
HAL Id: hal-01736262
https://hal.science/hal-01736262

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Addressing inter-organisational process flexibility using
versions: The VP2M approach

Fatma Ellouze, Mohamed Amine Chaabane, Rafik Bouaziz, Éric Andonoff

To cite this version:
Fatma Ellouze, Mohamed Amine Chaabane, Rafik Bouaziz, Éric Andonoff. Addressing inter-
organisational process flexibility using versions: The VP2M approach. 10th International Conference
on Research Challenge in Information Science (RCIS 2016), Jun 2016, Grenoble, France. pp. 1-12.
�hal-01736262�

https://hal.science/hal-01736262
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18895

The contribution was presented at RCIS 2016 :
http://www.rcis-conf.com/rcis2016/

To link to this article URL :
 http://dx.doi.org/10.1109/RCIS.2016.7549280

To cite this version : Ellouze, Fatma and Chaabane, Mohamed Amine and
Bouaziz, Rafik and Andonoff, Eric Addressing inter-organisational process
flexibility using versions: The VP2M approach. (2016) In: 10th
International Conference on Research Challenge in Information Science
(RCIS 2016), 1 June 2016 - 3 June 2016 (Grenoble, France).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Addressing Inter-Organisational Process Flexibility

using Versions: the VP2M Approach

F. Ellouze, MA. Chaabane, R. Bouaziz

University of Sfax, MIRACL

Route de l’aéroport, BP 1088, 3018 Sfax, Tunisia

{fatma.ellouze, ma.chaabane, raf.bouaziz}@fsegs.rnu.tn

E. Andonoff

IRIT, University of Toulouse 1- Capitole

Rue du Doyen Gabriel Marty, 31042 Toulouse, France

andonoff@univ-tlse1.fr

Abstract—Process flexibility has been investigated in depth in

the context of intra-organisational processes, but it is still an open

issue when processes cross the boundaries of companies. In this

paper, we address the modelling of flexible inter-organisational

processes using a version-based approach. Indeed, versions are

known to be a powerful technique to deal with variability,

evolution and adaptation of processes, which are the three main

needs of process flexibility. More precisely, this paper presents

VP2M (Version of Process Meta-Model), a meta-model

supporting the modelling of versions of inter-organisational

processes, addressing both static and dynamic aspects of VP2M.

It also illustrates process version modelling within the Subsea

Pipeline process example.

Keywords—Inter-Organisational Process; Flexibility; Version;

VP2M.

I. INTRODUCTION

Business Process Management (BPM) is an established
area to model, analyse, simulate, enact, and supervise business
processes [1]. BPM has gained adoption in companies as it is
now mature for engineering processes that do not change over
time [2]. However, in order to face the dynamic, open and
competitive environment in which they operate, companies
need to frequently change their processes: processes need to
be more flexible. Consequently, the process flexibility issue is
investigated in depth in the BPM area [3].

Process flexibility is defined as the ability of processes to
respond to changes occurring in their operating environment.
According to the taxonomy of [3], these changes are in line
with the four following needs of flexibility: (i) variability, for
representing a process differently, depending on the context of
its execution, (ii) adaptation, for handling occasional
situations or exceptions that have not been necessarily
foreseen in process schemas, (iii) evolution, for handling
changes in processes, which require occasional or permanent
modifications in their schemas, and finally (iv) looseness, for
handling knowledge intensive processes whose schemas are
not known a priori and which correspond to non-repeatable,
unpredictable, and emergent processes. Such processes require
loose specifications.

Process flexibility issue has been investigated in depth in
the context of intra-organisational processes and several
contributions addressed previously enumerated flexibility
needs (e.g., [4–5] addressed flexibility by variability, [6]
addressed flexibility by adaptation, [7–8] addressed flexibility
by evolution and [9–10] addressed flexibility by looseness).

However, this issue is still open in the context of Inter-
organisational Processes (IoPs), where different companies put
resources and skills in common, and coordinate their
respective processes in order to reach a common goal [11]. In
such a context, flexibility may be related to the availability of
involved partner processes or to the update of IoP schema,
which explicitly defines the partner process coordination [12].
Research efforts about flexibility mainly address process
availability in the context of dynamic IoPs. Dynamic IoPs
refer to processes where the different partners involved are not
necessarily known at design-time, or can evolve at run-time.
The provided solutions support finding new partners offering
requested services, along with negotiation, contracting and
service execution in separate or comprehensive frameworks
[10, 13]. On the other hand, flexibility of IoP schemas is rather
neglected. It is related to the update of the schema to take into
account changes occurring in the environment of partner
processes. As this schema models the coordination between
partners, the update can be related to partner process schema
change, or to the adding or the deletion of a partner: in each
case it leads to the reorganisation of the coordination [12, 14].

This paper addresses the modelling of flexible IoPs and it
focuses especially on the update of the inter-organisational
process schema. It recommends a version-based approach to
address this issue and it also takes into account the
requirements related to IoP and defined in [15]. On the one
hand, the version notion has been introduced to address intra-
organisational process flexibility (e.g., [7–8, 16–17]) and more
precisely, to address: (i) flexibility by evolution as the
different significant changes on processes are modelled within
process versions, (ii) flexibility by variability since it is
possible to model alternative versions, depending on the
context, and (iii) flexibility by adaptation if adaptation can be
defined at design-time. On the other hand, we also take into
account requirements of [15], recommended for IoP
modelling. These modelling requirements derive from a deep
analysis of the state-of-the-art and they can be used to evaluate
inter-organisational process contributions.

The paper contribution is threefold. Firstly, we propose
VP2M, a meta-model for inter-organisational process version
modelling that takes into account the requirements of [15].
Secondly, we illustrate the modelling of IoP versions as
instances of VP2M within the Subsea Pipeline process.
Thirdly, we address the dynamic aspects of IoP versioning
introducing operations for version management and we
recommend operations for handling views, which have been
introduced to take into account requirements of [15].

Accordingly, the remainder of the paper is organised as
follows. Section 2 reviews related works, considering process
flexibility both in an intra-organisational and in an inter-
organisational context. It also defends our approach to deal
with this issue. Section 3 presents the VP2M meta-model for
modelling flexible IoPs. Section 4 introduces the Subsea
Pipeline example and illustrates the modelling of several
process versions as instances of VP2M, mainly highlighting
the modelling of flexibility by variability and by evolution.
Section 5 addresses dynamic aspects of inter-organisational
process versioning as well as providing a set of algorithms to
deal with views deduction from VP2M instances. Finally,
Section 6 provides the conclusions and gives some directions
for future research.

II. RELATED WORKS

Process flexibility has recently received much attention
both in intra-organisational and inter-organisational settings.
Different contributions have been made to deal with this issue,
and they follow several approaches: activity-driven approach
(e.g., [4–9, 16–18]), constraint-driven approach (e.g., [19]),
data-driven approach (e.g., [20]), case-driven approach (case
handling) (e.g., [21]), intention-driven approach (e.g., [22]),
and more recently, social-driven approach (e.g., [23–24]). In
this paper, we rather focus on activity-driven process
flexibility as activity-oriented models are used in the majority
of (service-oriented) process management systems. This
section reviews activity-driven process flexibility related
works in each of these settings. It also positions our
contribution with respect to the state-of-the-art.

A. Intra-Organisational Process Flexibility

We first mention works addressing flexibility by
variability using the notion of process variants. A variant is an
adjustment at run-time of a base process schema according to
the context. We differentiate between (i) behavioural
approaches, which define the base process schema as a
superset of variants and derive a specific process variant by
hiding and blocking process components of the base process
schema, and (ii) structural approaches that derive a process
variant by applying a set of changes to a base process schema.
Specific notations and systems such as C-EPC [4], Provop [5]
and vBPMN [25] support process variants.

We also mention works recommending a version-based
approach to deal with process flexibility. Indeed, as defended
in, e.g., [16], the version notion facilitates the migration of
instances from an initial schema to a final one, allowing, if the
migration is not possible, two different instances of a same
process to run according to two different schemas. In addition,
this notion addresses flexibility by evolution as the different
significant changes on processes are modelled within process
versions, flexibility by variability since it is possible to model
alternative versions, depending on the context, and flexibility
by adaptation if adaptation can be defined at design-time.
Several contributions recommend a version-based approach to
address intra-organisational process flexibility considering
versioning of different process perspectives: the process
perspective [7–8, 12, 16–18, 26], but also the informational
and organisational perspectives [12, 16, 26].

We finally mention works addressing flexibility by
looseness, introducing late binding and late modelling notions
to postpone activity modelling or activity concretisation (i.e.,
to which concrete operation an activity is linked to) from
modelling to execution, depending on the context. The main
contribution achieving this flexibility need is presented in [9].

B. Inter-Organisational Process Flexibility

First, IoP is defined as a set of interconnected partner
processes running in different organisations [11]. This
interconnection may be specified according to the following
mechanisms: the capacity sharing, the chained execution, the
subcontracting, the case transfer, the extended case transfer
and the loosely coupled. We agree with [11, 13] when they
argue that loosely coupled IoP, where each partner takes care
of a specific part of the process, is the most realistic
assumption in the dynamic, open and competitive environment
of companies. Moreover, the loosely coupled process requires
more flexibility as the involved partners are distributed,
heterogeneous and autonomous, and the execution control of
the process is distributed. Thus this paper focuses on loosely
coupled IoP flexibility.

In addition, [15] has derived a set of modelling
requirements for the loosely coupled IoPs from an extensive
analysis of the state-of-the-art. These requirements, which can
be used for evaluating relevant contributions in loosely
coupled inter-organisational process, are the following:
support of process abstraction concept, support of efficient
process assembly, support of a modelling framework, support
of process context modelling, support for process modelling at
both the design level and the execution level, and finally,
support of the global process information schema. Note that
the two first requirements are the most important ones: the
first one indicates that we must be able to represent private
(i.e., internal) parts of involved processes along with their
public (i.e., external) parts, while the second one refers the
assembling of these private and public parts. Note also that the
last requirement aims to give a comprehensive data and
message flow (information) schema.

Regarding loosely coupled IoP flexibility, it has been
somewhat overlooked. However, some contributions
addressed flexibility by looseness in the context of dynamic
loosely coupled IoP recommending solutions to face
unavailability of partner process [10, 13]. Regarding the other
flexibility needs (evolution, variability and adaptation), which
are related to the flexibility of loosely coupled IoP schemas,
we mention [27–28], [29–30] and [12].

First, [27–28] addressed change propagation from a
partner process towards the processes of the other partners
involved in a collaboration or in a choreography. More
precisely, they provide a set of algorithms to deal with
changes of process schema by adding, deleting, replacing or
updating process fragments, but they do not consider changes
that can affect messages (i.e., information) exchanged between
process partners. Secondly, [29–30] proposed a service-based
approach to model the loosely coupled inter-organisational
processes by combining processes and SOA. More precisely,
they provide high-level patterns for service (adding, removing,
substituting services), control flow and interaction adaptation.

Note that these contributions address inter-organisational
process evolution but they do not address IoP variability and
adaptation. Finally, [12] extends BPMN to model versions of
collaborations. Indeed, the notion of collaboration supports the
modelling of inter-organisational processes in BPMN. Thus
versioning collaboration helps to address inter-organisational
process flexibility. In addition, [12] recommends a set of
interaction patterns to make IoP schema change easier to
perform.

C. Paper Positioning

This paper addresses IoP flexibility combining the notion
of version, which is helpful to address process flexibility, and
the requirements of [15], which are fundamental features of
loosely coupled inter-organisational processes. More
precisely, we define the VP2M meta-model to model versions
of loosely-coupled IoPs.

Benefits of our approach are the following. Thanks to the
notion of version, we address flexibility by evolution,
flexibility by variability and flexibility by adaptation if
adaptation can be defined at design-time. In addition, the
VP2M meta-model is comprehensive and simple as it defines
the core (basic) concepts for IoP version modelling, taking
into account the five perspectives (process, functional,
operational, organisational and informational) that processes
have to consider to provide a comprehensive picture on the
way people cooperate together within and across companies
[11]. It also includes the notion of view to take into account
the two first fundamental requirements of [15], distinguishing
the IoP view (collective view) from the partner’s views
(individual views) that can be local, global or mixed. On the
other hand, we provide algorithms supporting the assembly of
the different views along with the basic operations supporting
IoP flexibility through IoP versioning.

With respect to related works previously presented ([27–
28], [29–30] and [12]), our approach differs from [12] and
[27–28] as the basis of these works is BPMN. For instance,
[12] extends the BPMN meta-model for collaborations with
the notion of version to model version of collaborations. Our
contribution also uses the notion of version to address process
flexibility. However, instead of BPMN, we recommend a
specific meta-model for IoPs taking into account the
requirements of [15], particularly the two first and
fundamental requirements on process abstraction and process
assembly, along with providing a set of concepts for loosely
coupled IoP modelling considering the five main perspectives
of processes. Indeed, as illustrated in Table 1 below, BPMN
and therefore contributions based on BPMN, insufficiently
support process abstraction and assembly. They only model
separately public and private processes, and consequently they
only provide a global view for the IoP (collaboration) and
local views for partners processes (private process). In
addition, data is poorly represented and there is no
collaborative modelling environment for such processes.
Finally, [29–30] only addresses flexibility by evolution with
no support of process abstraction and assembly.

Table I evaluates the previous contributions with respect to
the requirements of [15] as follows: + (-) respectively means

that the requirement is supported (not supported) while +/-
means that the requirement is partially supported.

TABLE I. RELATED WORKS EVALUATION w.r.t [15]’s REQUIREMENTS

Requirements [12] [27–28] [29–30]

process abstraction +/- +/- -

process assembly +/- +/- -

collaborative modelling framework +/- - -

context for IoPs + - -

modelling at the design level + + +

modelling at the execution level - + -

global business information schema +/- +/- +/-

To sum up, we recommend the VP2M meta-model to
model versions of loosely coupled IoPs. We have chosen to
define a new meta-model for IoP version modelling instead of
extending BPMN for instance as the BPMN meta-model is
very complex. More precisely, it does not focus on the core
concepts for inter and intra-organisational process modelling.
In addition, it does not provide a comprehensive approach for
intra and inter organisational process modelling as intra and
inter organisational processes are considered separately,
respectively within private processes and collaboration/
choreography processes. Finally, it mixes both concepts for
process modelling and graphical representation of these
concepts, thus making its understanding difficult. On the
contrary, VP2M defines the core concepts for IoP version
modelling while taking into account the five process
modelling perspectives. Moreover, VP2M is independent from
any languages, so we can generate executable and/or graphical
specifications from instances of VP2M. Finally, VP2M
addresses flexibility by evolution, flexibility by variability and
flexibility by adaptation if adaptation can be defined at design-
time.

III. MODELLING VERSIONS OF INTER-ORGANISATIONAL

PROCESSES: THE VP2M META-MODEL

VP2M supports the modelling of versions of IoPs. First,
this section introduces the notion of version and then it
presentsVP2M as a UML class diagram for versioning both
intra and inter-organisational processes.

A. Version Concept and Versioning Pattern

A version corresponds to one of the significant states an
entity (in the context of the paper, a process, an activity…)
may have during its life cycle. When created, an entity is
described by only one version. The definition of every new
entity version is done by derivation from a previous one. Such
versions are called derived versions, and are organized in
derivation hierarchies. We distinguish two types of derivation:
(i) derive for variability, for representing choices according to
the context, and (ii) derive for evolution, for representing the
evolution of an entity, independently from the context, and
thus from any choice.

As shown in Fig. 1, we distinguish derivation (i.e.,
versioning from) for variability, represented with a dotted line,
from derivation for evolution, represented as a solid line. In
this figure, we consider four versions for the entity E1: the

first one is E1.1. The other versions are the following: E1.2 is
an evolution of E1.1, E1.2.1 is a variant of E1.2 and finally
E1.3 is an evolution of E1.2.1.

Fig. 1. Derivation by Evolution and Variability

We introduce a versioning pattern to support version
modelling. The underlying idea of the versioning pattern is to
model, for each versionable class of the VP2M meta-model,
both entities and their corresponding versions. According to
[16], a versionable class is a class for which we handle
versions. As shown in Fig. 2, the pattern is composed of two
classes and two relationships. Each versionable class is
described as a class, called Versionable. We associate to each
versionable class, a new class, called Version_of_Versionable,
whose instances are versions of Versionable, and two new
relationships: (i) the is_version_of composition, which links
each instance of the Versionable class with its corresponding
instances of the Version of Versionable class; and (ii) the
derived_from , which supports versions derivation hierarchies.
This latter relationship is reflexive and the semantics of both
relationship sides of derived_from is: (i) a version (SV)
succeeds another one in the derivation hierarchy and, (ii) a
version (PV) precedes another one in the derivation hierarchy.
Note that the derived_from relationship models both
derivation by evolution and derivation by variability.

Regarding versions, we also introduce attributes such as
version number, creator name, creation date and state in the
Version_of_Versionable class.

Fig. 2. Versioning Pattern

B. The VP2M Meta-Model

This section presents VP2M highlighting the core concepts
for both intra and inter-organisational processes modelling. It
also introduces the notion of view we add to the meta-model
in order to fulfil the main requirements of [15].

VP2M differentiates between two types of process: (i)
intra-organisational process, which is modelled as an
individual process, namely a process belonging to a single
organisation, and (ii) inter-organisational process, which is
modelled as a collective process, namely a set of individual
processes belonging to different organisations and interacting
with one another. We first introduce concepts for intra and
inter-organisational process modelling. Then we illustrate their
versioning. A UML class diagram of VP2M is given in Fig. 3,
focussing on classes and relationships. Fig. 3 adopts the
following policies: classes corresponding to versions are
visualised in grey, concepts related to individual processes
have a blue background, concepts related to collective
processes have a yellow background and OCL constraints
have a green background.

Fig. 3. VP2M: Modelling Versions of Inter-Organisational Process

1) Modelling individual and collective processes. The
main concepts for individual processes are Individual Process,
Activity, Control Pattern, Event, Informational Resource and
Role. We differentiate between composite and atomic
activities. A composite activity is a set of components (i.e.,
activities or events) that are coordinated by control patterns,
while an atomic activity refers to a concrete activity, gathering
operations (i.e., actions achieved within activities), performed
by actors involved in the individual process. Note that an
individual process obviously starts with a composite activity
having a start event, at least one activity and an end event (cf.
the OCL constraint C1 in Fig. 3). In addition, an atomic
activity has a start condition (precondition), final conditions
(post-conditions) and consumes and/or produces informational
resources (i.e., data or documents). We also have attributes for
components; for instance, the type attribute for an event
indicates if it is a start or an end event. Control patterns define
the way activities and events are synchronised. They may be
conditional (e.g., if, for, while, repeat …) or not (e.g.,
sequence, fork, join …). Finally, actors involved in the
individual process are gathered into organisational units or
roles. Note that these concepts support the modelling of the
five perspectives of processes, which are known to be
essential to have a comprehensive picture of how people work
in companies [1–2].

On the other side, we introduce the following concepts to
address IoP modelling: Collective Process, Partner Role,
Public, Private, Interaction and Process. A collective process
defines the set of participating individual processes. Each of
these participating individual processes plays a role, denoted
as Partner Role, in the collective process. We differentiate
between public and private atomic activities. Public atomic
activities correspond to external atomic activities, namely
activities supporting the interaction between participating
individual processes, while private atomic activities
correspond to internal activities performed by only individual
processes. Thus an individual process corresponding to an
intra-organisational process is composed of only private
atomic activities (cf. the OCL constraint C2 in Fig. 3) while an
individual process involved in a collective process (i.e., an
IoP) is composed of both public and private atomic activities
(cf. the OCL constraint C3 in Fig. 3). The notion of
Interaction models the exchange of messages (information)
between involved individual processes: we define the source
of the interaction (send), the target of the interaction (receive)
and the message (information) exchanged between the source
and the target (which are public atomic activities). Finally, we
introduce the notion of Process to model flexible processes
changing from individual to collective (or vice-versa). Thus a
process may correspond to an individual or to a collective
process.

2) Versioning individual and collective processes. We
use the versioning pattern previously presented to make some
classes of this meta-model versionable. A versionable class is
a class for which we manage versions. Thus we differentiate
between versionable classes and ordinary classes (i.e., classes
for which we do not handle versions). We manage versions for
the following classes: Process, Individual Process, Collective
Process, Activity, Event, Operation, Role, Partner Role,
Organisational Unit and Interaction. Indeed, each of these

classes represents key concepts for individual and collective
processes and plays a strong role in the definition of IoPs. The
idea is to keep track of changes occurring to components that
play a part in the description of how the IoP is carried out.
Note that, unlike the majority of related works (e.g., [7–8, 17–
18]), the version notion holds for concepts of both individual
and collective processes and it also holds for each perspective
of individual processes. As illustrated in Fig. 3, for each of the
versionable classes we use the previous versioning pattern and
we model both entities and versions. Thus we have two classes
for each versionable concept (e.g., Individual Process and
Version of Individual Process model individual processes and
their corresponding versions).

3) Versioning elements. Generally speaking, a new
version of an element (e.g., individual process, activity, event,
and collective process) is defined according to changes
occurring to it: these changes may correspond to the addition
of information (attribute or relationship) or to the modification
or the deletion of existing ones. For instance, regarding
individual processes, we create new versions when there are
changes to the involved activities and/or events or in the way
they are synchronised together using control patterns. In the
same way, changes to activities and events may result in the
creation of new activity and event versions. In addition, we
create new versions of public activities involved in message
exchange, when there are changes to the exchanged messages.
Regarding collective processes, new versions may result from
changes to participants involved. Thus when we add or delete
a participant, it is necessary to adapt the current collective
process to this change: we have to incorporate the added
participant or to possibly replace the deleted one. New
versions of collective processes may also result from changes
to involved individual processes or exchanged messages.
Exchanged messages have an important impact in interaction.
Thus any change in a sent or a received message affects the
involved public activities, and consequently the involved
individual process. So, when we add (or delete) a message, we
have to add (or to delete) a received and a send public activity,
which leads to changing the individual process schema. In this
case, the other individual processes involved in the collective
process have in turn to be adapted to this change to ensure
continued collaboration. Section V will detail operations
achieving changes leading to new version definition.

C. Views in VP2M

We previously have defended the importance of the
requirements of [15] to address flexible IoPs modelling. We
recommend introducing the notion of view to fulfil the process
abstraction and process assembly requirements. Indeed, view
is known to be a powerful concept to give both internal/private
and external/public abstractions of information and it is worth
to be used for process abstraction [13, 15, 31–32].

Fig. 4 below gives the different views that can be deduced
from instances of VP2M. As for processes, we distinguish
collective views from individual views. A collective view
holds for collective processes (IoPs). It corresponds to a
BPMN collaboration or choreography diagram: only public
activities of all the involved individual processes along with
their corresponding interaction (exchanged messages) are

visualised. An individual view focuses on a specific partner
view, differentiating between local view, global view and
mixed view. The first one focuses on the activities of the
considered partner while the two others also include public
activities of other interacting partners. A local view of a
partner extracts only his private and (eventually) public
activities. Note that this view holds for both intra and inter-
organisational processes, while the two others only hold for
inter-organisational processes. On the other side, the global
view of a collective process for a partner gathers its public
activities along with the public activities of its partners and
their corresponding interaction. Finally, the mixed view
merges local and global views of a partner, extracting its
private and public activities along with public activities of its
interacting partners and their corresponding interaction.

Fig. 4. Views Taxonomy

IV. MODELLING FLEXIBLE INTER-ORGANISATIONAL PROCESSES

USING VP2M: THE SUBSEA PIPELINE PROCESS

This section illustrates the instantiation of VP2M to model
versions of a flexible inter-organisational process, the Subsea
Pipeline process from TPS, a petroleum company.

A. Versions of the Subsea Pipeline Process

The Subsea Pipeline process is from TPS, which needs to
replace any one of its old damaged subsea pipeline. Three
versions of this process are considered in the example. In the
first version, the process takes place only within the TPS
company. TPS first specifies the necessary team and
equipment and then proceeds to the assembling and the
welding of pipes on shore by welders and controllers. The next
activity is the laying of pipes offshore by the divers. Finally,
when the installation is over, a test campaign has to be
performed. Note that the assembling and welding, laying and
subsea control have to be repeated until reaching the pipeline
length.

In the second version of a process, TPS subcontracts the
installation of the pipeline to SAROST, a company committed
to subsea pipeline installing and maintenance. Thus as shown
in Fig. 5, two partners are involved in this process version.
TPS first prepares a Tender Specifications (TS) describing the
requested pipeline replacement, and submits it to SAROST.
Then SAROST carries out a feasibility study and answers
either in a positive way sending back to TPS a quote for the
pipeline replacement, or in a negative way explaining why it
refuses to do the requested job. When the quote is received
and accepted by TPS, then it prepares an order for replacement
and sends it back to SAROST, which proceeds to the subsea
pipeline replacement. After the test campaign, SAROST
prepares an acceptance certificate and sends it to TPS, which
then ends the process. In the third version, TPS also
subcontracts the activity of preparing tender specifications to a
consulting office (COff). Thus three partners are involved in

this process version: TPS, which is still the initiator of the
process, Coff to which TPS sends a request for a tender
specification, and SAROST, which replaces the damaged
subsea pipeline.

Fig. 5. Versions of the Subsea Pipeline Process

B. VP2M Instantiation

This example considers three versions of the Subsea
Pipeline (SP) process. As illustrated in Fig. 6, which is a UML
object diagram, these three versions of processes correspond
to versions of individual and collective processes. In Fig. 6,
relationships from the versioning pattern (i.e., derived_from
and is_version_of) are shown by a black line while the
correspond_to and involve relationships are respectively
shown by a blue line and a red line. More precisely, the first
version of SP (SP.1) is an intra-organisational process and it
refers to the version of the individual process of TPS (TPS-
SP.1) containing only private activities (e.g., specify team,
assembly, lay).

The two other versions of SP (SP.2 and SP.2.1) are inter-
organisational processes as they respectively involve, in
addition to TPS, SAROST (in SP.2) and both COff and
SAROST (in SP.2.1). They are modelled as two collective
processes (CP-SP.1 and CP-SP.1.1), each referring to the
individual process of involved partners. Thus we distinguish
between three versions of individual processes for TPS (TPS-
SP.1, TPS-SP.2, and TPS-SP.2.1), one version of individual
process for SAROST (SAROST-SP.1) and one version of
individual process for COff (COff-SP.1). The second and third
versions of the individual process for TPS and the first version
of the individual process of both SAROST (SAROST-SP.1)
and COff (COff-SP.1) contain both public and private
activities describing respectively interaction between partners

and partner internal actions. In addition, SP.2 is an evolution
of SP.1 while SP.2.1 is a variant of SP.2. In the same way,
TPS-SP.2 is an evolution of TPS-SP.1 while TPS-SP.2.2 is a
variant of TPS-SP.2.1. Finally, the collective process CP-
SP.1.1 is a variant of CP-SP.1.

Fig. 6. Partial Instantiation of VP2M for the Subsea Pipeline Process:
Process, Individual Process and Collective Process Versioning

Due to lack of space, Fig. 7 details only some of these
individual process versions, namely TPS-SP.2 and SAROST-
SP.1. SAROST-SP.1 is involved in the collective process
version CP-SP.1, which corresponds to the second version of
the SP process, namely SP.2. Both TPS-SP.2 and SAROST-
SP.1 contain private activities implementing internal actions,
and public activities corresponding to the interaction between
them. More precisely, Fig. 7 models the following public and
private activity versions of TPS-SP.2: PrepareTS (TPS-SP-
PrepareTS.1 is the first version of the private activity
PrepareTS), SendTS (TPS-SP-SendTS.1 is the first version of
the public activity SendTS), ReceiveRefusal (TPS-SP-
ReceiveRefusal.1 is the first version of the public activity
ReceiveRefusal), ReceiveQuote (TPS-SP-ReceiveQuote.1 is

the first version of the public activity ReceiveQuote) and
ExamineQuote (TPS-SP-ExamineQuote.1 is the first version
of the private activity ExamineQuote). Fig. 7 also models the
following public and private activity versions of SAROST-
SP.1: ReceiveTS (SAROST-ReceiveTS.1 is the first version of
the public activity ReceiveTS), FeasibilityStudy (SAROST-
FeasibilityStudy.1 is the first version of the private activity
Feasibility Study), SendRefusal (SAROST-SendRefusal.1 is
the first version of the public activity SendRefusal), and
SendQuote (SAROST-SendQuote.1 is the first version of the
public activity SendQuote). Finally, Fig. 7 models the
interaction between the public activities of both TPS-SP.2 and
SAROST-SP.1: they are visualised in red, blue and brown.

V. VP2M: DYNAMIC ASPECTS

This section addresses the dynamic aspects of VP2M
introducing operations for version management and
algorithms for views deduction. First, it gives a UML state
chart diagram indicating when these operations are available.
Then, it presents version management operations along with
provided algorithms for views deduction.

A. State Chart for Versions

In order to handle versions of IoPs modelled as instances
of the VP2M meta-model, we propose a taxonomy of
operations which allow the creation, derivation, update,
validation, and deletion of versions or which enable or disable
versions. The UML state chart given in Fig. 8 indicates when
these operations are available with respect to the version state.

According to Fig. 8, a version can be a Working version, a
Frozen version or a Disabled version. A working version is a
draft version: it can be updated but cannot serve as a support
for execution (i.e., it cannot be instantiated). After a series of
updates and when it becomes stable, a working version can be
validated and therefore it moves to the state Frozen. A frozen
version describes a significant and stable state of a version,
which cannot undergo changes. A frozen version is enabled
and can serve as a support for execution (i.e., it can be instan-

Fig. 7. Partial Instantiation of VP2M for the Subsea Pipeline process: detailing Individual Process Versioning

-tiated). Note that the validation of a version may trigger the
validation of other versions (cf. section V.B.2). A working
version can be deleted while a frozen version can be disabled.
It then moves to the state Disabled. In this state, the version
cannot be instantiated and does not serve anymore as a support
for execution. Finally, a stable version can serve as a basis for
the creation of a new version using the Derive operation. The
new created version is a working version (cf. Fig. 8(b)).
Before being updated, it has the same value as the derived one.
Note that the derivation of a version may trigger the derivation
of other versions, which are linked to the derived one.

Fig. 8. State Chart for Versions

B. Operations

This section details the three main recommended
operations, namely the update, the validate and the derive
operations.

1) Update Operation. This operation can be specified
using a set of primitives that change according to the classes in
which they are defined. Table II below summarizes these
primitives.

TABLE II. PRIMITIVES OF THE UPDATE OPERATION

Classes Primitives

Process
+ Individual Process

+ Collective Process

Individual Process

+/- Activity

+/- Event

+/- Control Pattern

Collective Process
+/- Individual Process

+/- Partner Role

Public Activity +/- Interaction

Private Activity

+/- Informational Resource

+/- Operation

+/- Condition

+/- Role

Interaction

+/- Send Activity

+/- Receive Activity

+/- Informational resource

Role
+/- Actor

+/- Organisational Unit

For instance, the update of a collective process includes
primitives supporting the addition (+) or deletion (-) of
involved partners (i.e., their individual processes) and playing
a specific role in the IoP. In the same way, the update of an
individual process includes primitives supporting the addition

or deletion of activities, events and the way they are
synchronised.

2) Validate Operation. This operation is performed to
make a working version frozen, when the considered version
does not need to be updated anymore. Validation of a version
may trigger the validation of other versions, which are linked
to it via a composition relationship. Fig. 9 illustrates the
validation propagation. More precisely, the blue arrows
correspond to initial validations while the black arrows
correspond to propagated validations. According to Fig. 9, the
validation of a version of a collective process triggers the
validation of corresponding versions of individual processes.
Likewise, the validation of an individual process version
triggers the validation of its versioned components, i.e.
versions of atomic activities and events. In the same way, the
validation of atomic activity versions triggers the validation of
their linked elements. If this is a public activity, linked
interaction, (partner) role and operation versions are in turn
validated, while if it is a private activity, linked role,
information resource and operation are in turn validated.

Fig. 9. Validation Propagation

3) Derive Operation. The Derive operation create a new
working version as a copy of an existing frozen (i.e., stable)
one. Thus before being updated, this new version has the same
value as the derived one. Moreover, derivation of a version
may trigger the derivation of other versions, which are linked
to the derived one. Fig. 10 illustrates this derivation
propagation. Again, the blue arrows correspond to initial
derivations, while the black ones correspond to propagated
derivations.

This propagation is due to the relationships existing
between the following classes: Process, Collective Process,
Individual Process, Public Activity, Private Activity, Event,
Operation, Event, Interaction, Role, Informational Resource
and Organisational Unit. Thus the derivation of an individual
process or a collective process triggers the derivation of its
corresponding process. In the same way, the derivation of an
activity (whether private or public) triggers the derivation of
its corresponding individual process. In addition, the
derivation of an operation, a role and an informational
resource triggers the derivation of its corresponding private
activity while the derivation of an interaction or a (partner)
role triggers the derivation of its corresponding public activity.

Fig. 10. Derivation Propagation

C. Views Deduction

The notion of view is not explicitly stated in the VP2M
meta-model as it can be deduced from private and public
activities of individual processes. We introduced a specific
pivot structure, the View Data Structure (VDS), for view
deduction: instances of VP2M are mapped according to VDS
while recommended algorithms deduce views from it. Thus
this section firstly provides the recommended mapping
algorithms and then those for views deduction. Secondly, it
illustrates these mapping and deduction steps within the
Subsea Pipeline process.

1) Algorithms for Mapping VP2M onto VDS. As illustrated
in Fig. 11, the VDS models VP2M individual processes as
trees (IPTree) and VP2M collective processes as graphs
(CPGraph), i.e., as set of trees and set of arcs.

Fig. 11. VDS Concepts

More precisely an IPTree, which is a tree modelling an
individual process, gathers terminal nodes and non terminal
nodes. A non terminal node, which corresponds to a composite
activity of VP2M, gathers nodes (has_edges relationship). On
the other hand, a terminal node, which corresponds to either a
version of atomic activity or a version of event of VP2M, has
the following data structure:

• nodeName: name of the node that corresponds to the
name of the corresponding version of atomic activity
or event

• nodeType: type of the node that can be an activity or
an event

• nodeNature: nature of the node that can be public or
private for activities, or start, end or intermediate for
events

In addition, these IPTrees may be linked by arcs between
terminal nodes (i.e., leaves) representing versions of public

activities, thus indicating exchanged messages between the
corresponding activities.

Table III gives the mapping rules from VP2M onto VDS.
In addition we give a set of algorithms implementing these
mapping rules. Due to lack of space, Fig. 12 focuses on the
two main algorithms implementing the mapping from a
version of collective process to its corresponding CPGraph
(MapOntoCPGraph), and implementing the mapping from a
version of individual process to its corresponding IPTree
(MapOntoIPTree). Thus MapOntoArc, addressing the
mapping from a version of interaction to an arc,
MapOntoTerminalNode, addressing the mapping of a version
of activity or version of event to a terminal node, and
MapOntoNonTerminalNode, addressing the mapping of
composite activity to a non-terminal node, are not presented in
the paper.

TABLE III. MAPPING VP2M ONTO VIEW DATA STRUCTURE

VP2M Concepts VDS Concepts

Version of Collective Process CPGraph

Version of Individual Process IPTree

Component Node

Composite Activity NonTerminalNode

Version of Atomic Activity
TerminalNode

Type=’activity’

Version of Event
TerminalNode

Type=’event’

Version of Interaction Arc

The MapOntoCPGraph and MapOntoIPTree algorithms
are given in Fig. 12.

Fig. 12. MapOntoCPGraph and MapOntoIPTree Algorithms

These previous algorithms use the following set of
functions for handling graphs and trees (VDS functions) and
for handling versions of individual processes (VP2M
functions):

• Add_IPTree(ipt,cpg): adds the IPTree ipt to the
CPGraph cpg,

• Add_Arc(a,cpg): adds the Arc a to cpg,

• Add_TN(tn,ipt): adds the TerminalNode tn to ipt,

• Add_NTN(n,ipt): adds the Nonterminal Node n to ipt,

• IsVersionOfActivity(a): returns True if a is a version
of activity, otherwise returns False,

• IsVersionOfEvent(e): returns true if e is a version of
event, otherwise returns False,

• getVersionOfIndividualProcess(vcp): returns the set of
versions of individual process involved in a version of
collective process vcp,

• getVersionOfInteraction(vcp): returns the set of
version of interaction for the version of collective
process vcp.

Fig. 13 partially illustrates the mapping of the second
version of the Subsea Pipeline process onto the VDS data
structure. This version of the collective process (SP.2)
involves two versions of individual processes (TPS-SP.2 and
SAROST-SP.1), and several versions of interaction (only three
of them are represented in Fig. 13). Arcs corresponding to
these versions of interaction are visualised in blue.

Fig. 13. CPGraph, IPTrees and Arcs for the Second Version of the Subsea

Pipeline Process

2) Algorithms for Deducing Views. As explained before,
the mapping step results in CPGraph composed of a set of
trees and a set of arcs between terminal nodes of these trees,
corresponding to versions of interaction. The recommended
algorithms for views deduction have as input an initial
CPGraph (containing all involved partners along with their
public and private activities and events) and return as result a
final CPGraph, consistent with the chosen view). These
algorithms support activity extraction from IPTrees according
to the requested view:

• public activities from IPTrees of a CPGraph for a
collective view of an inter-organisational process
modelled as a collective process in VP2M,

• public and private activities from a specific IPTree for
a local view of an intra-organisational process
modelled as an individual process in VP2M,

• public activities from a specific IPTree of a CPGraph
along with public activities of its interacting IPTrees
within the corresponding CPGraph for a global view
of a partner in an inter-organisational process
modelled as a collective process in VP2M,

• public and private activities from a specific IPTree of
a CPGraph along with public activities of its
interacting IPTrees within the corresponding CPGraph
for a mixed view of a partner in an inter-
organisational process.

We have provided in Fig. 14 the algorithm Extract to
support activities extraction from IPTrees. Its scope parameter
indicates the activities to be extracted: Public means that only
public activities have to be extracted while All means that both
public and private activities have to be extracted. Note that the
Reduce function removes useless non-terminal nodes: for
instance, if a non-terminal node is a sequence having only one
child terminal node, the non-terminal node is replaced by its
child terminal node (e.g., sequence (a,b,sequence(c),d) is
reduced to sequence (a,b,c,d)).

Fig. 14. Extract Algorithm

In addition, we have provided two algorithms for view
deduction: the first one holds for collective view deduction
while the second one holds for global and mixed view
deduction. These algorithms are given in Fig. 15 and Fig. 16.
Note that it is useless to deduce the local view of an intra-
organisational process or of a specific partner involved in an
inter-organisational process as this view is the corresponding
IPTree.

Fig. 15. CollectiveView Algorithms

More precisely, the CollectiveView algorithm presented in
Fig. 15 returns only the public activities for all the involved
IPTrees in a CP. The Extract function supports this selection.
The GlobalMixedView algorithm presented in Fig. 16 holds

for both global view and mixed view deduction. To deduce the
global view of a version of individual process within a version
of collective process, the value of the scope parameter must be
Public while to deduce its mixed view the scope parameter
value must be All.

Fig. 16. MixedView Algorithm

To illustrate these deductions, Fig. 17 and Fig. 18 give the
CPGraphs corresponding respectively to the collective view
and to the mixed view of TPS for the second version of the
Subsea Pipeline process. In Fig. 17, only public activities are
extracted; in Fig. 18, regarding TPS both public and private
activities are extracted while regarding SAROST only public
activities are extracted. Differences between these two views
are highlighted in red: for instance, TPS-SP.PrepareTS.1,
which is a version of a private activity of TPS, is only
visualised in Fig. 18. Due to lack of space, we only give a
partial representation of these graphs.

Fig. 17. Collective View for the second version of the Subsea Pipeline Process

Fig. 18. Mixed View of TPS for the second version of the Subsea Pipeline

Process

VI. DISCUSSION AND CONCLUSION

This paper has addressed loosely coupled inter-
organisational process flexibility issue, which is an important
challenge to address in the Business Process Management
area. The approach advocated in this paper is the VP2M meta-
model, gathering the core concepts of loosely coupled IoP and
fulfilling the main requirements of [15]. VP2M also
incorporates version modelling capability and keeps track of
process, individual process, collective process, activity,
operation, role, informational resource, event and interaction
evolution, variability and adaptation. The paper has also
addressed the dynamic aspects of IoPs version management,
defining state charts for IoP versions and corresponding
operations (create, update, delete, validate, derive and
disable/enable operations) along with algorithms for deduction
of views, which were introduced to address process
abstraction and process assembly. Finally, the paper has
illustrated the modelling of a flexible inter-organisational
process, the Subsea Pipeline IoP.

Advantages of our contribution are the following. Firstly,
VP2M is comprehensive as it integrates the main perspectives
of processes and considers versioning of concepts related to all
process perspectives. Moreover, as illustrated in the Subsea
Pipeline IoP, VP2M supports the modelling of processes that
may move from individual processes to collective process.
Secondly, VP2M is a specific meta-model, independent from
any language or notation, so we can generate executable
and/or graphical specifications from instances of VP2M (as
we did for instance in [33] for intra-organisational processes).
Thirdly, the notion of version is well suited to address IoP
flexibility issue and more precisely flexibility by variability,
by evolution and by adaptation if adaptation can be defined at
design-time. Fourthly and lastly, VP2M fulfils the main
requirements of [15], and more particularly process
abstraction and process assembly, using the notion of view
and providing algorithms implementing their deduction.
VP2M also fulfils the modelling at the design level and the
global business information schema requirements thanks to,
for this latter, versions of informational resources and versions
of interactions.

Our contribution has three main drawbacks, which will be
addressed in future works. Firstly, we started to improve our
contribution in addressing not yet fulfilled requirements of
[15]. More precisely, we have planned to introduce the notion
of context for versions of IoPs in order to feature them and
ease their reuse [34], providing a language for context
specification and retrieval. Note that the notion of context also
seeks to distinguish flexibility by evolution from flexibility by
variability. Due to lack of space, we did not report our
findings on this. We also have planned to implement our
approach to define a collaborative modelling framework well
suited to address intensive-knowledge IoP modelling, and to
support IoP flexibility at run-time.

Secondly, we have foreseen to extend and implement view
deduction algorithms. We have to extend them in order to take
into account organisational and informational perspectives of
process in IPTree. Thirdly, we have planned to evaluate the
representational capability of our meta-model with the Bunge

Wand-Weber (BWW) ontology [35], which is used as a
theoretical framework to evaluate expressiveness of
information system analysis and design modelling languages,
in particular to evaluate their expressiveness. We recently
started this evaluation but have not made enough progress to
report on it. We also have planned to evaluate VP2M
usability, i.e., VP2M acceptance by BPM practitioners.

VII. REFERENCES

[1] M. Dumas, M. La Rosa, J. Mendling, and H. Reijers, “Fundamentals of
Business Process Management”, Springer, 2013.

[2] M. Weske, “Business Process Management: Concepts, Languages,
Architectures”, Springer, 2007.

[3] M. Reichert, and B. Weber, “Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies”, Springer,
2012.

[4] M. Rosemann, and W. van der Aalst, “A Configurable Reference
Modeling Language”, Information Systems, vol. 32, n°1, 2007, pp. 1–23.

[5] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing Variability in
Business Process Models: the Provop Approach”, Software
Maintenance, vol. 22, n°6-7, June 2010, pp. 519–546.

[6] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Dynamic and Extensible Exception Handling for Worklows: A Service-
Oriented Implementation”, Int. Conference on Cooperative Information
Systems, Vilamoura, Portugal, November 2007, pp. 95–112.

[7] S. Rinderle, M. Reichert, and P. Dadam, “Flexible Support of Team
Processes by Adaptive Workflow Systems”, Distributed and Parallel
Databases, vol. 16, n°1, 2004, pp. 91–116.

[8] X. Zhao, and C. Liu, “Version Management for Business Process
Schema Evolution”, Information Systems, vol. 38, n°8, 2013, pp. 1046–
1069.

[9] M. Adams, A. ter Hofstede, D. Edmond, and W. van der Aalst,
“Worklets: a Service-Oriented Implementation of Dynamic Flexibility in
Workflows”, Int. Conference on Cooperative Information Systems,
Montpellier, France, October 2006, pp. 291–308.

[10] E. Andonoff, L. Bouzguenda, and C. Hanachi, “Specifying Web
Workflow Services for Finding Partners in the Context of Loose Inter-
organizational Workflow”, Int. Conference on Business Process
Management, Nancy, France, September 2005, pp. 120–136.

[11] W. van der Aalst, “Loosely Coupled Interorganizational Workflows:
Modeling and Analyzing Workflows crossing Organizational
Boundaries”, Information and Management, vol. 37, n°2, 2000, pp. 67–
75.

[12] I. Ben Said, MA. Chaabane, R. Bouaziz, and E. Andonoff, “Flexibility
of Collaborative Processes using Versions and Adaptation Patterns”, Int.
Conference on Research Challenges in Information Science, Athens,
May 2015, pp. 440–451.

[13] I. Chebbi., S. Dustdar, and S. Tata, “The View-based Approach to
Dynamic Inter-Organizational Workflow Cooperation”, Data and
Knowledge Engineering, vol. 56, n°2, 2006, pp. 139–173.

[14] D. Knuplesh, M. Reichert, J. Mangler, S. Rinderle-Ma, and W. Fdhila,
“Towards Compliance of Cross-Organizational Process and their
Changes: Research Challenges and State of Research”, Int. Workshop on
Business Process Security, within Int. Conference on Business Process
Management, Tallinn, Estonia, September 2012, pp. 649–661.

[15] S. Lippe, U. Greiner, and A. Barros, “A Survey on State-of-the-Art to
Facilitate Modeling of Cross-Organizational Business Processes”, Int
Workshop on XML for Business Process Management, Karlsruhe,
Germany, March 2005, pp. 7–22.

[16] MA. Chaabane, E. Andonoff, R. Bouaziz, and L. Bouzguenda,
“Versions to Address Business Process Flexibility Issue”. Int.
Conference on Advances in Databases and Information Systems, Riga,
Latvia, September 2009, pp. 2–14.

[17] C. Ekanayake, M. La Rosa, A. ter Hofstede, and MC. Fauvet,
“Fragment-based Version Management for Repositories of Business

Process Models”, Int. Conference on Cooperative Information Systems,
Hersonissos, Crete, Greece, October 2011, pp. 20–37.

[18] M. Kradolfer, and A. Geppert, “Dynamic Workflow Schema Evolution
based on Workflow Type Versioning and Workflow Migration”, Int.
Conference on Cooperative Information Systems, Edinburgh, Scotland,
September 1999, pp. 104–114.

[19] M. Pesic, H. Schonenberg, and W. van der Aalst, “Constraint-based
Workflow Models: Change made Easy”, Int. Conference on Cooperative
Information Systems, Vilamoura, Portugal, November 2007, pp. 77–94.

[20] D. Müller, M. Reichert, and J. Herbst, “A New Paradigm for the
Enactment and Dynamic Adaptation for Data-driven Process
Structures”, Int. Conference on Advanced Information Systems
Engineering, Montpellier, France, June 2008, pp. 48–63.

[21] W. van der Aalst, M. Weske, and D. Grünbaur, “Case Handling: a New
Paradigm for Business Process Support”, Data and Knowledge
Engineering, vol. 53, n°2, 2005, pp.129–162.

[22] S. Nurcan, and MH. Edme, “Intention-driven Modeling for Flexible
Workflow Applications”, Software Process: Improvement and Practice,
vol. 10, n°4, 2005, pp. 363–377.

[23] G. Bruno, F. Dengler, B. Jennings, R. Khalaf, S. Nurcan, M. Prilla, M.,
Sarini, M., Schmidt, R., and R. Silva, “Key Challenges for Enabling
Agile BPM with Social Software”, Software Maintenance and
Evolution: Research and Practice, vol. 23, n°4, June 2011, pp. 297–326.

[24] F. Dalpiaz, E. Cardoso, G. Canobbio, P. Giorgini, and J. Mylopoulos,
“Social Specifications of Business Processes with Azzurra”, Int.
Conference on Research Challenges in Information Science, Athens,
Greece, May 2015, pp. 7–18.

[25] M. Döhring, B. Zimmermann, and L. Karg, “Flexible Workflows at
Design-time and Run-time using BPMN2 Adaptation Patterns”.Int.
Conference on Business Information Systems, Poznan, Poland, June
2011, pp. 25–36.

[26] I. Ben Said, MA. Chaabane, E. Andonoff, and R. Bouaziz, “Extending
BPMN 2.0 Meta-model for Process Version Modelling”, Int. Conference
on Enterprise Information Systems, Lisbon, Portugal, April 2014, pp.
384–393.

[27] W. Fdhila, S. Rinderle-Ma, and M. Reichert, “Change Propagation in
Collaborative Processes Scenarios”, Int. Conference on Collaborative
Computing: Networking, Applications and Worksharing, Pittsburgh,
Pennsylvania, USA, October 2012, pp. 452–461.

[28] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert, “Dealing with
Change in Process Choreographies: Design and Implementation of
Propagation Algorithms“, Information Systems, vol. 49, 2015, pp. 1–24.

[29] S. Boukhedouma, M. Oussalah, Z. Alimazighi, and D. Tamzalit,
“Adaptation Patterns for Service-based Inter-Organizational
Workflows”, Int. Conference on Research Challenges in Information
Systems, Paris, France, May 2013, pp. 1–10.

[30] S. Boukhedouma, M. Oussalah, Z.Alimazighi, and D. Tamzalit,
“Flexible Loosely Coupled Inter-Organizational Workßows using
SOA”, Int. Conference on Computer Systems and Applications, Ifrane,
Morocco, May 2013, pp. 1–8.

[31] R. Eshuis, and P. Grefen, “Constructing Customized Process Views”,
Data and Knowledge Engineering, vol. 64, n°2, 2008, pp. 419–438.

[32] A. Tahamtan, and J. Eder, “View Driven Inter-Organisational
Workflows”, Intelligent Information and Database Systems, vol. 6, n°2,
2012, pp. 93–112.

[33] I. Ben Said, MA. Chaabane, and E. Andonoff, “A Model Driven
Engineering Approach for Modelling Versions of Business Processes
using BPMN”, Int. Conference on Business Information Systems, Berlin,
Germany, May 2010, pp. 254–267.

[34] M. Rosemann, R. Jan, and F. Christian, “Contextualization of Business
Processes”, Business Process Integration and Management, vol. 3, n°1,
2008, pp. 47–60.

[35] Y. Wand, and R. Weber, “An Ontological Analysis of some
Fundamental Information System Concepts”, Int. Conference on
Information Systems, Minneapolis, Minnesota, USA, December 1988.

