gaussian approximation we use
also yields uniform Berry-Esseen type bounds in n,N and sharp estimates
of the uniform quadratic risk reduction. In the two-way contingency table
formulas characterizing the limiting process are very simple.

Contents

1 Introduction 2
1.1 The raking-ratio method . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 An auxiliary information viewpoint . . . . . . . . . . . . . . . . . 5
1.3 Information from N finite partitions . . . . . . . . . . . . . . . . 6
1.4 The raking-ratio empirical and Gaussian processes . . . . . . . . 8

2 Main results 9
2.1 General properties . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Limiting variance and risk reduction . . . . . . . . . . . . . . . . 12
2.3 The two margins case . . . . . . . . . . . . . . . . . . . . . . . . 13

∗mickael.albertus@math.univ-toulouse.fr
†philippe.berthet@math.univ-toulouse.fr

1



3 Proofs of general results 16
3.1 Raking formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Proof of Proposition 1. . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Proof of Proposition 2. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Proof of Proposition 4 and Theorem 2.1. . . . . . . . . . . . . . . 21
3.6 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Proof of Proposition 6. . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Proofs concerning the limiting process 30
4.1 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Proof of Propositions 8 and 9 . . . . . . . . . . . . . . . . . . . . 34
4.3 Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 39
.1 Elementary example . . . . . . . . . . . . . . . . . . . . . . . . . 40
.2 Counterexample of Remark J . . . . . . . . . . . . . . . . . . . . 41
.3 Raked empirical means over a class . . . . . . . . . . . . . . . . . 42

1 Introduction

1.1 The raking-ratio method

In survey analysis, statistics, economics and computer sciences the raking-ratio
iterative procedure aims to exploit the knowledge of several marginals of a dis-
crete multivariate distribution. Despite many papers from the methodological
and algorithmic viewpoint, and chapters in classical textbooks for statisticians,
economists or engineers, no probabilistic study is available when the entries of
the algorithm are random, or when the discrete measure is empirical.

A natural method. It has been re-invented many times in various fields, and
was probably used long time ago. Depending on the setting it may be viewed
as stratification, calibration, iterating proportional fitting or matrix scaling.
Fitting after sampling is also used to deal with missing data. We initially called
it auxiliary information of partitions as we re-invented it as a generic special
case of the general nonparametric partial information problem stated later.

Representative sample. In a survey analysis context, the raking-ratio method
modifies weights of a contingency table built from a sample of size n in order
to fit exactly given marginals. Such a strict margin correction is justified when
a few properties of the finite population under study are known, like the size
of subpopulations. The modified sample frequencies then reflect the marginal
structure of the whole population. If the population is large or infinite the in-
formation may come from previous and independent statistical inference, from
structural properties of the model or from various experts.

Remark A. Making the sample representative of the population is an ad hoc
approach based on common sense. The mathematical impact is twofold. On
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the one hand all statistics are affected by the new weights in terms of bias,
variance and limit law so that practitioners may very well be using estimators,
tests or confident bands that have lost their usual properties. On the other
hand, replacing marginal frequencies with the true ones may smooth sample
fluctuations of statistics correlated to them while leaving the uncorrelated ones
rather unaffected. We would like to quantify these statements more precisely.

The algorithm. A sample is drawn from a population for which k > 2 marginal
finite discrete laws are explicitly known. Initially, each data point has a weight
1/n. The ratio part of the algorithm consists in computing new weights in such a
way that the modified joint law has the currently desired marginal. The raking
part of the method consists in iterating the correction according to another
known marginal law, changing again all the weights of the previous step. The
k margin constraints are usually treated in a periodic order, only one being
fulfilled at the same time. The raking-ratio method stops after N iterations
with the implicit hope that the previous constraints are still almost satisfied.
As a matter of fact, the k margins converge to the desired ones as N → +∞.
See Section .1 for a numerical example in a two-way contingency table, k = 2.

The limit. This algorithm was called iterative proportions by Deming and
Stephan [8] who first introduced it. They claimed that if the frequencies of a
multiway contingency table are raked periodically as N → +∞ they converge
to the frequencies minimizing the chi-square distance to the initial frequencies,
under the margin constraints. It is wrong, and Stephan [19] modified the al-
gorithm to achieve this minimization. Lewis [14] and Brown [6] studied the
case of Bernoulli marginals from the Shannon entropy minimization viewpoint.
When k = 2 Sinkhorn [17, 18] proved that a unique doubly stochastic matrix
can be obtained from each positive square matrix A by alternately normalizing
the rows and columns of A, which shows that the algorithm converges in this
special case. Finally Ireland and Kullback [12] generalized previous arguments
to rigorously justify that the raking-ratio converges to the unique projection of
the empirical measure in Shannon-Kullback-Leibler relative entropy on the set
of discrete measures satisfying the constraints. From a numerical viewpoint, the
rate of convergence of the algorithm is geometric, see Franklin and Lorentz [11].

Remark B. When the sample size n → +∞ it is equivalent to minimize chi-
square, likelihood or discrimination information contrasts since they share the
same first order expansion and the empirical frequencies are uniformly close to
the true ones. However, none of these minimizers is explicit due to nonlinearity
of sums of ratios showing up. This is why iterative proportions are very useful
in practice. They are converging, intuitive and each step is easily computed.

Non explicit bias and variance. The initial values being empirical fre-
quencies the converged solution of the algorithm still deviates from the true
probability measure, and moreover in a rather complicated way. The modified
empirical distribution satisfying only the marginal constraint of the current it-
eration, there is a permanent bias with respect to other margins. The exact
covariance matrix and bias vector of the random weights after N iterations are
tedious to compute. For instance, estimates for the variance of cell probabilities
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in the case of a two-way contingency table are given by Brackstone and Rao
[5] for N 6 4, Konijn [13] or Choudhry and Lee [7] for N = 2. Bankier [2]
propounded a recursive linearization technique providing an estimator of the
asymptotic variance. In Binder and Théberge [4] the variance of the converged
solution requires to calculate weights at each iteration.

Remark C. Exact computations lead to intractable bias and variance formulas.
We would like to identify leading terms when n is large compared to N and
provide comprehensive explicit formulas as n→ +∞, then N → +∞.

Quadratic risk reduction. Modifying marginals frequencies of a small sam-
ple may have serious drawbacks. Typically, a statistic has less variance but
more bias when sample weights are changed by using raking, calibration or
stratification methods after sampling. In the spirit of Remark A, a risk re-
duction is expected whenever the statistic of interest is well correlated to the
k known discrete marginal variables. Exact computation of moments being
ineffective, evaluating the quadratic risk of a specific statistic requires bias ex-
pansions and asymptotics for correlations of weights. No global risk reduction
property has been established, and no multivariate or uniform central limit
theorem as n→ +∞.

Remark D. To control simultaneously large classes of statistics one needs to
work at the empirical measure level. We feel that a general study of empirical
measures modified through auxiliary information is lacking to further analyze
and unify calibration type methods. In particular, a weak or strong invariance
principle for the raked empirical process could provide joint limiting laws and
uniform quadratic risk evaluations, directly for additive statistics like empirical
means as well as indirectly for non linear estimators like empirical minimizers.

The small population case. An asymptotic approach is no more relevant in
survey analysis when the underlying population is rather small. In this case,
the way the sample is drawn has a so deep impact that it may even become the
main topic. A study of calibration methods for finite population can be found
in Deville and Sarndal [9, 10]. This is beyond the scope of our work.

Goals. In this paper we consider classes of empirical means raked N times,
sampled jointly from any population. We look for closed-form expressions of
their Gaussian limits and limiting covariances as n → +∞ then N → +∞.
We also intend to quantify the uniform risk reduction phenomenon and provide
sharp statistical estimation tools such as uniform Berry-Esseen type bounds.

Organization of the paper. In Section 1.2 we relate the raking-ratio problem

to nonparametric auxiliary information. The raking-ratio empirical process α
(N)
n

is defined at Section 1.3 then usual assumptions on a class F of additive statistics

are given at Section 1.4. In Section 2.1 we state results for α
(N)
n (F) when N is

fixed. A nonasymptotic strong approximation bound yields the uniform central
limit theorem with rate as n→ +∞, as well as a uniform control of the bias and
the covariances for fixed n. The approximating Gaussian process is studied at
Section 2.2, which establishes the uniform risk reduction phenomenon provided
the iterations are stopped properly. At Section 2.3, in the two partitions case
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we characterize explicitly the limiting process as N → +∞. All statements are
proved in Sections 3 and 4. The Appendix provides a few examples.

1.2 An auxiliary information viewpoint

Let X1, ..., Xn be independent random variables with unknown law P on some
measurable space (X ,A). Let Pn = n−1

∑n
i=1 δXi be the standard empirical

measure on P(X ) hence on A. Our interest for the raking-ratio method came
while investigating how to exploit various kinds of partial information on P to
make Pn closer to P . Usually such an information is hidden in assumptions and
mixed with technical requirements, sometimes it is clearly isolated out.

Motivation. A parametric model provides a tremendous amount of informa-
tion by specifying P = Pθ up to a finite dimensional parameter θ, so that Pn
can be replaced with the most likely Pθn(X1,...,Xn) among the model. Clearly
Pn is used to minimize the empirical likelihood, but the resulting Pθn(X1,...,Xn)

is of a very different nature, far from the initial Dirac measures δXi
. On the

opposite, in a purely nonparametric setting the information mainly comes from
the sample itself, so that only slight modifications of Pn are induced by weak
hypotheses on P – like support, regularity, symmetry, logconcavity, Bayesian
model, semi-parametric model, etc. In between, we would like to formalize a
notion of auxiliary information on P based on partial but concrete clues to be
combined with Pn. Clues may come from experts, models or statistical learn-
ing. The simplest generic situation one can start with is when the probabilities
P (Aj) of a finite number of sets Aj ∈ A are known – which in a parametric
setting already determines θ then P . Interestingly, the nonparametric redesign

P(1)
n of Pn follows easily if the Aj form a finite partition of X whereas it is not

obvious how to optimally combine information from overlapping sets, and hence
several partitions. It turns out that the raking-ratio method is a natural way.

Information from one partition. Let A
(1)
1 , . . . , A

(1)
m1 ⊂ A be a partition of

X such that P (A(1)) = (P (A
(1)
1 ), . . . , P (A

(1)
m1)) is known. The random measure

P(1)
n =

1

n

m1∑
j=1

P (A
(1)
j )

Pn(A
(1)
j )

∑
Xi∈A(1)

j

δXi
(1.1)

is called the strong belief empirical measure in a companion work in which
P (A(1)) is itself estimated at a fast rate and the relative cost of the two types

of data is used to balance a risk. In (1.1) P (A(1)) is known exactly thus P(1)
n is

the minimum entropy projection of Pn on this set of constraints. We establish

below, in the special case N = 1, that P(1)
n indexed by functions satisfies classical

properties like Donsker theorem, deviation bounds and strong approximation.

The main fact is that the limiting Gaussian process of
√
n(P(1)

n −P ) has a smaller
variance than the P -Brownian bridge, despite the bias induced by the random
ratios in (1.1).
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Extension to N partitions. The next step is to combine several sources of
information on P of this type. Unfortunately there is no explicit modification of
Pn matching simultaneously several finite discrete marginals while minimizing
the relative entropy to Pn. We will study elsewhere a centered process that is
no more a discrete measure but fulfils the margin constraints. An alternative

consists in recursively updating the current modification P(N−1)
n of Pn onto

P(N)
n according to the next known marginal P (A(N)) = (P (A

(N)
1 ), . . . , P (A

(N)
mN ))

exactly as in (1.1) for P(1)
n from Pn = P(0)

n . This coincides with the Deming and
Stephan’s iterative procedure for a multiple-way contingency table.

1.3 Information from N finite partitions

The raking-ratio empirical measure. For all N ∈ N∗ let mN > 2 and

A(N) = {A(N)
1 , . . . , A

(N)
mN } ⊂ A be a partition of X for which we are given

the auxiliary information P (A(N)) = (P (A
(N)
1 ), . . . , P (A

(N)
mN )) to be exploited.

Assume that
δN = min

16j6mN

P (A
(N)
j ) > 0, N ∈ N∗, (1.2)

and A(N1) 6= A(N2) if |N1 −N2| = 1, otherwise A(N1) = A(N2) is allowed. For
N = 0 the information is empty, m0 = 1, A(0) = {X}, P (A(0)) = {1} and δ0 =

1. For any measurable real function f write P(0)
n (f) = Pn(f) = n−1

∑n
i=1 f(Xi),

P (f) =
∫
X fdP and α

(0)
n (f) =

√
n(P(0)

n (f) − P (f)). In (1.1) P(1)
n allocates the

random weight P (A
(1)
j )/nPn(A

(1)
j ) to each Xi ∈ A(1)

j . Hence

P(1)
n (f) =

n∑
i=1

P(1)
n ({Xi})f(Xi) =

m1∑
j=1

∑
Xi∈A(1)

j

P (A
(1)
j )

nPn(A
(1)
j )

f(Xi)

=

m1∑
j=1

P (A
(1)
j )

Pn(A
(1)
j )

 1

n

∑
Xi∈A(1)

j

f(Xi)

 =

m1∑
j=1

P (A
(1)
j )

P(0)
n (A

(1)
j )

P(0)
n (f1

A
(1)
j

).

Let define recursively, for N ∈ N∗, the N -th raking-ratio empirical measure

P(N)
n (f) =

mN∑
j=1

P (A
(N)
j )

P(N−1)
n (A

(N)
j )

P(N−1)
n (f1

A
(N)
j

) (1.3)

and the N -th raking-ratio empirical process

α(N)
n (f) =

√
n(P(N)

n (f)− P (f)). (1.4)

For A ∈ A we also write α
(N)
n (A) = α

(N)
n (1A). By (1.3) we have for all N ∈ N∗

P(N)
n (A

(N)
j ) = P (A

(N)
j ), α(N)

n (A
(N)
j ) = 0, 1 6 j 6 mN , (1.5)
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as desired. Both weights and support of the discrete probability measure P(N)
n

are random since (1.3) also reads

P(N)
n ({Xi}) = P(N−1)

n ({Xi})
P (A

(N)
j )

P(N−1)
n (A

(N)
j )

, for Xi ∈ A(N)
j .

A few more formulas concerning α
(N)
n and P(N)

n are derived in Section 3.1. The

main question is wether or not transforming P(0)
n iteratively per (1.3) could be

misleading in terms of estimation risk as well as Donsker type convergence.

Iterated Kullback projections. The formula (1.3) means that the raking-
ratio method is an iterated maximum likelihood procedure. The random discrete

measures P(1)
n , ...,P(N)

n are well defined provided that

min
16k6N

min
16j6mk

Pn(A
(k)
j ) > 0 (1.6)

which almost surely holds for all n large enough and N fixed, by (1.2) and the

law of large numbers. In this case, the N -th iteration P(N)
n is the Shannon-

Kullback-Leibler projection of P(N−1)
n under the constraint P (A(N)). Given

probability measures Qn and Q supported by {X1, ..., Xn} write

dK(Qn || Q) =

n∑
i=1

Qn({Xi}) log

(
Qn({Xi})
Q({Xi})

)
.

Proposition 1. If (1.6) holds then

P(N)
n = arg min

{
dK(P(N−1)

n || Q) : Q(A(N)) = P (A(N)), supp(Q) = {X1, ..., Xn}
}
.

A mixture of conditional empirical processes. By introducing, for A ∈ A
such that P (A) > 0 and P(N)

n (A) > 0, the conditional expectations

E(N)
n (f |A) =

P(N)
n (f1A)

P(N)
n (A)

, E(f |A) =
P (f1A)

P (A)
, (1.7)

we see that (1.3) further reads

P(N)
n (f) =

mN∑
j=1

P (A
(N)
j )E(N−1)

n (f |A(N)
j ), P (f) =

mN∑
j=1

P (A
(N)
j )E(f |A(N)

j ).

Therefore (1.4) can also be formulated into

α(N)
n (f) =

mN∑
j=1

P (A
(N)
j )α

(N−1)
n,j (f),

α
(N−1)
n,j (f) =

√
n
(
E(N−1)
n (f |A(N)

j )− E(f |A(N)
j )

)
. (1.8)

7



Each α
(N−1)
n,j is the conditional empirical process of P(N−1)

n on a set A
(N)
j of the

new partition A(N). Their mixture with weights P (A(N)) is α
(N)
n . In view of

(1.7) and (1.8) we have to study the consequences of (1.5) on P(N−1)
n (f1

A
(N)
j

)

and E(N−1)
n (f |A(N)

j ) as n→ +∞, for f 6= 1
A

(N)
j

.

Bias problem. The processes α
(N−1)
n,j are not centered due to the factors

1/P(N−1)
n (A

(N)
j ) in (1.3) and (1.7). In general we have

E
(
E(N−1)
n (f |A)− E(f |A)

)
= E

(
P(N−1)
n (f1A)

(
1

P(N−1)
n (A)

− 1

P (A)

))
6= 0

except for (A, f) = (A
(N−1)
j , 1

A
(N−1)
j

) hence α
(N)
n is no more centered if N > 1.

This unavoidable bias is induced by (1.5) to globally compensate for the local

cancellation of the variance of P(N)
n (A

(N)
j ). The bias tends to spread through

(1.3) since the auxiliary information P (A(N)) is applied to the biased P(N−1)
n

instead of the unbiased Pn. However, our results show that the bias process

E
(
α(N)
n (f)

)
=
√
n
(
E(P(N)

n (f))− Pf
)

vanishes faster than 1/
√
n uniformly over reasonable classes of functions.

Variance problem. In view of (1.5) and Proposition 1 one may expect that

P(N)
n (f) has less variance than Pn(f) at least whenever f is sufficiently well

approximated by the step functions 1A for A ∈ A(k), k 6 N . Our results confirm

that V(α
(N)
n (f)) 6 V(α

(0)
n (f)) for n large and that finite dimensional covariance

matrices decrease faster than 1/n uniformly over many f . The quadratic risk

may still increase, E((P(N)
n (f)− P (f))2) > E((P(0)

n (f)− P (f))2) because of the
bias process. Our main result shows that it is asymptotically not the case.

1.4 The raking-ratio empirical and Gaussian processes

Let M denote the set of measurable real valued functions on (X ,A). Consider
a class F ⊂ M such that supf∈F |f | 6 M < +∞ and satisfying the pointwise
measurability condition often used to avoid measurability problems. Namely,
limm→+∞ fm(x) = f(x) for all x ∈ X and f ∈ F where {fm} ⊂ F∗ depends on
f and F∗ ⊂ F is countable. With no loss of generality also assume that

1Af ∈ F , A ∈ A(N)
∪ = A(1) ∪ ... ∪ A(N), f ∈ F . (1.9)

In addition F is assumed to have a small uniform entropy, like VC-classes, or
a small P -bracketing entropy, such as many classes of smooth functions. For a
probability measure Q on (X ,A) and f, g ∈M define d2Q(f, g) =

∫
X (f −g)2dQ.

Let N(F , ε, dQ) be the minimum number of balls having dQ-radius ε needed to
cover F . Let N[ ](F , ε, dP ) be the least number of ε-brackets necessary to cover
F , of the form [g−, g+] = {f : g− 6 f 6 g+} with dP (g−, g+) < ε.
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Hypothesis (VC). For c0 > 0, ν0 > 0 it holds supQN (F , ε, dQ) 6 c0/ε
ν0

where the supremum is taken over all discrete probability measures Q on (X ,A).

Hypothesis (BR). For b0 > 0, r0 ∈ (0, 1) it holds N[ ](F , ε, dP ) 6 exp(b20/ε
2r0).

Only constants c0 and b0 change if one extends an initial F to satisfy (1.9).
Uniform boundedness is the less crucial assumption and could be replaced by a
moment condition allowing truncation arguments, adding technicalities.

Let `∞(F) denote the set of real-valued functions bounded on F , endowed with

the supremum norm ‖·‖F . The raking-ratio empirical process α
(N)
n defined at

(1.4) is now denoted α
(N)
n (F) = {α(N)

n (f) : f ∈ F}. Under (V C) or (BR) F is a

P -Donsker class. Thus α
(0)
n (F) converges weakly in `∞(F) to the P -Brownian

bridge indexed by F , that we denote G(F) = {G(f) : f ∈ F}. Remind (1.7)
and that G(F) is a Gaussian linear process such that, for any f, g ∈ F ,

E (G(f)) = 0, Cov(G(f),G(g)) = P (fg)− P (f)P (g). (1.10)

As for α
(N)
n we write G(0)(F) = G(F) and, for short, G(A) = G(1A) if A ∈ A.

The N -th raking-ratio P -Brownian bridge G(N)(F) is the centered Gaussian
process indexed by F defined recursively, for any N ∈ N∗ and f ∈ F , by

G(N)(f) = G(N−1)(f)−
mN∑
j=1

E(f |A(N)
j )G(N−1)(A

(N)
j ). (1.11)

Lastly, the following notation will be useful,

σ2
f = V(f(X)) = P (f2)− P (f)2, σ2

F = sup
f∈F

σ2
f , (1.12)

where σ2
f = V(α

(0)
n (f)) = V(G(0)(f)).

2 Main results

2.1 General properties

We now state asymptotic and nonasymptotic properties that always hold after
raking N0 times. The i.i.d. sequence {Xn} is defined on a probability space
(Ω, T ,P) so that P implicitly leads all convergences when n→ +∞ and (X ,A)
is endowed with P = PX1 . For all N 6 N0 the information P (A(N)) satisfies
(1.2). Most of the subsequent constants can be bounded by using only N0 and

δ(N0) = min
06N6N0

δN = min
06N6N0

min
16j6mN

P (A
(N)
j ) > 0. (2.1)

Write L(x) = log(max(e, x)) and define κN0
=
∏N0

N=1(1 +MmN ).

Proposition 2. If F satisfies (VC) or (BR) then for all N0 ∈ N it holds

lim sup
n→+∞

1√
2L ◦ L(n)

sup
06N6N0

∥∥∥α(N)
n

∥∥∥
F
6 κN0σF a.s.
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Remark E. The limiting constant κN0 6
(
1 +M/δ(N0)

)N0
is large, and possibly

rough, except for N0 = 0 where κ0 = 1 coincides with the classical law of the
iterated logarithm – from which the proposition follows.

The nonasymptotic deviation bound for α
(N)
n (F) also has the usual magnitude.

However, since the partition changes at each step the constants are severely
penalized by factors similar to κN0

above, involving

∆N0
=

N0∏
N=1

δN , MN0
=

N0∏
N=1

mN , SN0
=

N0∑
N=1

mN . (2.2)

Proposition 3. If F is pointwise measurable, bounded by M then for N0 ∈ N
and n ∈ N∗ we have

P
(

sup
06N6N0

∥∥∥α(N)
n

∥∥∥
F
> λ

)
6 2N0MN0

P
(∥∥∥α(0)

n

∥∥∥
F
>

λ∆N0

(1 +M + λ/
√
n)N0

)
+ SN0

(
1− δ(N0)

)n
.

Under (BR) it holds, for n > n0 and λ0 < λ < D0
√
n,

P
(

sup
06N6N0

∥∥∥α(N)
n

∥∥∥
F
> λ

)
6 D1 exp(−D2λ

2) + SN0

(
1− δ(N0)

)n
where the constants D0, D1, D2 are defined at (3.8) and n0, λ0 just before.
Under (VC) it holds, for n > n0 and λ0 < λ < 2M

√
n,

P
(

sup
06N6N0

∥∥∥α(N)
n

∥∥∥
F
> λ

)
6 D3λ

v0 exp(−D4λ
2) + SN0

(
1− δ(N0)

)n
where the constants D3, D4 are defined at (3.9) and n0, λ0 just before.

Remark F. Clearly, to avoid drawbacks N0 should be fixed as n increases, and
F limited to the most crucial variables f(X). In this case, Proposition 3 shows

that ‖α(N0)
n ‖F is of order C

√
log n with polynomial probability and C > 0 not

too large. We also deduce that E(‖α(N0)
n ‖F ) < D with an explicit D < +∞.

Concentration of measure type bounds are more difficult to handle due to the

mixture (1.8) of processes α
(N−1)
n,j involving unbounded random coefficients.

The raking-ratio empirical process α
(N)
n (F) converges weakly in `∞(F) to the

N -th raking-ratio P -Brownian bridge G(N)(F) defined at (1.11) and studied at
Section 2.2. The RN0 -valued version is as follows.

Proposition 4. If F satisfies (VC) or (BR) then for all N0 ∈ N, as n→ +∞
the sequence (α

(0)
n (F), ..., α

(N0)
n (F)) converges weakly to (G(0)(F), ...,G(N0)(F))

on `∞(F → RN0).

By using Berthet and Mason [3] we obtain the following upper bound vn for the
speed of weak convergence in Lévy-Prokhorov distance dLP and the speed of
almost sure convergence in ‖·‖F distance. Powers given by Berthet and Mason
are α = 1/(2 + 5ν0), β = (4 + 5ν0)/(4 + 10ν0) and γ = (1− r0)/2r0. They can
be slightly improved and conditions (VC) and (BR) generalized.
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Theorem 2.1. Let θ0 > 0. If F satisfies (VC) then write vn = (log n)β/nα.
If F satisfies (BR) then write vn = 1/(log n)γ . In both cases, one can define
on the same probability space (Ω, T ,P) a sequence {Xn} of independent random
variables with law P and a sequence {Gn} of versions of G satisfying the fol-
lowing property. For any N0 > 0 there exists n0 ∈ N and d0 > 0 depending on
N0,M,MN0 , SN0 ,∆N0 , δ(N0), θ0, ν0, c0, r0, b0 such that we have, for all n > n0,

P
(

sup
06N6N0

∥∥∥α(N)
n −G(N)

n

∥∥∥
F
> d0vn

)
<

1

nθ0

where G(N)
n is the version of G(N) derived from G(0)

n = Gn through (1.11).

Remark G. Applied with θ0 > 1, Theorem 2.1 makes the study of weak conver-

gence of functions of α
(N)
n (F) easier by substituting G(N)

n to α
(N)
n through

lim sup
n→+∞

1

vn
sup

06N6N0

∥∥∥α(N)
n −G(N)

n

∥∥∥
F
6 d0 < +∞ a.s.

then exploiting the properties induced by (1.11) as in Section 2.2. For instance
the finite dimensional laws of G(N) are computed explicitly at Proposition 7. For
nonasymptotic applications, given a class F of interest it is possible to compute
crude bounds for n0 and d0 since most constants are left explicit in the proofs.

From Theorem 2.1 we derive estimates of the rate of uniform convergence for
the bias and the variance. The covariance of G(N) is given at Section 2.1.

Proposition 5. If F satisfies (VC) or (BR) then for N0 ∈ N it holds

lim sup
n→+∞

√
n

vn
max

06N6N0

sup
f∈F

∣∣∣E(P(N)
n (f)

)
− P (f)

∣∣∣ 6 d0
where vn → 0 and d0 are as in Theorem 2.1, and

lim sup
n→+∞

n

vn
sup
f,g∈F

∣∣∣∣E((P(N)
n (f)− P (f))(P(N)

n (g)− P (g))
)
− 1

n
Cov

(
G(N)(f),G(N)(g)

)∣∣∣∣
= lim sup

n→+∞

n

vn
sup
f,g∈F

∣∣∣∣Cov
(
P(N)
n (f),P(N)

n (g)
)
− 1

n
Cov

(
G(N)(f),G(N)(g)

)∣∣∣∣ 6
√

8

π
d0σF .

A second consequence of Theorem 2.1 is uniform Berry-Esseen type bounds.
Let Φ denote the distribution function of the centered standardized normal law.

Proposition 6. Assume that F satisfies (VC) or (BR), fix N0 ∈ N and let
d0 > 0, vn → 0 be defined as above. If F0 ⊂ F is such that

σ2
0 = inf

{
V
(
G(N)(f)

)
: f ∈ F0, 0 6 N 6 N0

}
> 0

then for any d1 > d0 there exists n1 ∈ N such that for all n > n1,

max
06N6N0

sup
f∈F0

sup
x∈R

∣∣∣∣∣∣P
√nP(N)

n (f)− P (f)√
V
(
G(N)(f)

) 6 x
− Φ(x)

∣∣∣∣∣∣ 6 d1√
2πσ0

vn.
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Let L be a collection of real valued Lipschitz functions ϕ defined on `∞(F) with
Lipschitz constant bounded by C1 < +∞ and such that ϕ(G(N)) has a density
bounded by C2 < +∞ for all 0 6 N 6 N0 and ϕ ∈ L. Then for all n > n1,

max
06N6N0

sup
ϕ∈L

sup
x∈R

∣∣∣P(ϕ(α(N)
n ) 6 x

)
− P

(
ϕ(G(N)) 6 x

)∣∣∣ 6 d1C1C2vn.

Remark H. The first statement is a special case of the second and also reads

max
06N6N0

sup
f∈F0

sup
x∈R

∣∣∣P(α(N)
n (f) 6 x

)
− P

(
G(N)(f) 6 x

)∣∣∣ 6 d1√
2πσ0

vn.

The functions f ∈ F overdetermined by the knowledge of P (A(N)) have a small
V(G(N)(f)) and are excluded from F0. Proposition 6 is especially useful under
(VC) since vn is polynomialy decreasing, thus allowing larger C1C2 and L. An
example is given at Section .3.

2.2 Limiting variance and risk reduction

In this section we study the covariance structure of G(N)(F) from (1.11), for
N fixed. The following matrix notation is introduced to shorten formulas. The
brackets [·] refer to column vectors built from the partition A(k) appearing
inside. Let V t denote the transpose of a vector V . For k 6 N write

E
[
f |A(k)

]
=
(
E(f |A(k)

1 ), . . . ,E(f |A(k)
mk

)
)t
, G

[
A(k)

]
=
(
G(A

(k)
1 ), . . . ,G(A(k)

mk
)
)t

and, for l 6 k 6 N define the matrix PA(k)|A(l) to be

(
PA(k)|A(l)

)
i,j

= P (A
(k)
j |A

(l)
i ) =

P (A
(k)
j ∩A

(l)
i )

P (A
(l)
i )

, 1 6 i 6 ml, 1 6 j 6 mk.

Write Idk the identity matrix k × k. Remind that V(G(f)) = P (f2)− (P (f))2,

P (A(k))t = P [A(k)] and P (A
(k)
i ∩ A

(k)
j ) = 0 if i 6= j. The covariance matrix of

the Gaussian vector G[A(k)] is V(G[A(k)]) = diag(P (A(k)))−P (A(k))tP (A(k)).
Let · denote a product between a square matrix and a vector. Finally define

Φ
(N)
k (f) = E

[
f |A(k)

]
+∑

16L6N−k
k<l1<l2<...<lL6N

(−1)LPA(l1)|A(i)PA(l2)|A(l1) · · ·PA(lL)|A(lL−1) · E
[
f |A(lL)

]
.

(2.3)

The closed form expression for the covariance function of G(N)(F) is as follows.

Proposition 7. For all N ∈ N the process G(N)(F) is Gaussian, centered and
linear with covariance function defined to be, for (f, g) ∈ F2,

Cov
(
G(N)(f),G(N)(g)

)
= Cov (G(f),G(g))−

N∑
k=1

Φ
(N)
k (f)t · V

(
G[A(k)]

)
· Φ(N)

k (g)

12



Proposition 7 implies the following variance reduction phenomenon.

Proposition 8. For any {f1, ..., fm} ⊂ F and N ∈ N the covariance matrices

Σ
(N)
m = V((G(N)(f1), ...,G(N)(fk))) are such that Σ

(0)
m −Σ

(N)
m is positive definite.

Remark I. In particular we have V(G(N)(f)) 6 V(G(0)(f)) = σ2
f , f ∈ F . The

asymptotic risk reduction after raking is quantified by combining Propositions
5 and 8. Given ε0 > 0 and 0 < σ0 < σF there exists some n0 = n0(ε0,F) such
that if n > n0 then any f ∈ F with initial quadratic risk σ2

f/n > σ0/n has a
new risk, after raking N times, equal to

E
(

(P(N)
n (f)− P (f))2

)
=
σ2
f

n
(∆(f) + e(f)vn)

where vn → 0 and d0 are as in Theorem 2.1 and

∆(f) =
V(G(N)(f))

σ2
f

∈ [0, 1]

sup
f∈F, σf>σ0

|e(f)| < (1 + ε0)

√
8

π
d0
σF
σ0
.

V
(
G(N)(f)

)
= σ2

f −
N∑
k=1

Φ
(N)
k (f)t · V

(
G[A(k)]

)
· Φ(N)

k (f). (2.4)

so that the risk reduction holds whenever ∆(f) < 1 and n is large enough.

When N1 > N0 > 0 there is no guaranty that the covariance structure of

α
(N1)
n (F) decreases compared to that of α

(N0)
n (F). A simple sufficient condition

is to rake two times along the same cycle of partitions.

Proposition 9. Let N0, N1 ∈ N be such that N1 > 2N0 and

A(N0−k) = A(N1−k), for 0 6 k < N0.

Then it holds V(G(N1)(f)) 6 V(G(N0)(f)) for all f ∈ F and Σ
(N0)
m − Σ

(N1)
m is

positive definite for all {f1, ..., fm} ⊂ F .

Remark J. In Appendix .2 a counter-example with N1 = N0 + 1 shows that
the variance is not decreasing for all functions at each iteration. This case is
excluded from Proposition 9 since N1 = N0 + 1 < 2N0 if N0 > 1 and, whenever
N0 = 1 and N1 = 2 the requirement A(N0) = A(N1) is not allowed.

2.3 The two margins case

We now consider the original method where k partitions are raked in a periodic
order. Let us focus on the case k = 2 of the two-way contingency table case. The
Deming and Stephan algorithm coincides with the Sinkhorn algorithm for matrix
scaling. Denote A = A(1) = {A1, ..., Am1

} and B = A(2) = {B1, ..., Bm2
} the

13



two known margins, thus A(2m+1) = A and A(2m) = B. Likewise for 1 6 i 6 m1

and 1 6 j 6 m2 rewrite (PA|B)i,j = P (Aj |Bi), (PB|A)i,j = P (Bj |Ai) and

G[A] = (G(A1), . . . ,G(Am1))t, E[f |A] = (E[f |A1], . . . ,E[f |Am1 ])
t
,

G[B] = (G(B1), . . . ,G(Bm2
))t, E[f |B] = (E[f |B1] , . . . ,E[f |Bm2

])t.

The size of PA|BPB|A is m1 ×m1 and that of PB|APA|B is m2 ×m2. A sum
with a negative upper index is null, a matrix with negative power is also null, a
square matrix with power zero is the identity matrix. For N ∈ N∗ define

S
(N)
1,even(f) =

N∑
k=0

(
PB|APA|B

)k · (E[f |A]−PB|A · E[f |B]
)

is m1 × 1, (2.5)

S
(N)
2,odd(f) =

N∑
k=0

(
PA|BPB|A

)k · (E[f |B]−PA|B · E[f |A]
)

is m2 × 1, (2.6)

S
(N)
1,odd(f) = S

(N)
1,even +

(
PB|APA|B

)N+1 · E[f |A] is m1 × 1, (2.7)

S
(N)
2,even(f) = S

(N)
2,odd +

(
PA|BPB|A

)N+1 · E[f |B] is m2 × 1. (2.8)

Proposition 10. Let m ∈ N. We have

G(2m)(f) = G(f)− S(m−1)
1,even (f)t ·G[A]− S(m−2)

2,even (f)t ·G[B], (2.9)

G(2m+1)(f) = G(f)− S(m−1)
1,odd (f)t ·G[A]− S(m−1)

2,odd (f)t ·G[B]. (2.10)

Remark K. The limiting process G(N) evaluated at f is then simply G(f) with
a correction depending on the Gaussian vectors G[A] and G[B] through the two
deterministic matrices PA|B and PB|A carrying the information and operating
on the conditional expectation vectors E[f |A] and E[f |B].

The following assumption simplifies the limits and ensures a geometric rate of

convergence for matrices S
(N)
i,even and S

(N)
1,odd as N → +∞.

Hypothesis (ER). The matrices PA|BPB|A and PB|APA|B are ergodic.

Remark L. Notice that (ER) holds whenever the matrices have strictly positive
coefficients. This is true for PA|BPB|A if

∑m2

j=1 P (A ∩ Bj)P (Bj ∩ A′) > 0 for
all A,A′ ∈ A hence if each pair A,A′ ∈ A is intersected by some B ∈ B with
positive probability. The later requirement is for instance met if X = Rd, P has
a positive density and the partitions concern two distinct coordinates.

Proposition 11. Under (ER) the matrices S
(N)
l,even(f) and S

(N)
l,odd(f) for l = 1, 2

converge uniformly on F to Sl,even(f) and Sl,odd(f) satisfying

S1,odd(f) = S1,even(f) + P1[f ], S2,even(f) = S2,odd(f) + P2[f ],
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where Pl[f ] = (P (f), . . . , P (f))t are ml × 1 vectors. More precisely, given any
vector norms ‖·‖ml

for l = 1, 2, there exists cl > 0 and 0 < λl < 1 such that

sup
f∈F

∥∥∥S(N)
l,even(f)− Sl,even(f)

∥∥∥
ml

6 clλ
N
l

sup
f∈F

∥∥∥S(N)
l,odd(f)− Sl,odd(f)

∥∥∥
ml

6 clλ
N
l .

The main result of this section is the simple expression of the limiting process for
a two partitions raking procedure. Let dLP denote the Lévy-Prokhorov distance.
The matrices S1,even(f), S2,odd(f) and scalars λ1, λ2 are as in Proposition 11.

Theorem 2.2. Under (ER) the sequence
{
G(N)(F)

}
defined at (1.11) converges

almost surely to the centered Gaussian process G(∞)(F) defined to be

G(∞)(f) = G(f)− S1,even(f)t ·G[A]− S2,odd(f)t ·G[B], f ∈ F .

Moreover we have, for all N large and c3 > 0 depending on λ1, λ2, P (A), P (B),

dLP (G(N),G(∞)) 6 c3
√
N max(λ1, λ2)N/2.

Theorem 2.2 may be viewed as a stochastic counterpart of the deterministic rate
obtained by Franklin and Lorentz [11] for the Sinkhorn algorithm. Mixing both
approaches could strengthen the following two remarks.

Remark M. The matrices PA|B, PB|A and the vectors E[f |A], E[f |B] are not
known without additional information. They can be estimated uniformly over
F as n→ +∞ to evaluate the distribution of G(N) and G(∞), thus giving access
to adaptative tests or estimators. Since λ1, λ2 and c3 are related to eigenvalues
of PA|BPB|A and PB|APA|B they can be estimated adaptively at rate 1/

√
n in

probability. This in turn provides an evaluation of dLP (G(N),G(∞)).

Remark N. In the case of an auxiliary information reduced to P (A), P (B) one
should use A = {A,Ac}, B = {B,Bc}, estimate the missing P (A∩B) in PA|B,
PB|A and the conditional expectations on the four sets, then S1,even, S2,odd. On

the opposite, the above characterization of the limiting process G(∞)(F) can be
generalized to a recursive raking among k partitions in the same order.

As a conclusion the above G(∞) is the intrinsic limiting process when n→ +∞
then N → +∞. Even if n is large it is wise to choose a very small N to
guaranty good constants in previous sections, then estimate dLP (G(N),G(∞))
from the sample as in Remark M. If it is sufficiently small then G(N) may serve

to evaluate risks and confident regions, by estimating S
(N)
l,even, S

(N)
l,odd at required

f . Otherwise N may increase.
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3 Proofs of general results

3.1 Raking formulas

Write

Bn,N0 =

{
min

06N6N0

min
16j6mN

Pn
(
A

(N)
j

)
> 0

}
(3.1)

and Bcn,N0
= Ω \Bn,N0 . The probability that α

(N0)
n is undefined is

P
(
Bcn,N0

)
6

N0∑
N=1

mN (1− δN )
n 6 SN0

(
1− δ(N0)

)n
.

On Bn,N0
we have, by (1.3),

α(N)
n (f)

=
√
n(P(N)

n (f)− P (f))

=
√
n

mN∑
j=1

P (A
(N)
j )

P(N−1)
n (A

(N)
j )

P(N−1)
n (f1

A
(N)
j

)−
mN∑
j=1

P
(
f1

A
(N)
j

)
=

mN∑
j=1

 P (A
(N)
j )

P(N−1)
n (A

(N)
j )

α(N−1)
n (f1

A
(N)
j

)−
P
(
f1

A
(N)
j

)
P(N−1)
n (A

(N)
j )

α(N−1)
n (A

(N)
j )


=

mN∑
j=1

P (A
(N)
j )

P(N−1)
n (A

(N)
j )

α(N−1)
n

(
(f − E(f |A(N)

j ))1
A

(N)
j

)
. (3.2)

By (1.7) this implies (1.8) since for any A ∈ A,

α(N−1)
n (f1A)− E(f |A)α(N−1)

n (A) = P(N−1)
n (f1A)− E(f |A)P(N−1)

n (A).

Define A(0)
∩ = {Ω} and, for N > 1,

A(N)
∩ =

{
A : A = A

(1)
j1
∩A(2)

j2
∩ ... ∩A(N)

jN
, jk 6 mk, k 6 N

}
. (3.3)

For any A ∈ A(N)
∩ , P(N)

n associates to each Xi ∈ A the weight

ω(N)
n (A) =

1

n

N∏
k=1

P (A
(k)
jk

)

P(k−1)
n (A

(k)
jk

)
. (3.4)
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The case N = 1 is (1.1). By induction on (1.3), (3.4) and since A(N)
∩ is a refined

finite partition of X , we get

P(N+1)
n (f) =

mN+1∑
j=1

P (A
(N+1)
j )

P(N)
n (A

(N+1)
j )

P(N)
n (f1

A
(N+1)
j

)

=

mN+1∑
j=1

P (A
(N+1)
j )

P(N)
n (A

(N+1)
j )

∑
A∈A(N)

∩

n∑
i=1

ω(N)
n (A)f(Xi)1A∩A(N+1)

j
(Xi)

=

n∑
i=1

f(Xi)
∑

A∈A(N)
∩

mN+1∑
j=1

1
A∩A(N+1)

j
(Xi)ω

(N+1)
n (A ∩A(N+1)

j )

=

n∑
i=1

f(Xi)
∑

A∈A(N+1)
∩

1A(Xi)ω
(N+1)
n (A).

3.2 Proof of Proposition 1.

The partition A(N)
∩ is defined at (3.3). By using (3.4) it holds, for N > 1,

dK

(
P(N−1)
n || P(N)

n

)
=

n∑
i=1

P(N−1)
n ({Xi}) log

(
P(N−1)
n ({Xi})
P(N)
n ({Xi})

)

=

n∑
i=1

P(N−1)
n ({Xi})

∑
A∈A(N−1)

∩

mN∑
j=1

1
A∩A(N)

j
(Xi) log

(
ω
(N−1)
n (A)

ω
(N)
n (A ∩A(N)

j )

)

=

mN∑
j=1

log

(
P(N−1)
n (A

(N)
j )

P (A
(N)
j )

)
n∑
i=1

P(N−1)
n ({Xi})

∑
A∈A(N−1)

∩

1
A∩A(N)

j
(Xi)

=

mN∑
j=1

P(N−1)
n (A

(N)
j ) log

(
P(N−1)
n (A

(N)
j )

P (A
(N)
j )

)
(3.5)

since A(N−1)
∩ is a partition of X . Hence the contrast between P(N−1)

n and P(N)
n is

the same on {X1, ..., Xn} as on A(N). Now, by convexity of − log(x) it follows,
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for any probability law Q supported by {X1, ..., Xn},

dK

(
P(N−1)
n || Q

)
= −

n∑
i=1

log

(
Q({Xi})

P(N−1)
n ({Xi})

)
mN∑
j=1

P(N−1)
n ({Xi})1A(N)

j
(Xi)

= −
mN∑
j=1

P(N−1)
n (A

(N)
j )

n∑
i=1

P(N−1)
n ({Xi})

P(N−1)
n (A

(N)
j )

1
A

(N)
j

(Xi) log

(
Q({Xi})

P(N−1)
n ({Xi})

)

> −
mN∑
j=1

P(N−1)
n (A

(N)
j ) log

(
n∑
i=1

Q({Xi})
P(N−1)
n (A

(N)
j )

1
A

(N)
j

(Xi)

)

=

mN∑
j=1

P(N−1)
n (A

(N)
j ) log

(
P(N−1)
n (A

(N)
j )

P (A
(N)
j )

)
= dK

(
P(N−1)
n || P(N)

n

)
where the final identification relies on (3.5) and P(N)

n = P on A(N).

3.3 Proof of Proposition 2.

The classical law of the iterated logarithm holds for the empirical process α
(0)
n

indexed by F under (VC) and (BR). See Alexander [1], in particular Theorem
2.12 for (BR) and Theorem 2.13 based on Theorem 2.8 that uses in its proof
the consequence of Lemma 2.7, which is indeed (VC). Namely, for any ε > 0,
with probability one there exists n(ω) such that, for all n > n(ω),

un||P(0)
n − P ||F < 1 + ε, un =

√
n

2σ2
FL ◦ L(n)

(3.6)

where σ2
F = supF V(f) 6M2. Let 1 6 N 6 N0. By (1.3) it holds

P(N)
n (f)− P(N−1)

n (f) =

mN∑
j=1

P(N−1)
n (f1

A
(N)
j

)
P (A

(N)
j )

P(N−1)
n (A

(N)
j )

−
mN∑
j=1

P(N−1)
n (f1

A
(N)
j

)

=

mN∑
j=1

E(N−1)
n (f | A(N)

j )
(
P (A

(N)
j )− P(N−1)

n (A
(N)
j )

)
.

Since P(N)
n is a probability measure we have ‖P(N)

n (f1A)‖F 6MP(N)
n (A) hence

‖E(N−1)
n (f | A(N)

j )‖F 6 M and |P(N)
n (f)− P(N−1)

n (f)| 6 MmN‖P(N−1)
n − P‖F .

Also observe that (1.2) combined to the fact that A(N) is a partition implies
mN 6 1/δN and δN > δ(N) > δ(N0). Therefore

un

∥∥∥P(N)
n − P

∥∥∥
F
6 un

∥∥∥P(N−1)
n − P

∥∥∥
F

+ un

∥∥∥P(N)
n − P(N−1)

n

∥∥∥
F

6 un (1 +MmN )
∥∥∥P(N−1)

n − P
∥∥∥
F

6 unκN
∥∥∥P(0)

n − P
∥∥∥
F
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where

κN =

N∏
k=1

(1 +MmN ) 6
N∏
k=1

(
1 +

M

δk

)
6

(
1 +

M

δ(N0)

)N0

which by (3.6) remains true for N = N0 = 0. This proves that, given N0 ∈ N
and for all ε > 0,

lim sup
n→+∞

√
n

2L ◦ L(n)
sup

06N6N0

∥∥∥P(N)
n − P

∥∥∥
F
6 (1 + ε)κNσF a.s.

and Proposition 2 follows.

3.4 Proof of Proposition 3

Step 1. We work on Bn,N0 from (3.1), which is unwritten but is in intersection
with all subsequent events. By (1.8) and (3.2) we have, for N > 1,

α
(N−1)
n,j (f) =

1

P(N−1)
n (A

(N)
j )

α(N−1)
n

(
(f − E(f |A(N)

j ))1
A

(N)
j

)
with

∣∣∣E(f |A(N)
j )

∣∣∣ 6M , and

P
(∥∥∥α(N)

n

∥∥∥
F
> λ

)
6 P

mN∑
j=1

P (A
(N)
j )

∥∥∥α(N−1)
n,j

∥∥∥
F
>

mN∑
j=1

P (A
(N)
j )λ


6

mN∑
j=1

P
(∥∥∥α(N−1)

n,j

∥∥∥
F
> λ

)
.

Each term in the latter sum satisfies, for K 6 P (A
(N)
j ) and K ′ 6 P (A

(N)
j )−K,

P

(
1

P(N−1)
n (A

(N)
j )

∥∥∥α(N−1)
n (f)− E(f |A(N)

j )α(N−1)
n (A

(N)
j )

∥∥∥
F
> λ

)
6 P

(
(1 +M)

∥∥∥α(N−1)
n

∥∥∥
F
> Kλ

)
+ P

(
P(N−1)
n (A

(N)
j ) 6 K

)
6 P

(∥∥∥α(N−1)
n

∥∥∥
F
>

λK

1 +M

)
+ P

(
α(N−1)
n (A

(N)
j ) 6 −K ′

√
n
)

6 2P
(∥∥∥α(N−1)

n

∥∥∥
F
>

λK

1 +M

)
(3.7)

where the last bound holds provided that K ′
√
n > λK/(1 +M). Define

β =
1

1 + λ/(1 +M)
√
n
∈ (0, 1) , K = βδN , K ′ = 1− δN (1 + β).

Since δN 6 1/2 for any N > 1 it holds K ′ > 0 and, as required,

λ

(1 +M)
√
n

=
1− β
β

=
1− (1 + β)/2

β/2
6

1− δN (1 + β)

βδN
=
K ′

K
.
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We have shown that for any N > 1,

P
(∥∥∥α(N)

n

∥∥∥
F
> λ

)
6 2mNP

(∥∥∥α(N−1)
n

∥∥∥
F
>

λβδN
1 +M

)
.

Applying (3.7) again with λ turned into the smaller λβδN/(1+M) then iterating

from N0 we get, for ∆N0 =
∏N0

N=1 δN and MN0 =
∏N0

N=1mN 6 1/∆N0 ,

P
(∥∥∥α(N0)

n

∥∥∥
F
> λ

)
6 2N0MN0

P
(∥∥∥α(0)

n

∥∥∥
F
>

λ∆N0

(1 +M + λ/
√
n)N0

)
.

The latter upper bound being increasing with N0 we conclude that

P
(

max
06N6N0

∥∥∥α(N)
n

∥∥∥
F
> λ

)
6

N0∑
N=1

P
(∥∥∥α(N)

n

∥∥∥
F
> λ

)
6 N0P

(∥∥∥α(N0)
n

∥∥∥
F
> λ

)
.

Step 2. By Talagrand [20], for n > 1, t > 0, independent Rademacher random
variables ε1, ..., εn also independent of X1, ..., Xn we have, for some universal
constants D′1 > 0, D′2 > 0, C > 0,

P
(
||α(0)

n ||F > D′1 (µn + t)
)
6 exp

(
−D′2 min

(
t2

σ2
F
,
t
√
n

M

))
where, by the last maximal inequality in Theorem 2.14.2 of van der Vaart and
Wellner [21] applied to F with envelop function constant to M , it holds

µn = E

∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

6 C
∫ 1

0

√
1 + logN[ ](F ,Mε, dP )dε

Under (BR), we have µn < C ′ with C ′ = C(1 + b0/(1 − r0)). For λ0 = 2D′1C
′

we get, for any n > 0 and λ0 < λ < 2D′1σ
2
F
√
n/M we get, for all n,

P
(
||α(0)

n ||F > λ
)
6 P

(
||α(0)

n ||F > D′1

(
µn +

λ

2D′1

))
6 exp

(
−D′′2λ2

)
where D′′2 = D′2/4(D′1)2σ2

F . Therefore, according to step 2, taking

D0 =
2D′1σ

2
F

M
, D1 = N02N0MN0

, D2 =
D′′2∆2

N0

(1 +M +D0)2N0
(3.8)

yields P(max06N6N0 ||α
(N0)
n ||F > λ) 6 D1 exp

(
−D2λ

2
)

for λ0 < λ < D0
√
n.

Step 3. By Theorem 2.14.9 in [21], under (VC) there exists a constant D(c0)
such that, for t0 large enough and all t > t0,

P
(∥∥∥α(0)

n

∥∥∥
F
> t
)
6

(
D(c0)t

M
√
v0

)v0
exp

(
− 2t2

M2

)
.
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Denote λ1,n and λ2,n the two solutions of λ∆N0 = t0(1 +M +λ/
√
n)N0 . Notice

that, for n large, λ1,n is close to t0(1 +M)N0/∆N0 and λ2,n = O(nN0/2(N0−1)).
It ensues that for some n0, λ0 it holds, for all n > n0 and λ0 < λ < 2M

√
n, the

bound P(max06N6N0
||α(N)

n ||F > λ) 6 D3λ
v0 exp(−D4λ

2) where

D3 =
N02N0MN0

(1 +M)v0N0

(
D(c0)∆N0

M
√
v0

)v0
, D4 =

2∆2
N0

M2(3M + 1)2N0
. (3.9)

Finally, at each step, add SN0

(
1− δ(N0)

)n
to take Bcn,N0

from (3.1) into account.

3.5 Proof of Proposition 4 and Theorem 2.1.

Theorem 2.1 implies Proposition 4 since the weak convergence on (`∞(F), ‖·‖F )

is metricized by the Lévy-Prokhorov distance between α
(N)
n and G(N)

n which is

inf
{
ε > 0 : Pα

(N)
n (A) 6 PG(N)

n (Aε) + ε,PG(N)
n (A) 6 Pα

(N)
n (Aε) + ε

}
6 vn.

(3.10)
To see this, recall that vn > 1/nθ0 and vn → 0 in Theorem 2.1, remind (1.6)
then observe that

P
(
α(N)
n ∈ A

)
6 P

({
α(N)
n ∈ A

}
∩
{∥∥∥α(N)

n −G(N)
n

∥∥∥
F
6 vn

}
∩Bn,N0

)
+ P

({∥∥∥α(N)
n −G(N)

n

∥∥∥
F
> vn

}
∩Bn,N0

)
+ P

(
Bcn,N0

)
6 P(G(N)

n ∈ Avn) +
1

nθ0
+ SN0

(
1− δ(N0)

)n
remains true by exchanging α

(N)
n and G(N)

n . Since vn is the slowest sequence, if
n0 satisfies vn0

> 1/nθ00 +SN0

(
1− δ(N0)

)n0
then vn > 1/nθ0 +SN0

(
1− δ(N0)

)n
for all n > n0. Whence (3.10).

We next establish Theorem 2.1. Fix N0 ∈ N.

Step 1. Let introduce the transforms, for f ∈ F , N > 1 and 1 6 j 6 mN ,

φ(j,N)f =
(
f − E

(
f | A(N)

j

))
1
A

(N)
j
,

φ(N)f =

mN∑
j=1

φ(j,N)f = f −
mN∑
j=1

E(f | A(N)
j )1

A
(N)
j
.

It holds P (φ(N)f) = P (φ(j,N)f) = 0 and, since A(N) is a partition of X ,

(φ(j,N)f)(φ(j′,N)g) = 0, 1 6 j 6= j′ 6 mN . (3.11)

Moreover, the L2(P ) property of conditional expectations yields

σ2
φ(j,N)f

= P (f2(j,N)) 6 σ
2
φ(N)f

= P (f2(N)) =

mN∑
j=1

σ2
φ(j,N)f

6 σ2
f . (3.12)
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Next consider the class of backward iterated transforms

F(N) = φ(1) ◦ ... ◦ φ(N)(F),

H(N) =
⋃

16k6N

⋃
16j6mk

φ(j,k) ◦ φ(k+1) ◦ ... ◦ φ(N)(F),

where φ(k+1) ◦ ... ◦ φ(N) = id if k = N > 1 and F(0) = H(0) = F . Also write
F0 =

⋃
06N6N0

F(N) and H0 =
⋃

06N6N0
H(N). By iterating (3.12) it comes

σ2
H0
6 σ2

F0
6 σ2

F . We first show that properties of F transfer to F(N), H(N) for
0 6 N 6 N0 and thus to F0 and H0. Remind the constants defined at (2.2).

Lemma 1. Assume (1.2). If F is pointwise measurable and bounded by M
then F(N) and H(N) (resp. F0 and H0) are pointwise measurable and bounded
by (2M)N/∆N (resp. (2M)N0/∆N0

). If (V C) (resp. (BR)) holds then F0 and
H0 also satisfies (V C) (resp. (BR)) with the same power ν0 (resp. r0) as F .

Proof. If F is uniformly bounded by M then for N 6 N0 we have

sup
F

sup
X

∣∣φ(N)f
∣∣ = sup

F
max

16j6mN

sup
X

∣∣φ(j,N)f
∣∣ 6M (

1 +
1

δN

)
6

2M

δN

thus, by backward induction from N0 to 1, F(N0) and H(N0) are uniformly
bounded by (2M)N/∆N . It readily follows that F0 and H0 are bounded by
(2M)N0/∆N0 . Assume that fk ∈ F∗ converges pointwise on X to f ∈ F . From

lim
k→+∞

1
A

(N)
j

(X)fk(X) = 1
A

(N)
j

(X)f(X) and P (1
A

(N)
j
fk) 6 P (fk) 6M

we deduce by dominated convergence that limk→+∞ E(fk | A(N)
j ) = E(f | A(N)

j ).

Thus φ(j,N)fk converges pointwise to φ(j,N)f and φ(N)fk =
∑mN

j=1 φ(j,N)fk to

φ(N)f =
∑mN

j=1 φ(j,N)f . By iterating this reasoning backward from N to 1 we
obtain that F(N) and H(N) are pointwise measurable, by using the countable
classes φ(1) ◦ ... ◦ φ(N)(F∗) and

⋃
16k6N

⋃
16j6mk

φ(j,k) ◦ φ(k+1) ◦ ... ◦ φ(N)(F∗)
respectively. Assume next that F satisfies (V C). By (3.11) we have

d2Q(φ(N)f, φ(N)g) =

∫
X

(∑mN

j=1(φ(j,N)f − φ(j,N)g)
)2
dQ

=

mN∑
j=1

d2Q(φ(j,N)f, φ(j,N)g)

=

mN∑
j=1

∫
A

(N)
j

(
f − g − E(f − g | A(N)

j )
)2
dQ

6
mN∑
j=1

∫
A

(N)
j

(f − g − (Qf −Qg))
2
dQ

= d2Q(f, g)− (Qf −Qg)2

thus dQ(f, g) < ε implies d2Q(φ(N)f, φ(N)g) 6 d2Q(f, g) < ε2. If F can be covered
by N (F , ε, dQ) balls of dQ-radius ε centered at some g then φ(N)(F) can be
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covered by the same number of balls, centered at the corresponding φ(N)g and
hence the same number of centers φ(1) ◦ ... ◦ φ(N)g suffices to cover F(N). All
the φ(j,k) ◦ φ(k+1) ◦ ... ◦ φ(N)g are needed to cover H(N), that is SNN (F , ε, dQ).
This shows that F0 (resp. H0) obeys (V C) with the same power ν0 and a

constant c0(N0 + 1) (resp. c0
∑N0

N=0 SN ). Assume now that F satisfies (BR).
If g− 6 f 6 g+ then we have

h−(j,N) = 1
A

(N)
j
g− − 1

A
(N)
j

E
(
g+ | A(N)

j

)
6 φ(j,N)f 6 1

A
(N)
j
g+ − 1

A
(N)
j

E
(
g− | A(N)

j

)
= h+(j,N)

and the L2(P )-size of the new bracket [h−(j,N), h
+
(j,N)] is

d2P (h−(j,N), h
+
(j,N)) =

∫
A

(N)
j

(
g+ − g− + E(g+ − g− | A(N)

j )
)2
dP

= P (1
A

(N)
j

(g+ − g−)2) + P (A
(N)
j )E(g+ − g− | A(N)

j )2

+ 2E(g+ − g− | A(N)
j )P (1

A
(N)
j

(g+ − g−)).

If dP (g+, g−) < ε the Hölder inequality yields P (1
A

(N)
j

(g+−g−)) 6 ε
√
P (A

(N)
j )

and E(g+ − g− | A(N)
j ) 6 ε/

√
P (A

(N)
j ) hence

d2P (h−(j,N), h
+
(j,N)) 6 P (1

A
(N)
j

(g+ − g−)2) + 3ε2

so that φ(N)f =
∑mN

j=1 φ(j,N)f ∈ [h−(N), h
+
(N)] where h±(N) =

∑mN

j=1 h
±
(j,N) satisfies

d2P (h−(N), h
+
(N)) =

mN∑
j=1

d2P (h−(j,N), h
+
(j,N)) 6 d

2
P (g−, g+) + 3mNε

2 6 4mNε
2.

It ensues N[ ](φ(N)(F), ε, dP ) 6 N[ ](F , ε/2
√
mN , dP ) and N[ ](F(N), ε, dP ) 6

N[ ](F , ε/2N
√
MN , dP ). To cover φ(j,k) ◦φ(k+1) ◦ ...◦φ(N)(F) one needs at most

mkN[ ](F , ε/2N−k
√
mk+1...mN , dP ) brackets. We have proved that

N[ ](F0, ε, dP ) 6 (N0 + 1)N[ ](F , ε/2N0
√
MN0

, dP ),

N[ ](H0, ε, dP ) 6 SN0
N[ ](F , ε/2N0

√
MN0

, dP ).

Therefore F0, H0 satisfy (BR) with power r0 and constant 2r0N0Mr0
N0
b0. �

Step 2. By (3.2) we have

α(N)
n (f) =

mN∑
j=1

P (A
(N)
j )

P(N−1)
n (A

(N)
j )

α(N−1)
n (φ(j,N)f) = α(N−1)

n (φ(N)f) + Γ(N)
n (f),

(3.13)

Γ(N)
n (f) =

mN∑
j=1

qn(j,N)α(N−1)
n

(
φ(j,N)f

)
, qn(j,N) =

P (A
(N)
j )

P(N−1)
n (A

(N)
j )

− 1.
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Under the convention that φ(N+1) ◦ φ(N) = id, iterating (3.13) leads to

α(N)
n (f) = α(0)

n (φ(1) ◦ ... ◦ φ(N)f) + z(N)
n (f),

z(N)
n (f) =

N∑
k=1

Γ(k)
n (φ(k+1) ◦ ... ◦ φ(N)f).

Clearly the terms Γ
(k)
n carry out some bias and variance distortion. However

α
(0)
n (F(N)) is the main contribution to α

(N)
n (F) and z(N)

n (F) is an error process.

Lemma 2. Consider the sequence vn defined at Theorem 2.1. If F satisfies
(V C) or (BR) then there exists C0 < +∞ such that we almost surely have, for

all n large enough, max06N6N0
‖z(N)

n ‖F 6 C0L ◦ L(n)/
√
n. Moreover, for any

ζ > 0 and θ > 0 there exists n3(ζ, θ) such that we have, for all n > n3(ζ, θ),

P
(

max
06N6N0

‖z(N)
n ‖F > ζvn

)
6

1

2nθ
.

Proof. (i) Let us apply Proposition 2 to F and, thanks to Lemma 1, to H0 and
H(N). The following statements are almost surely true, for all n large enough.
On the one hand,

max
16N6N0

max
16j6mN

∣∣∣α(N−1)
n (A

(N)
j )

∣∣∣ 6 bn = 2σFκN0

√
L ◦ L(n). (3.14)

On the other hand, having σH0
6 σF by (3.12),

max
16N6N0

max
16k6N

max
16j6mk

∣∣∣α(k−1)
n (φ(j,k) ◦ φ(k+1) ◦ ... ◦ φ(N)f)

∣∣∣ 6 max
16k6N0

∥∥∥α(k−1)
n

∥∥∥
H0

6 bn.

By (3.14), qn(j,N) = 1/(1 + α
(N−1)
n (A

(N)
j )/P (A

(N)
j )
√
n)− 1 satisfies

max
16N6N0

max
16j6mN

|qn(j,N)|
√
n

bn
δ(N0) 6 2 (3.15)

which implies

∥∥∥z(N)
n

∥∥∥
F
6

N∑
k=1

max
16j6mk

|qn(j, k)|
mk∑
j=1

∣∣∣α(k−1)
n

(
φ(j,k) ◦ φ(k+1) ◦ ... ◦ φ(N)f

)∣∣∣
(3.16)

max
16N6N0

∥∥∥z(N)
n

∥∥∥
F
6

2bn√
nδ(N0)

SN0 max
16k6N0

∥∥∥α(k−1)
n

∥∥∥
H0

6
2b2nSN0√
nδ(N0)

.

The almost sure result then holds with C0 = 8σ2
Fκ

2
N0
SN0

/δ(N0).

(ii) We now work on the event Bn,N0 of (3.1). There obviously exists n1 such
that if n > n1 then SN0

(1 − δ(N0))
n 6 1/4nθ. We can also find κ > 0 such

that n2κ/
√
n = o(vn) as n → +∞. Therefore, whatever ζ > 0 there exists
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n2(κ, SN0 , ζ,F , P ) such that ζvn > 2SN0n
2κ/δ(N0)

√
n for any n > n2. Choosing

n > max(n1, n2) we deduce as for (3.15) and (3.16) that

P
(

max
06N6N0

‖z(N)
n ‖F > ζvn

)
6 P

(
SN0

max
16N6N0

(∥∥∥α(N−1)
n

∥∥∥
H0

max
16j6mN

|qn(j,N)|
)
> ζvn

)
6 P

((
max

16N6N0

max
16j6mN

|qn(j,N)|
)
>

2nκ

δ(N0)

√
n

)
+ P

(
max

16N6N0

∥∥∥α(N−1)
n

∥∥∥
H0

> nκ
)

6 2P
(

max
16N6N0

∥∥∥α(N−1)
n

∥∥∥
H0

> nκ
)
.

By Proposition 3 we see that under (VC) or (BR) the latter probability can be
made less than 1/8nθ for any n > n3(ζ, θ) and n3(ζ, θ) large enough. Clearly
n3(ζ, θ) depends on ζ, θ, n1, n2 and on the entropy of H0 thus all constants in
Lemma 1 and Proposition 3 are involved. �

Step 3. Fix θ > 0. By Lemma 1 we can apply Berthet and Mason to F0, which
ensures the following Gaussian approximation. For some constant cθ(F0, P ) > 0
and nθ(F0, P ) > 0 we can build on a probability space (Ω, T ,P) a version of
the sequence {Xn} of independent random variables with law P and a sequence

{G(0)
n } of coupling versions of G(0) in such a way that, for all n > nθ(F0, P ),

P
(∥∥∥α(0)

n −G(0)
n

∥∥∥
F0

> cθ(F0, P )vn

)
6

1

2nθ
. (3.17)

Keep in mind that constants nθ and cθ only depend on the uniform boundedness
and the entropy of F0. By choosing θ > 1, dθ > cθ(F0, P ) then applying Borel-
Cantelli lemma to (3.17), it almost surely holds, for all n large enough,∥∥∥α(0)

n −G(0)
n

∥∥∥
F0

< dθvn. (3.18)

Step 4. Let θ0 > 0. We work under the event Bn,N0
of (3.1) with a probability

at least 1 − 1/4nθ0 provided that n > n1. The process G(0) being linear on F
we see that the recursive definition (1.11) applied to the version G(0)

n of G(0)

reads G(N)
n (f) = G(N−1)

n (φ(N)f). This combined to (3.13) readily gives

max
16N6N0

∥∥∥α(N)
n −G(N)

n

∥∥∥
F

= max
16N6N0

∥∥∥α(N−1)
n (φ(N0)f)−G(N−1)

n (φ(N0)f) + Γ(N)
n (f)

∥∥∥
F

= max
16N6N0

∥∥∥α(0)
n (φ(1) ◦ ... ◦ φ(N)f)−G(0)

n (φ(1) ◦ ... ◦ φ(N)f) + z(N)
n (f)

∥∥∥
F

6
∥∥∥α(0)

n −G(0)
n

∥∥∥
F0

+ max
06N6N0

‖z(N)
n ‖F . (3.19)
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Remind that vn > L(n)/
√
n and Lemma 2 holds. By (3.18) and (3.19) we

almost surely have, for all n large enough and d0 = 2dθ0 ,

max
16N6N0

∥∥∥α(N)
n −G(N)

n

∥∥∥
F
6 dθ0vn + C0

L ◦ L(n)√
n

6 d0vn.

By Lemmas 1 and 2, (3.17) and (3.19), for n0 > max(n1, n3(ζ, θ0), nθ0(F0, P ))
and d0 > cθ0(F0, P ) + ζ we have, for all n > n0,

P
(

max
16N6N0

∥∥∥α(N)
n −G(N)

n

∥∥∥
F
> d0vn

)
6

1

2nθ0
+P
(

max
06N6N0

‖z(N)
n ‖F > ζvn

)
6

1

nθ0
.

To conclude observe that the parametersN0,M,MN0
, SN0

,∆N0
, δ(N0), θ0, ν0, c0, r0, b0

have been used at one or several steps to finally define n0 and d0.

3.6 Proof of Proposition 5

Theorem 2.1 implies, for f ∈ F ,

P(N)
n (f)− P (f) =

1√
n
G(N)
n (f) +

1√
n
R(N)
n (f) (3.20)

where G(N)
n is a sequence of versions of the centered Gaussian process G(N) from

(1.11) and the random sequence r
(N)
n = ‖R(N)

n ‖F satisfies

r(N)
n 6

∥∥∥G(N)
n

∥∥∥
F

+
∥∥∥α(N)

n

∥∥∥
F
6
∥∥∥G(N)

n

∥∥∥
F

+ 2M
√
n, lim

n→+∞

r
(N)
n

vn
6 d0 a.s.

We have to be a little careful with the expectation, variance and covariance of

the coupling error process R(N)
n .

Step 1. Since G(N)
n (f) is centered the bias is controlled by

sup
f∈F

√
n

vn

∣∣∣E(P(N)
n (f)

)
− P (f)

∣∣∣ = sup
f∈F

∣∣∣∣ 1

vn
E
(
R(N)
n (f)

)∣∣∣∣ 6 E

(
r
(N)
n

vn

)
. (3.21)

Write an =
√
K log n where K > 0 and θ0 > 1 from Theorem 2.1 can be chosen

as large as needed. Then, for θ > 1, ε > 0 and k ∈ N∗ consider the events

An =
{
r(N)
n 6 (d0 + ε)vn

}
, Bn =

{∥∥∥G(N)
n

∥∥∥
F
6 an

}
,

Cn,k =
{
θk−1an <

∥∥∥G(N)
n

∥∥∥
F
6 θkan

}
.
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By Theorem 2.1, P(Acn) < 1/nθ0 and vn > an/
√
n for all n large enough, hence

1

vn
E
(
r(N)
n

)
= E

(
r
(N)
n

vn
1An

)
+ E

(
r
(N)
n

vn
1Ac

n∩Bn

)
+ E

(
r
(N)
n

vn
1Ac

n∩Bc
n

)

6 d0 + ε+
an + 2M

√
n

vn
P(Acn) + E

(
r
(N)
n

vn
1Bc

n

)

6 d0 + 2ε+

+∞∑
k=1

E

(
r
(N)
n

vn
1Cn,k

)
.

By Theorems 7 and 9, G(N)(f) is a centered Gaussian process indexed by F
such that, under (VC) or (BR),

E
(∥∥∥G(N)

∥∥∥
F

)
< +∞, sup

f∈F
V(G(N)(f)) 6 σ2

F < +∞,

E
(∥∥∥G(N)

∥∥∥2
F

)
6 C2

F = σ2
F + E

(∥∥∥G(N)
∥∥∥
F

)2
< +∞ (3.22)

thus, by Borell’s inequality, for any version G(N)
n of G(N),

P
(∥∥∥G(N)

n

∥∥∥
F
> λ

)
6 2 exp

(
− λ2

8C2
F

)
. (3.23)

Therefore we have, since θ > 1 and vn > 4M/
√
n > 2an/n for n large enough,

E

(
r
(N)
n

vn
1Cn,k

)
6
θkan + 2M

√
n

vn
P (Ck) 6 θknP

(∥∥∥G(N)
n

∥∥∥
F
> θk−1an

)
6 2θkn exp

(
− (θk−1an)2

8C2
F

)
and the following series is converging to an arbitrarily small sum,

+∞∑
k=1

E

(
r
(N)
n

vn
1Cn,k

)
6 2n exp

(
− a2n

8C2
F

) +∞∑
k=1

θk exp

(
−
(
θ2(k−1) − 1

8C2
F

)
a2n

)

6 n exp

(
−K log n

8C2
F

) +∞∑
k=1

2eθk exp
(
−θ2(k−1)

)
6

1

nδ

where δ < K/8C2
F − 1. It follows that (3.21) is ultimately bounded by d0.

Step 2. Starting from (3.20) and the bias and variance decomposition, the
quadratic risk is in turn controlled by

E
(

(P(N)
n (f)− P (f))2

)
− 1

n
V
(
G(N)(f)

)
=
∣∣∣E(P(N)

n (f)
)
− P (f)

∣∣∣2 +
1

n
V
(
R(N)
n (f)

)
+

2

n
Cov

(
G(N)
n (f),R(N)

n (f)
)
.

(3.24)
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(i) By step 1, the first right-hand term is the squared bias, of order d20v
2
n/n.

Concerning the second right-hand term in (3.24), we bound E(R(N)
n (f)2). Fix

ε > 0 and assume that n is large enough for the following statements. By setting

s
(N)
n = (r

(N)
n )2 then using vn > an/

√
n, an = K

√
log n <

√
n we get, for θ0 = 2,

1

v2n
sup
f∈F

E
(
R(N)
n (f)2

)
6 E

(
s
(N)
n

v2n
1An

)
+ E

(
s
(N)
n

v2n
1Ac

n∩Bn

)
+ E

(
s
(N)
n

v2n
1Ac

n∩Bc
n

)

6 (d0 + ε)2 +

(
an + 2M

√
n

vn

)2

P(Acn) + E

(
s
(N)
n

v2n
1Bc

n

)

6 (d0 + 2ε)2 +

(
3M
√
n

log n

)2
1

n2
+

+∞∑
k=1

E

(
s
(N)
n

v2n
1Cn,k

)

6 (d0 + 3ε)2 +

+∞∑
k=1

θ2kn2P
(∥∥∥G(N)

n

∥∥∥
F
> θk−1an

)
6 (d0 + 4ε)2

where the series is equal to its first term n2 exp
(
−a2n/8C2

F
)

times a convergent
series, by using (3.23) as for step 1 with K > 16C2

F . We have shown that

lim sup
n→+∞

1

v2n
sup
f∈F

V
(
R(N)
n (f)

)
6 lim sup

n→+∞

1

v2n
E
(
s(N)
n

)
6 d20. (3.25)

(ii) Concerning the covariance term in (3.24) it holds

1

vn

∣∣∣Cov
(
G(N)
n (f),R(N)

n (f)
)∣∣∣ =

1

vn

∣∣∣E(G(N)
n (f)R(N)

n (f)
)∣∣∣

6 TAn(f) + TAc
n∩Bn(f) + TAc

n∩Bc
n
(f)

where

TD(f) = E

(∣∣∣G(N)
n (f)

∣∣∣ r(N)
n

vn
1D

)
, D ∈ {An, Acn ∩Bn, Acn ∩Bcn} .

As a consequence of (3.22),

TAn
(f) 6 E

(∣∣∣G(N)
n (f)

∣∣∣ (d0 + ε)1An

)
6 (d0 + ε)σFE (|N (0, 1)|) .

By using again P(Acn) < 1/n2 we see that

TAc
n∩Bn(f) 6 E

(
an

(
2M
√
n+ an
vn

)
1Ac

n∩Bn

)
6 an

(
3M
√
n

vn

)
1

n2
6 ε.
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Lastly, for g
(N)
n =

∥∥∥G(N)
n

∥∥∥
F

, K large and all n large enough it holds, by (3.23),

TAc
n∩Bc

n
(f) 6 E

(
g(N)
n

(
2M
√
n+ g

(N)
n

vn

)
1Bc

n

)

=

+∞∑
k=1

E

(
g(N)
n

(
2M
√
n+ g

(N)
n

vn

)
1Cn,k

)

6
+∞∑
k=1

θ2ka2nnP
(∥∥∥G(N)

n

∥∥∥
F
> θk−1an

)
6 ε.

The above upper bounds do not depend on f . By (3.24) and (3.25) this implies

lim sup
n→+∞

n

vn
sup
f∈F

∣∣∣∣E((P(N)
n (f)− P (f))2

)
− 1

n
V
(
G(N)(f)

)∣∣∣∣ 6
√

8

π
d0σF .

Step 3. Let extend Step 2 to the covariance. By Step 1 we have, for all n large,∣∣∣Cov
(
P(N)
n (f),P(N)

n (g)
)
− E

((
P(N)
n (f)− P (f)

)(
P(N)
n (g)− P (g)

))∣∣∣
=
∣∣∣E(P(N)

n (f)
)
− P (f) + E

(
P(N)
n (g)

)
− P (g)

∣∣∣ < 2d0
v2n
n
.

Now, by the upper bounds computed at (i) and (ii) of Step 2,∣∣∣∣E((P(N)
n (f)− P (f))(P(N)

n (g)− P (g))
)
− 1

n
Cov

(
G(N)(f),G(N)(g)

)∣∣∣∣
6

1

n
E
(∣∣∣G(N)

n (f)R(N)
n (g)

∣∣∣)+
1

n
E
(∣∣∣G(N)

n (g)R(N)
n (f)

∣∣∣)+
1

n
E
(∣∣∣R(N)

n (f)R(N)
n (g)

∣∣∣)
6

2

n
sup
f∈F

E
(∣∣∣G(N)

n (f)
∣∣∣ r(N)
n

)
+

1

n
E
(
s(N)
n

)
6

2

n
(d0 + ε)σF

√
2

π
vn +

1

n
(d0 + ε)2v2n.

3.7 Proof of Proposition 6.

Fix N0 ∈ N and L. Let apply Theorem 2.1 from which we also use n0 and vn.
We have, for all 0 6 N 6 N0, ϕ ∈ L, x ∈ R and n > n0

P
(
ϕ(α(N)

n ) 6 x
)
6

1

n2
+ P

({
ϕ(α(N)

n ) 6 x
}
∩
{∥∥∥α(N)

n −G(N)
n

∥∥∥
F
< c0vn

})
6

1

n2
+ P

(
ϕ(G(N)

n ) 6 x+ c0C1vn

)
6

1

n2
+ P

(
ϕ(G(N)

n ) 6 x
)

+ c0C1C2vn
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and

P
(
ϕ(G(N)

n ) 6 x− c0C1vn

)
6

1

n2
+ P

({
ϕ(G(N)

n ) 6 x− c0C1vn

}
∩
{∥∥∥α(N)

n −G(N)
n

∥∥∥
F
< c0vn

})
6

1

n2
+ P

(
ϕ(α(N)

n ) 6 ϕ(G(N)
n ) + c0C1vn 6 x

)
so that

P
(
ϕ(α(N)

n ) 6 x
)
> P

(
ϕ(G(N)

n ) 6 x
)
− c0C1C2vn −

1

n2
.

This establishes the second statement of Proposition 6 provided c1 > c0 and
n > n1 > n0 where n1 is large enough to have (c1 − c0)vn > n−2. The first
statement coincides with the special case L = {ϕf : f ∈ F0} where ϕf (g) = g(f)
are pointwise projectors and we then have a Lipshitz constant C1 = 1 whereas

ϕf (G(N)
n ) = G(N)

n (f) has a Gaussian density bounded by

1√
2πV(G(N)

n (f))

6 C2 =
1√

2πσ0
< +∞.

4 Proofs concerning the limiting process

4.1 Proof of Proposition 7

Step 1. Let us first relate G(N)(F) from (1.11) to G(F) = G(0)(F) from (1.10)

by means of the vectors Φ
(N)
k (f) introduced at (2.3) before Proposition 7.

Lemma 3. For all N ∈ N∗ and f ∈ F it holds

G(N)(f) = G(f)−
N∑
k=1

Φ
(N)
k (f)t ·G

[
A(k)

]
Proof. The formula is true for N = 0. Assume that it is the case for N > 0.

Recall that sets A ∈ A(N0)
∪ from (1.9) are identified to f = 1A. By (1.11),

G(N+1)(f) = G(N)(f)− E
[
f | A(N+1)

]t
·G(N)

[
A(N+1)

]
= G(f)−

N∑
k=1

Φ
(N)
k (f)t ·G

[
A(k)

]
−
mN+1∑
j=1

E(f | A(N+1)
j )

(
G(A

(N+1)
j )−

N∑
k=1

Φ
(N)
k (A

(N+1)
j )t ·G

[
A(k)

])

= G(f)− E
[
f | A(N+1)

]t
·G
[
A(N+1)

]
−

N∑
k=1

[
Φ

(N)
k (f)− Φ

(N)
k [A(N+1)] · E[f | A(N+1)]

]t
·G
[
A(k)

]
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where themk×mN+1 matrix Φ
(N)
k [A(N+1)] = (Φ

(N)
k (A

(N+1)
1 ), . . . ,Φ

(N)
k (A

(N+1)
mN+1 ))

satisfies

mN+1∑
j=1

E(f | A(N+1)
j )Φ

(N)
k (A

(N+1)
j )t =

[
Φ

(N)
k [A(N+1)] · E[f | A(N+1)]

]t
.

Now observe that Φ
(N+1)
N+1 (f) = E[f | A(N+1)] since no index L matches in the

sum (2.3) defining Φ
(N)
k when N = k. It remains to show that

Φ
(N)
k (f)− Φ

(N)
k [A(N+1)] · E[f | A(N+1)] = Φ

(N+1)
k (f). (4.1)

For 1 6 k 6 N and 1 6 j 6 mN+1 we have

Φ
(N)
k (A

(N+1)
j ) = E

[
A

(N+1)
j | A(k)

]
+∑

16L6N−k
k<l1<...<lL6N
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[
A
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j |A(lL)

]

where, for l = k, k + 1, ..., N the vector

E
[
A

(N+1)
j | A(l)

]
=

(
P (A

(N+1)
j ∩A(l)

1 )

P (A
(l)
1 )

, ...,
P (A

(N+1)
j ∩A(l)

ml)

P (A
(l)
ml)

)t
is also the j-th column of PA(N+1)|A(l) . Therefore, by turning L into L′ = L+1,

− Φ
(N)
k

[
A(N+1)

]
· E
[
f | A(N+1)

]
= −

mN+1∑
j=1

E(f | A(N+1)
j )Φ

(N)
k (A

(N+1)
j )

= −
mN+1∑
j=1

E(f | A(N+1)
j )E

[
A

(N+1)
j | A(k)

]

+

mN+1∑
j=1

E(f | A(N+1)
j )

∑
16L6N−k

k<l1<...<lL6N

(−1)L+1PA(l1)|A(k) · · ·PA(lL)|A(lL−1) · E
[
A

(N+1)
j |A(lL)

]

= (−1)1PA(N+1)|A(k)E
[
f |A(N+1)

]
+

∑
16L′6N+1−k

k<l1<...<lL′=N+1

(−1)L
′
PA(l1)|A(k) · · ·PA(l

L′−1
)|A(l
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) ·PA(N+1)|A(l
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) · E

[
f |A(N+1)

]

where all terms are different from those in

Φ
(N)
k (f) = E

[
f | A(k)

]
+

∑
16L′6N+1−k

k<l1<...<lL′<N+1

(−1)LPA(l1)|A(k) ···PA(l
L′ )|A(l
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) ·E
[
f |A(lL′ )

]
.
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Having collected all terms of Φ
(N)
k (f) in (2.3), this establishes (4.1). The proof

is completed by induction. �

The functions Φ
(N)
k and the process G are linear, hence Lemma 3 implies that

G(N) is a linear process. Moreover G(f) and G[A(k)] being centered Gaussian,
Lemma 3 proves that G(N)(f) is a centered Gaussian random variable.

Step 2. To compute the covariance of G(N)(F) we need the following properties.
Recall that PA(k)|A(k) = Idmk

is the identity matrix of Rmk .

Lemma 4. For 1 6 k, l 6 N and f ∈ F we have

Cov
(
G[A(k)],G(f)

)
= V

(
G[A(k)]

)
· E[f | A(k)], (4.2)

Cov
(
G[A(k)],G[A(l)]

)
= V

(
G[A(k)]

)
PA(l)|A(k) , (4.3)

Φ
(N)
k (f) = E

[
f | A(k)

]
−

∑
k<l6N

PA(l)|A(k) · Φ(N)
l (f). (4.4)

Proof. The j-th coordinate of the vector V
(
G[A(k)]

)
· E[f | A(k)] is

P (A
(k)
j )(1− P (A

(k)
j ))E(f | A(k)

j )−
∑

j 6=i6mk

P (A
(k)
i )P (A
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j )E(f | A(k)

i )

= E(1
A
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j
f)− P (A

(k)
j )

∑
16i6mk

E(1
A

(k)
i
f)

= Cov
(
G(A

(k)
j ),G(f)

)
.

Likewise the (i, j)-th coordinate of the matrix V
(
G[A(k)]

)
·PA(l)|A(k) is

P (A
(k)
i )(1− P (A

(k)
i ))P (A

(l)
j | A
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i )−

∑
j 6=m6mk

P (A
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j | A

(k)
m )
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i )

∑
16m6mk
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(l)
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(
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(l)
j )
)
.
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By the definition (2.3) of the vectors Φ
(N)
l (f) we get∑

k<l6N

PA(l)|A(k) · Φ(N)
l (f)

=
∑

k<l6N

PA(l)|A(k) · E
[
f | A(l)

]
+

∑
k<l6N,16L6N−l
l<l1<...<lL6N

(−1)LPA(l)|A(k)PA(l1)|A(l) . . .PA(lL)|A(lL−1) · E
[
f | A(lL)

]

=
∑

16L6N−k
k<l1<...<lL6N

(−1)L+1PA(l1)|A(k) . . .PA(lL)|A(lL−1) · E
[
f | A(lL)

]

= E
[
f | A(k)

]
− Φ

(N)
k (f)

which yields (4.4). �

Step 3. Let us first compute the variance of G(N)(f). By Lemma 3 we have

V
(
G(N)(f)

)
− V (G(f))

=

N∑
k=1

Φ
(N)
k (f)t · V

(
G[A(k)]

)
· Φ(N)

k (f)− 2

N∑
k=1

Φ
(N)
k (f)t · Cov

(
G[A(k)],G(f)

)
+ 2

∑
16k<l6N

Φ
(N)
k (f)t · Cov

(
G[A(k)],G[A(l)]

)
· Φ(N)

l (f)

hence Lemma 4 gives, through (4.2) and (4.3),

V
(
G(N)(f)

)
− V (G(f)) =

N∑
k=1

Φ
(N)
k (f)t · V

(
G[A(k)]

)
·Ψ(N)

k (f)

where, by (4.4),

Ψ
(N)
k (f) = Φ

(N)
k (f)− 2E

[
f | A(k)

]
+ 2

∑
k<l6N

PA(l)|A(k) · Φ(N)
l (f) = −Φ

(N)
k (f).

(4.5)
The formula (2.4) is proved. It extends to the covariance since, by Lemma 3,

Cov(G(N)(f),G(N)(g))− Cov(G(f),G(g))

=
1

2
(ΥN (f, g)− 2ΓN (f, g)) +

1

2
(ΥN (g, f)− 2ΓN (g, f))

where, by (4.2) and (4.3) again,

ΥN (f, g) =
∑

16k6l6N

Φ
(N)
k (f)t · V

(
G[A(k)]

)
PA(l)|A(k) · Φ(N)

l (g)

ΓN (f, g) =

N∑
l=1

Φ
(N)
k (f)t · V

(
G[A(k)]

)
· E
[
g | A(k)

]
.
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By replacing Ψ
(N)
k (g) with −Φ

(N)
k (g) according to (4.5), we obtain

1

2
(ΥN (f, g)− 2ΓN (f, g)) = −1

2

N∑
k=1

Φ
(N)
k (f)t · V

(
G[A(k)]

)
· Φ(N)

k (g)

which is symmetric in f and g. The covariance formula of Proposition 7 is
proved.

4.2 Proof of Propositions 8 and 9

Since V
(
G[A(k)]

)
is semi-definite positive, for all 1 6 k 6 N and f ∈ F we have

Φ
(N)
k (f)t · V(G[A(k)]) · Φ(N)

k (f) > 0

and the variance part (2.4) of Proposition 8 follows from Proposition 7. For any
m ∈ N∗, (f1, ..., fm) ∈ Fm and u ∈ Rm, it further holds, by Proposition 7 again,

ut
(

Σ(0)
m − Σ(N)

m

)
u

=
∑

16i,j6m

uiuj

(
Cov(G(fi),G(fj))− Cov(G(N)(fi),G(N)(fj))

)

=

N∑
k=1

∑
16i,j6m

(
uiΦ

(N)
k (fi)

)t
· V
(
G[A(k)]

)
·
(
ujΦ

(N)
k (fj)

)

=

N∑
k=1

 ∑
16i6m

uiΦ
(N)
k (fi)

t

· V
(
G[A(k)]

)
·

 ∑
16j6m

ujΦ
(N)
k (fj)

 > 0.

Under the wrapping hypothesis of Proposition 9 we have

Φ
(N0)
N0−k = Φ

(N1)
N1−k, 0 6 k < N0,

since the corresponding (2.3) only involves A(N0−k) = A(N1−k) for 0 6 k < N0.
Assuming moreover N1 > 2N0 we get, by Proposition 7,

V
(
G(N0)(f)

)
− V

(
G(N1)(f)

)
=

N1∑
k=1

Φ
(N1)
k (f)t · V

(
G[A(k)]

)
· Φ(N1)

k (f)−
N0∑
k=1

Φ
(N0)
k (f)t · V

(
G[A(k)]

)
· Φ(N0)

k (f)

=

N1−N0∑
k=N0+1

Φ
(N1)
k (f)t · V

(
G[A(k)]

)
· Φ(N1)

k (f) > 0
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and, for m ∈ N∗, (f1, ..., fm) ∈ Fm and u ∈ Rm,

ut
(

Σ(N0)
m − Σ(N1)

m

)
u

= ut
(

(Σ(0)
m − Σ(N1)

m )− (Σ(0)
m − Σ(N0)

m )
)
u

=

N1−N0∑
k=N0+1

 ∑
16i6m

uiΦ
(N)
k (fi)

t

· V
(
G[A(k)]

)
·

 ∑
16j6m

ujΦ
(N)
k (fj)

 > 0.

4.3 Proof of Proposition 10

We show the result by double induction. For m = 0 we have G(0)(f) = G(f)
and, by (1.11), G(1)(f) = G(f) − E[f |A]tG[A]. Assume that (2.9) and (2.10)
are true for m ∈ N. For m+ 1 we have, by the raking ratio transform (1.11),

G(2m+2)(f) = G(2m+1)(f)− E[f |B]t ·G(2m+1)[B], (4.6)

G(2m+3)(f) = G(2m+2)(f)− E[f |A]t ·G(2m+2)[A]. (4.7)

For 1 6 j 6 m2 and f = 1Bj
we get, by (2.10), (2.5), (2.6), (2.7) and (2.8),

G(2m+1)(Bj)

= G(Bj)− S(m−1)
1,odd (1Bj

)t ·G[A]− S(m−1)
2,odd (1Bj

)t ·G[B]

= G(Bj)−

(
m−1∑
k=0

(
PA|BPB|A

)k · (E[1Bj
|B]−PA|B · E[1Bj

|A]
))t
·G[B]

−

(
m−1∑
k=0

(
PB|APA|B

)k · (E[1Bj |A]−PB|A · E[1Bj |B]
)

+
(
PB|APA|B

)m · E[1Bj
|A]

)t
·G[A]

where E[1Bj
|A] is the j-th column of PB|A and E[1Bj

|B] is the j-th unit vector
of Rm2 . Therefore

G(2m+1)[B]

= G[B]−

(
m−1∑
k=0

(PA|BPB|A)k(Idm2
−PA|BPB|A)

)t
·G[B]

−

(
m−1∑
k=0

(PB|APA|B)k(PB|A −PB|AIdm2) + (PB|APA|B)mPB|A

)t
·G[A]

=
(
(PA|BPB|A)m

)t ·G[B]−
(
(PB|APA|B)mPB|A

)t ·G[A]
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Finally (2.9) and (4.6) then again (2.5), (2.6), (2.7) and (2.8) together imply

G(2m+2)(f)

= G(f)− S(m−1)
1,odd (f)t ·G[A]− S(m−1)

2,odd (f)t ·G[B]− E[f |B]t ·G(2m+1)[B]

= G(f)−
(
S
(m−1)
1,odd (f)− (PB|APA|B)mPB|A · E[f |B]

)t
·G[A]

−
(
S
(m−1)
2,odd (f) + (PA|BPB|A)m · E[f |B]

)t
·G[B]

= G(f)− S(m)
1,even(f)t ·G[A]− S(m−1)

2,even (f)t ·G[B]

and (2.9) is valid for m + 1. If 1 6 i 6 m1 then E[1Ai |B] is the i-th column
of PA|B and E[1Ai

|A] is the i-th unit vector of Rm1 thus (2.9) for m + 1 and
f = 1Bi

in turn entails

G(2m+2)[A]

= G[A]−

(
m∑
k=0

(
PB|APA|B

)k (
Idm1

−PB|APA|B
))t
·G[A]

−

(
m−1∑
k=0

(
PA|BPB|A

)k (
PA|B −PA|BIdm1

)
+
(
PA|BPB|A

)m
PA|B

)t
·G[B]

=
(
(PB|APA|B)m+1

)t ·G[A]−
(
(PA|BPB|A)mPA|B

)t ·G[B]

and also, thanks to (2.10) and (4.7),

G(2m+3)(f)

= G(f)−
(
S
(m)
1,odd(f)− (PB|APA|B)m+1 · E[f |A]

)t
·G[A]

−
(
S
(m−1)
2,odd (f) +

(
PA|BPB|A

)m · E[f |B]
)t
·G[B]− E[f |A]t ·G(2m+2)[A]

= G(f)− S(m)
1,odd(f)t ·G[A]− S(m)

2,odd(f)t ·G[B]

which is (2.10) for m+ 1.

4.4 Proof of Proposition 11

Step 1. For m > 1 let 0m,m be the m×m null matrix. Also recall the vectors
P (A) = (P (A1), . . . , P (Am1

)) and P (B) = (P (B1), . . . , P (Bm2
)).

Lemma 5. Assume (ER). For l = 1, 2 there exists an invertible ml×ml matrix
Ul and an upper triangular (ml − 1)× (ml − 1) matrix Tl such that

PB|APA|B = U1

(
1 01,m1−1

0m1−1,1 T1

)
U−11 , lim

k→+∞
T k1 = 0m1−1,m1−1,

PA|BPB|A = U2

(
1 01,m2−1

0m2−1,1 T2

)
U−12 , lim

k→+∞
T k2 = 0m2−1,m2−1.
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Proof. Since A is a partition, for 1 6 i 6 m2 the sum of the m1 terms of row
i of PA|B is

∑m1

j=1 P (Aj | Bi) = 1 hence PA|B is stochastic. Likewise PB|A is
stochastic and, by stability, so are PA|BPB|A and PB|APA|B. Let the column of
1’s associated to their eigenvalue 1 be in first position in their respective matrix
U1, U2 of eigenvectors. The announced decomposition is always true with some
upper triangular matrices Tl having Jordan decomposition Tl = Dl +Nl where
Dl = Pl∆lP

−1
l , ∆l is a diagonal (ml − 1)× (ml − 1) matrix, Pl is an invertible

(ml − 1)× (ml − 1) matrix and Nl is a nilpotent (ml − 1)× (ml − 1) matrix of
order nl > 1 that commute with Dl. Next observe that

(P (A) ·PB|APA|B)k =

m1∑
i=1

P (Ai)(PB|APA|B)i,k

=

m1∑
i=1

P (Ai)

m2∑
j=1

(PB|A)i,j(PA|B)j,k

=

m2∑
j=1

m1∑
i=1

P (Ai)P (Bj |Ai)P (Ak|Bj) = P (Ak)

which proves that PB|APA|B has invariant probability P (A). Similarly, P (B)

is invariant for PA|BPB|A, and the first line of U−11 and U−12 is P [A] and P [B]
respectively. Under (ER) these matrices are ergodic, which ensures that the
eigenvalues of ∆l have moduli strictly less than the dominant 1 since it is the
case of eigenvalues of Tl hence Dl. It follows that

lim
k→+∞

∆k
l = 0ml−1,ml−1, l = 1, 2.

Furthermore, since Nl and Dl commute it holds

T kl =

nl−1∑
j=0

(
k

j

)
N j
l D

k−j
l , l = 1, 2, k > nl.

We conclude that limk→+∞ T kl = 0ml−1,ml−1. �

Step 2. Let V1(f) = (E[f |A]−PB|AE[f |B]) and V2(f) = (E[f |B]−PA|BE[f |A]).

Lemma 6. Under (ER) we have

lim
k→+∞

(PB|APA|B)k · V1(f) = 0m1,1, lim
k→+∞

(PA|BPB|A)k · V2(f) = 0m2,1.

Proof. By Lemma 5 we have

lim
k→+∞

(PB|APA|B)k =

(
P (A)

...
P (A)

)
, lim
k→+∞

(PA|BPB|A)k =

(
P (B)

...
P (B)

)
. (4.8)
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The scalar product of P (A) by V1(f) is null since P (A) · E[f |A] = P (f) and

P (A) ·PB|AE[f |B]) =

m1∑
j=1

P (Aj)

m2∑
k=1

P (Bk | Aj)E(f |Bk)

=

m1∑
j=1

m2∑
k=1

P (Aj ∩Bk)E[f |Bk] = P (f).

Likewise we get P (B) · V2(f) = 0. �

The following convergences hold for any matrix norm. By Lemma 5 we have

N∑
k=0

(PB|APA|B)k = U1

(
N + 1 01,m1−1
0m1−1,1

∑N
k=0 T

k
1

)
U−11 ,

N∑
k=0

(PA|BPB|A)k = U2

(
N + 1 01,m2−1
0m2−1,1

∑N
k=0 T

k
2

)
U−12 .

Now, the matrices Idm1−1 − T1 and Idm2−1 − T2 are nonsingular since 1 is a
dominant eigenvalue of PB|APA|B and PA|BPB|A. It follows that

S
(N)
1,even(f) = U1

(
N + 1 01,m1−1
0m1−1,1 (Idm1−1 − T1)−1(Idm1−1 − TN+1

1 )

)
U−11 · V1(f)

S
(N)
2,odd(f) = U2

(
N + 1 01,m2−1
0m2−1,1 (Idm2−1 − T2)−1(Idm2−1 − TN+1

2 )

)
U−12 · V2(f)

which, by Lemma 5, converge respectively to

S1,even(f) = U1

(
N + 1 01,m1−1
0m1−1,1 (Idm1−1 − T1)−1

)
U−11 · V1(f)

S2,odd(f) = U2

(
N + 1 01,m2−1
0m2−1,1 (Idm2−1 − T2)−1

)
U−12 · V2(f).

Since we have already seen by using (4.8) that

lim
k→+∞

(PB|APA|B)k · E[f |A] = P1[f ], lim
k→+∞

(PA|BPB|A)k · E[f |B] = P2[f ],

we conclude by (2.7) and (2.8) that S
(N)
1,odd(f), S

(N)
2,even(f) converge to the vectors

S1,odd(f) = S1,even(f) + P1[f ], S2,even(f) = S1,odd(f) + P1[f ] respectively.

Step 3. Given the spectral radius ρ(Tl) < 1 of Tl let λl = ρ(Tl)+ε < 1, l = 1, 2
for any ε > 0. Then there exists a vector norm ‖·‖l on Cml−1 such that its
induced matrix norm |‖·‖|l on matrices (ml−1)× (ml−1) satisfies |‖Tl‖|l 6 λl.
Introduce the vector norm ‖(x1, ..., xml

)t‖′l = |x1|+‖(x2, ..., xml
)t‖l on Cml and

the induced operator norm |‖·‖|′l for ml ×ml matrices. Then we have∣∣∣∣∥∥∥∥( 0 01,ml−1
0ml−1,1 T

)∥∥∥∥∣∣∣∣′
l

= sup

{
x ∈ Cml :

0 + ‖T (x2, ..., xml
)t‖l

|x1|+ ‖(x2, ..., xml
)t‖l

}
= |‖T‖|l
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for any ml×ml matrix T . Let Kl =
∣∣∥∥(Idml−1 − Tl)−1

∥∥∣∣
l
, K̃l = |||Ul|||′l |||U

−1
l |||′l

and K ′l > 0 be such that ‖·‖′l 6 K ′l ‖·‖∞. By using Lemmas 5 and 6 we get∣∣∣∥∥∥S(N)
l,even(f)− Sl,even(f)

∥∥∥∣∣∣′
l

6

∣∣∣∣∥∥∥∥Ul( 0 01,ml−1
0ml−1,1 −(Idml−1 − Tl)−1T

N+1
l

)
U−1l

∥∥∥∥∣∣∣∣′
l

‖Vl(f)‖′l

6 K̃l

∣∣∥∥(Idml−1 − Tl)−1T
N+1
l

∥∥∣∣
l
‖Vl(f)‖′l

6 K̃lKlλ
N+1
l K ′l ‖Vl(f)‖∞ 6 clλ

N+1
l

where cl = K̃lKlK
′
lM . Similar constants show up for

∣∣∣∥∥∥S(N)
l,odd(f)− Sl,odd(f)

∥∥∥∣∣∣′
l
.

The final constants c1 and c2 depend on λ1, λ2, ε, both matrices (ER) but also
the two implicit constants relating the norms || · ||m1

, || · ||m2
of Proposition 11

to the equivalent norms || · ||′1, || · ||′2 .

4.5 Proof of Theorem 2.2

Write Z1 = max16j6m1 |G(Aj)| and Z2 = max16j6m2 |G(Bj)|. According
to Proposition 11 the following right hand side random variables, for ∗ ∈
{even,odd},

sup
f∈F

∣∣∣(S(N)
1,∗ (f)− S1,∗(f))t ·G[A]

∣∣∣ 6 c1 sup
f∈F

∥∥∥S(N)
1,∗ (f)− S1,∗(f)

∥∥∥
m1

Z1

sup
f∈F

∣∣∣(S(N)
2,∗ (f)− S2,∗(f))t ·G[B]

∣∣∣ 6 c2 sup
f∈F

∥∥∥S(N)
2,∗ (f)− S2,∗(f)

∥∥∥
m2

Z2

almost surely converge to 0 since P (||G||F < +∞) = 1. Hence the processes

G(2m),G(2m+1) converge almost surely in `∞(F) to G(∞)
even,G(∞)

odd defined by

G(∞)
even(f) = G(f)− S1,even(f)t ·G[A]− S2,even(f)t ·G[B]

= G(∞)(f)− P2[f ]t ·G[B]

G(∞)
odd (f) = G(f)− S1,odd(f)t ·G[A]− S2,odd(f)t ·G[B]

= G(∞)(f)− P1[f ]t ·G[A]

with G(∞)(f) = G(f) − S1,even(f)t · G[A] − S2,odd(f)t · G[B] and using (2.8),
(2.7). Since P1[f ]t · G[A] = P (f)

∑m1

j=1 G(Aj) = P (f)G(1) = 0 and P2[f ]t ·
G[B] = 0 almost surely, we see that G(∞)

even(F) = G(∞)
odd (F) = G(∞)(F). Applying

Proposition 11 with the supremum norms || · ||m1
and || · ||m2

further yields, for
any m > 0 and c0 = m1c1 +m2c2,∥∥∥G(2m) −G(∞)

even

∥∥∥
F

=
∥∥∥(S

(m−1)
1,even − S1,even)t ·G[A] + (S

(m−2)
2,even − S2,even)t ·G[B]

∥∥∥
F

6 c0 max(λ1, λ2)m−2Z (4.9)
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where Z = max(Z1, Z2), and∥∥∥G(2m+1) −G(∞)
odd

∥∥∥
F
6 c0 max(λ1, λ2)m−1Z. (4.10)

Let εN = qNc0 max(λ1, λ2)N/2 and qN = F−1Z (c0 max(λ1, λ2)N/2), which is well
defined for N large enough. From (4.9) and (4.10) we deduce that

P
(∥∥∥G(N) −G(∞)

∥∥∥
F
> εN

)
6 P (Z > qN ) 6 c0 max(λ1, λ2)N/2

whence an upper bound for the Lévy-Prokhorov distance

dLP (G(N),G(∞)) 6 max
(
P
(∥∥∥G(N) −G(∞)

∥∥∥
F
> εN

)
, εN

)
6 c0qN max(λ1, λ2)N/2.

Let Φ denote the standard Gaussian distribution function, c5 = m1 + m2 and
c24 = maxD∈A∪B {P (D)(1− P (D))}. The union bound

P (Z > λ) 6 c5

(
1− Φ

(
λ

c4

))
6

c5c4√
2πλ

exp

(
− λ2

2c24

)
shows that qN 6 c6c4

√
N log(1/c0 max(λ1, λ2)) for some c6 > 0.

Appendix

.1 Elementary example

In many settings the auxiliary information concerns a few partitions and they
are raked in a periodic order. A subcase is a multiple ways contingency table.
The Raking-Ratio algorithm then changes the weights of cells of a contingency
table in such a way that given margins are respected, just as if the sample should
have respected the expected values of known probabilities. Let us start from
the following basic table which is the most common subcase of Section 2.3.

Pn(1
A

(1)
i ∩A

(2)
j

) A
(2)
1 A

(2)
2 A

(2)
3 Total Excepted total

A
(1)
1 0.2 0.25 0.1 0.55 0.52

A
(1)
2 0.1 0.2 0.15 0.45 0.48

Total 0.3 0.45 0.25 1
Excepted total 0.31 0.4 0.29

The margins of this sample differ from the known margins, here called expected
total. Firstly the weights of lines are corrected, hence each cell is multiplied by
the ratio of the expected total and the actual one, this is step N = 1.

P(1)
n (1

A
(1)
i ∩A

(2)
j

) A
(2)
1 A

(2)
2 A

(2)
3 Total Excepted total

A
(1)
1 0.189 0.236 0.095 0.52 0.52

A
(1)
2 0.11 0.21 0.16 0.48 0.48

Total 0.299 0.446 0.255 1
Excepted total 0.31 0.4 0.29
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The totals for each column are similarly corrected at step N = 2. Typically the
margins of the lines no longer match the expected frequencies. Here they move

in the right direction. Some estimators based on P(2)
n may be improved.

P(2)
n (1

A
(1)
i ∩A

(2)
j

) A
(2)
1 A

(2)
2 A

(2)
3 Total Excepted total

A
(1)
1 0.196 0.212 0.108 0.516 0.52

A
(1)
2 0.114 0.188 0.182 0.484 0.48

Total 0.31 0.4 0.29 1
Excepted total 0.31 0.4 0.29

The last two operations are repeated until stabilization. The algorithm con-
verges to the Kullback projection of the initial joint law. The rate depends only
on the initial table compared to the desired marginals. It takes only 7 iterations
in our case to match the expected margins.

P(7)
n (1

A
(1)
i ∩A

(2)
j

) A
(2)
1 A

(2)
2 A

(2)
3 Total Excepted total

A
(1)
1 0.199 0.212 0.109 0.52 0.52

A
(1)
2 0.111 0.188 0.181 0.48 0.48

Total 0.31 0.4 0.29 1
Excepted total 0.31 0.4 0.29

The final raked frequencies are slightly moved away the initial ones, however
this has to be compared with the natural sampling oscillation order 1/

√
n –

insidiously n was not mentioned. Clearly, for very large samples such a correc-
tion is unlikely since the initial table was already close to the true one, which
respects the margin constraint. For small samples such changes are likely to
occur that may improve a large class of estimators, and worsen others. In both
cases, a possible drawback is a slow rate of convergence of the empirical raking
weights, thus enforcing a so large N that our results are no more relevant. This
happens in particular when λ1 and λ2 of Proposition 11 are close to one.

.2 Counterexample of Remark J

Let assume that P satisfies the following probability values

P (Ai ∩Bj) A1 A2 A3 P (Bj)
B1 0.2 0.25 0.1 0.55
B2 0.25 0.1 0.1 0.45

P (Ai) 0.45 0.35 0.2

and that f has the following conditional expectations

E(f |Ai ∩Bj) A1 A2 A3 E(2)(f) '
B1 0.75 -0.5 0.5 0.136
B2 0.5 0.25 0.5 0.444

E(1)(f) ' 0.611 -0.286 0.5
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By supposing also that V(f |Ai ∩ Bj) = 0.5 for all i = 1, 2, 3 and j = 1, 2
we can compute the theoretical limiting variances from Proposition 7. We get
V(G(0)(f)) ' 0.734; V(G(1)(f)) ' 0.563; V(G(2)(f)) ' 0.569; V(G(3)(f)) '
0.402. The fact that V(G(2)(f)) > V(G(1)(f)) shows that the variance doesn’t
decrease necessarily at each step. As predicted by Propositions 8 and 9 we have
V(G(N)(f)) > V(G(0)(f)) for N = 1, 2, 3 and V(G(1)(f)) > V(G(3)(f)).

.3 Raked empirical means over a class

General framework. Many specific settings in statistics may be modeled
through F . Typically X is of very large or infinite dimension and each f(X) is
one variable with mean P (f) in the population. To control correlations between
such variables one needs to extend F into F× = {fg : f, g ∈ F} and consider the

covariance process α
(N)
n (F×). Random vectors (Y1, ..., Yk) = (f1(X), ..., fk(X))

can in turn be combined into real valued random variables gθ(X) = ϕθ(Y1, ..., Yk)
through parameters θ and functions gθ that should be included in F and so on.
Consider for instance gθ(X) = θ1Y1 + ... + θkYk + εσ(X) with a collection of
possible residual functions εσ turning part of the randomness of X into a noise
with variance σ2. The (VC) or (BR) entropy of F rules the variety and com-
plexity of models or statistics one can simultaneously deal with. We refer to
Pollard [15], Shorack and Wellner [16] and Wellner [22] for classical statistical
models where an empirical process indexed by functions is easily identified.

Direct applications. Since the limiting process G(N) of α
(N)
n has less variance

than G(0), Theorem 2.1 can be applied to revisit the limiting behavior of classical

estimators or tests by using P(N)
n instead of Pn and prove that the induced

asymptotic variances or risk decrease. For instance, in the case of goodness of
fit tests, the threshold decreases at any given test level while the power increases
against any alternative distribution Q that do not satisfy the margin conditions.

As a matter of fact, enforcing P(N)
n to look like P instead of the true Q over all

A(N) makes P(N)
n go very far from P on sets where Q was already far from P .

Example: two raked distribution functions. Let (X,Y ) be a real centered
Gaussian vector with covariance matrix

(
3 −1
−1 1

)
. We consider the raked joint

estimation of the two distribution functions FX , FY . An auxiliary information
provides their values at points −2 to 2, every 0.5. The class F we need contains
for all t ∈ R the functions fXt (x, y) = 1]−∞,t](x), fYt (x, y) = 1]−∞,t](y) thus

(VC) holds. For Z = X,Y let F
(N)
Z,n (t) =

∑
Zi6t

P(N)
n ({Zi}) be the N -th raked

empirical distribution function and write Z(1) 6 · · · 6 Z(n) the order statistics.

To exploit at best the information we useN = 2m, F
(2m−1)
X,n and F

(2m)
Y,n . Consider

d
(N)
Z,n =

∑n−1
i=1 (Z(i+1) −Z(i))|F

(N)
Z,n (Z(i+1))−FZ(Z(i+1))| which approximates on

[Z(1), Z(n)] the L1-distance between F
(N)
Z,n and FZ . Denote #

(N)
Z,n the random

proportion of sample points where F
(N)
Z,n is closer to FZ than F

(0)
Z,n. The table

below provides Monte-Carlo estimates of D
(N)
Z,n = E(d

(N)
Z,n) and p

(N)
Z,n = E(#

(N)
Z,n)

from 1000 simulations based on samples of size n = 200:
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Z D
(0)
Z,n D

(10)
Z,n D

(∞)
Z,n p

(10)
Z,n p

(∞)
Z,n

X 0.084 0.058 0.065 0.752 0.724
Y 0.085 0.043 0.053 0.731 0.681

This shows some improvement, especially for N = 10. For n rather small it
seems not always relevant to wait for the stabilization of the algorithm – here
denoted N = ∞. Our theoretical results provide guaranties only for small N

and large n. We also observe on graphical representations that the way F
(N)
Z,n

leaves F
(0)
Z,n to cross FZ at the known points tends to accentuate the error at a

few short intervals where F
(0)
Z,n is far from FZ . This is less and less the case as

the auxiliary information partition is refined or the sample size increases.

Example: raked covariance matrices. Given d ∈ N∗ and f1, ..., fd let V(Y )
denote the covariance matrix of the random vector Y = (f1(X), ..., fd(X)) which
we assume to be centered for simplicity. Instead of the empirical covariance

V(0)
n (Y ) = n−1

∑n
i=1Y

t
i Yi consider its raked version

V(N)
n (Y ) =

((
P(N)
n (fifj)

)
i,j

)
.

Let ‖·‖ denote the Froebenius norm and define

ϕY (α(N)
n ) =

√
n
∥∥∥V(N)

n (Y )− V(Y )
∥∥∥ .

In other words,

ϕ2
Y (α(N)

n ) =

d∑
i=1

d∑
j=1

(
α(N)
n (fifj)

)2
, ϕ2

Y (G(N)) =

d∑
i=1

d∑
j=1

(
G(N)(fifj)

)2
.

In the context of Proposition 6 observe that ϕY is (‖·‖F , ‖·‖)-Lipshitz with
parameter C1 = d. Clearly ϕY (G(N)) has a bounded density since ϕ2

Y (G(N)) is
a quadratic form with Gaussian components and has a modified X 2 distribution.
Choosing a finite collection of such ϕY ensures that C2 < +∞. More generally
by letting (f1, ..., fd) vary among a small entropy infinite subset Ld of Fd and
imposing some regularity or localization constraints to the fi one may have
C2 < +∞ while {fifj : fi, fj ∈ F} satisfies (BR). The largest C2 still works for
L =

⋃
d6d0
Ld. Therefore Proposition 6 guaranties that

max
06N6N0
d6d0

sup
(f1,...,fd)∈Ld

x>0

∣∣∣P(ϕY (α(N)
n ) 6 x

)
− P

(
ϕY (G(N)) 6 x

)∣∣∣ 6 d0d1C2vn

where it holds, for all N 6 N0, d 6 d0, (f1, ..., fd) ∈ Ld and x > 0,

P
(
ϕY (G(N)) 6 x

)
6 P

(
ϕY (G(0)) 6 x

)
by the variance reduction property of Proposition 8. Hence we asymptotically

have P(ϕY (α
(N)
n ) 6 x) < P(ϕY (α

(0)
n ) 6 x) − ε uniformly among Y such that

P
(
ϕY (G(N)) 6 x

)
< P

(
ϕY (G(0)) 6 x

)
− 2ε, for any fixed ε > 0.
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