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Abstract— The evolution of ambient intelligence systems has 

allowed for the development of adaptable systems. These systems 

trace user’s habits in an automatic way and act accordingly, 

resulting in a context aware system. The goal is to make these systems 

adaptable to the user’s environment, without the need for their direct 

interaction. This paper proposes a system that can learn from users’ 

behavior.  In order for the system to perform effectively, an adaptable 

multi agent system is proposed and the results are compared with the 

use of several classifiers. 

Keywords; classifiers, multi-agent systems, ambient intelligence 

I.  INTRODUCTION 

Ambient intelligence is widespread nowadays; intelligent 
systems are common in use and facilitate our work. Some 
systems can monitor user behavior, detect strange behavior 
patterns and send alerts to control centers. Since it is not possible 
to tackle the variety of behaviors and situations and include their 
prediction in the system, ambient intelligence systems are 
designed to learn and evolve on their own based on the users’ 
behavior. With the evolution of ambient intelligence, the internet 
of things will attain great importance as devices will be able to 
interact with each other and with their users in their houses. In 
context-sensitive systems, the environment should be able to 
adapt to the environment with minimal user interaction, for that 
reason in this paper the use of adaptive multi-agent systems to 
learn and predict user behavior is analyzed. 

 

Currently, data mining is the most common technique for 
detecting patterns from different data bases, among them 
classifiers, neural networks or statistics. With regard to 
classifiers, different techniques can be applied, depending on the 
decision rules, functions, bagging, boosting etc. In the case of a 
neural network it is possible to apply a multilayer perceptron or 
an RBF neural network [20]. In order to create regression models 
a statistical test could be used for the extraction of relevant 
parameters. The main disadvantage of these systems is that each 
of them has to start its learning process from the beginning and 
cannot learn from one which has already evolved.  

The aim of this study is to create a context aware system 
which is able to learn from users’ behavior. Classifiers have been 
used for this purpose. The context obtained from different 
sensors and actuators is used by classifiers in order to create and 
train algorithms. In this way, the system obtains the value 
(number?) of different devices and actions made by the user. If 
the accuracy is low, system learning must be recalculated again. 
Together with the adaptive multi-agent system it will be able to 
adjust itself continuously and learn dynamically, in accordance 
with the perceptions received. In this work, Amadeus; an 
Adaptive Multi-Agent System (AMAS) is presented. The 
proposal is also proved with more conventional algorithms in 
order to show their accuracy.  

 

This paper is divided into the following sections: section two 
contains the state of the art about conventional techniques and 



AMAS, section three contains the proposal and section four 
contains the results and conclusions.  

II. STATE OF THE ART 

A. Classifiers  

In the literature, in many cases algorithms are used for 
making predictions. The training of some techniques, such as 
decision rules and decision trees, can be easily interpreted and 
explained [15]. Decision rules are used in many case studies 
where they are applied to the analysis of bioinformatics. The 
decision rules are used in many cases studies since analysis 
accident [14] to bioinformatics [16][17]. Decision rules ranging 
from accidents to bioinformatics. In other cases, it is possible to 
use other classifiers based on statistics (e.g.  Bayesian networks 
[18]). However, such predictions are black boxes and they don´t 
allow classification. Besides these classifiers have a problem 
because they require the discretization of data. Support Vector 
Machine (SVM) are very popular in bioinformatics [19], since 
they transform original data into a high dimensional space. 
SVMs use kernel functions in order to separate data linearly 
SVMs are efficient compared to distance based classification 
algorithms. Some studies combine several classifiers with 
experts knowledge and other techniques such as neural networks 
[20], decision tree, Random Forest[21] or ensembles methods 
[10][11].  

B. Adaptive Multi-Agent System 

The systems based on Artificial Intelligence, are used to solve 

complex problems, where an initial solution is not known.  The 

use of Multi Agent Adaptive Systems (AMAS) combines 

different self-organizing techniques in order to reach the goal 

successfully.  The different entities that make up the system, 

must communicate using a common language, one which can 

be understood by all and can ensure collective behavior. 

Cooperation between agents is based on the application of three 

rules, applied accordingly, depending on the problem that needs 

to be solved:  

• cper: Any entry must be identified, understood and 
treated unequivocally. 

• cdec: Any information coming from their perception 
should  

• aid reasoning and decision making. 

• cact: Their reasoning capacity must be trained so that it 
leads to actions that are useful for the environment or 
for the rest of the entities that make up the system. 

Another aspect of AMAS that needs to be understood is the 
ability of agents or elements that make up the system to detect 
or prevent non-cooperative situations (NCS). An NCS occurs 
when one of the system entities does not verify one of the three 
rules mentioned above. The following describe the NCS that can 
take place if one of the rules is not verified:  

• (cper) Situation of ambiguity and misunderstanding. 

• (cdec) Situation of incompetence and unproductivity. 

• (cact) Situation of conflict. 

When using an AMAS based system, it is vital to design and 
apply the different cooperation methodologies between agents. 
In doing so, we determine the role each agent has in ensuring 
that the three AMAS rules are fulfilled. 

When designing a self-adaptive multi agent system, special 
attention should be given to the following tasks: 

Determine the entities that compose the MAS and determine the 
main capabilities of each one and the functionality it offers to 
other components in the system. 

Predict any occurrences that can lead to non-cooperative 
situations (NCS). 

Once the situation is detected (NCS), it is necessary to 
determine the set of actions that should be performed in the 
system to undo the non-cooperative state and transform it into a 
totally cooperative state. This method has helped to solve 
complex computing problems, for example, problems related to 
process execution, response times, real-time processing, 
bioinformatics, etc. .  

The capacities of AMAS, characterized mainly by the execution 

of tasks in a distributed and dynamic way, make it possible to 

solve complex problems such as predictive learning, or 

applications related to environmental intelligence. 

III. PROPOSED SYSTEM 

In order to evaluate the system proposed in this paper, a multi-

agent architecture (AMAS) called Amadeus has been designed 

based on a MAS called PANGEA. The main objective is to be 

able to interconnect a set of hardware devices in a simple way, 

adapting the behavior in function of the context through 

techniques of environmental intelligence.  
Amadeus uses unsupervised observation and learning 

techniques, memorizing the different operations a user makes 
with each physical device. If the user performs the same action 
or task repeatedly, the system can learn that these tasks 
constitute habitual behaviors of the user and can use these for 
the realization of future prognosis. 

 As can be seen in Figure 1, each device has a case of 
Amadeus. Data agents are responsible for capturing the 
information collected by the different sensors, the user agent 
represents the user´s level of satisfaction, expressed by a value 
between 0 and 1. 

The operation of the context agents and the controlling agent 
is described below. 



 

Fig 1. General structure of the system 

• General Operation 

 The main role of the controlling agent is to predict the user´s 
actions. A controlling agent works in association with several 
context agents, specifying the potential actions each of them can 
take. Context agents will be in charge of evaluating these actions 
to determine which is the best option for end user satisfaction. 
These agents must have the computational capabilities to detect 
when those assessments have had an undesirable effect on the 
system and should not be considered valid in the future. 

• Controller agent 

The operation of the controlling agent is described in detail 
below. Their behavior is based on a 3 phase cycle. The first 
phase, called the perception phase, consists of receiving service 
requests from the context agent. In each request, fields note the 
service that is demanded, the description of the required 
function, as well as forecast the impact this action will have on 
user satisfaction. This forecast is always accompanied by a 
confidence margin that gives information on its accuracy.  

Subsequently, the controlling agent evaluates which action 
is best for user satisfaction. It may happen that two agents make 
a service request with the same characteristics, in this case they 
will opt for the request that has the greatest certainty. This phase 
is called the evaluation phase. 

Finally, the execution phase occurs, where the controlling 
agent opts for the context agent which sends the most 
satisfactory service request and executes a corresponding action. 

• Context agent 

Each context agent that makes up the AMAS, presents a set of 

values that make up the validity of the agent. An agent is in a 

valid and secure state when the value it receives from each of 

the remaining elements of the system is contained in this range 

or set of values. Because of this, each time an agent invokes a 

certain functionality, a contextual validation process begins, 

which can lead to a safe or unsafe state. The upper and lower 

limits of the set of possible input values of each agent are 

delimited by an Adaptive Value Tracker (AVT), which allows 

the determination of the value of a dynamic variable in a given 

space. 

 

Once the validation process is completed and the agent has 
determined that it is in a safe state, the controller notifies of a 
proposed execution of a terminated service. This request 
contains the description of the requested service as well as the 
different external parameters that are necessary to invoke the 
functionality. This request has an indicator, a numerical value 
that ranges from -1 to 1 that indicates the impact that the 
execution of the service has on user satisfaction. In addition, the 
request has a numerical value ranging from 0 to 1 corresponding 
to the (AVT), offering a prognosis about the security that the 
agent has that the proposal of execution is carried out correctly. 
A context agent only communicates functionality demand 
proposals to the controlling agent when it resides in a secure 
state. 

In an AMAS system, different context agents can coexist and 
be in charge of different services. When a system entity requests 
a service from an agent, the controlling agent determines the best 
candidate.  

The criteria that the controlling agent can apply to determine 
the candidate agent are based on various factors, for example, 
the hardware characteristics, where the context agent resides, the 
CPU time used, the demand for services, etc. Only one candidate 
agent can be active for each service that is offered in the system 
at any given time. When the offer of service is concluded, the 
level of satisfaction of the user is stored, in order to compare this 
value obtained with the initial prediction that was made. From 
this comparison three different scenarios are drawn: 

In an AMAS system, different context agents can coexist and 
be in charge of different services. When a system entity requests 
a service from an agent, the controlling agent determines the best 
candidate.  

The initial prediction of the context agent coincides with the 
final value obtained from user experience, in this case the 
context agent increases its confidence margin. 

The prediction was not exactly the same as the one offered 
by the user, however the prediction is correct, in this case the 
context agent adapts the predicted value to the value supplied by 
the user and increases his confidence margin. 

In the latter case, the context agent has made an incorrect 
prediction, it knows that the service request has not been 
executed as expected, which is why it must readjust the set of 
input values in order to increase forecast accuracy in the future. 
In this case, the context agent's confidence margin will decrease. 

Context agents, as mentioned above, must evaluate their 
prediction of user satisfaction and evaluate whether it is correct 
or not. The higher the confidence index of a context agent, the 
greater the possibility that the prediction has been correctly 
performed. To calculate the confidence, the following formula 
is used: 

)1(**1 λλ −+=
+
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T in t+1 is calculated according to Tt, F feedback in range 
[0,1], and  determined experimentally.  



   
When an AMAS system entity requests a service or 

functionality for the first time, the system automatically 
instantiates a context agent. The instantiated agent starts with a 
confidence index of 0.5. The one with a set of values of the 
context agent is initialized to the set of real values supplied in 
the initial request. 

 The interaction produced between the agents of context and 
the controlling agents endow the system with a learning model 
since there is a continuous and dynamic adaptation of the 
confidence level of the context agent. This learning model is 
based on the modification of the range of input values that make 
the agent in a safe state, through the validation of the three meta-
rules.   

IV. CASE STUDY 

The aim of the case study was to analyze the performance of 
multi-agent systems with conventional algorithms, for example, 
classifiers such as Bayes, LMT, decision tree or SVM. In the 
case study, the system was used to predict user´s behavior. The 
data from the sensor and the user’s behavior are stored each time 
as cases while in Amadeus these data are considered a contextual 
situation. 

The system data are simulated by an ambient intelligence 
system that defines the user’s behavior in a virtual environment. 
In this way, it is possible to obtain more data than in a real 
environment. The sitting room in the simulator contains an 
electrical lamp and a window shutter. It will also contain a 
sensor which will record the luminosity and presence. There will 
only be one user in the house and they will be able to use the 
different rooms. When they arrive to the sitting room they will 
begin an interaction with the simulator. However, we have to 
consider that the user may want to save energy. The user will 
intend to use natural light for as long as possible and will only 
turn on the lamp if it gets too dark. If the room is too bright then 
the user will try to save energy by turning off the lamp. They 
may also use the shutter to reduce the brightness of the room, 
this will help to keep the luminosity of the room in random value 
in an interval when the user is inside. 

The user will move randomly between different parts of the 
house. When in the sitting room, they will turn on the light if the 
luminosity is lower than 55. The system will always select a 
random value between 50 and 60, in order to avoid simple 
patterns in the user’s behavior. The simulator was used for 13 
days and the system generated one data per minute. Then, using 
various techniques, these data were used to predict user 
behavior. Two experiments were carried out and they had 
different arrangements. In the first experiment, one day was 
dedicated for training and the other for data testing. In the second 
experiment the system was trained within the first three days and 
the other days were spent on studying system performance and 
comparisons with classifiers.   

Table 1 shows an example of simulator generated data. The 
table contains the day, the number of cycles in a concrete day, 
user’s satisfaction, the luminosity and presence, where 1 means 
presence of the light. Value 1 for blind is when the shutter is 
open, value 1 for light when the lamp is turned on. In this case 
the user has defined maximum luminosity to 90, with more 

luminosity the user’s satisfaction decreases. We can see that user 
satisfaction is the lowest at a threshold of 26%, when the user 
acts and turns off the light, then user satisfaction increases. 

The objective of these tests is to foresee users´ behavior. When 
we are using classifiers, the first two columns are ignored to 
prevent them from predicting according to these columns.  

 

TABLE I.  EXAMPLE OF DATA, AS PERCEIVED BY THE DIFFERENT 

LEARNING ALGORITHMS. 

V. RESULTS AND CONCLUSIONS 

The system was tested with data obtained during 13 days, the 
data were collected for each minute. The objective of the tests 
was to analyze the adaptability of the system. The system was 
trained with the data obtained on the first day. Then new cases 
were introduced into the adaptive multi agent system and the 
classifiers and user’s behavior were predicted. After prediction, 
new case was introduced into the system so that it could learn it. 
This process was repeated until the 13th day. Given classifiers, 
the cases were rebuilt if the classification was wrong.  

To analyze the adaptably and evolution of the system two 
parameters were considered. In order to determine the changes 
in user preferences, the number of days and the case in day, the 
number of case is restarted each day.  

The adaptive multi agent system was compared with 
classifiers J48, the Naive Bayes, SVM and LMT, the results are 
shown in the figure 1. The figure shows the prediction of the 
light state according to the parameters shown in table 1. The Y 
axes contain the number of errors, and the X axes the cases. As 
can be seen, the figure shows accumulated errors for each 
technique. It is visible that the errors are more or less similar 
until the multi agent system increases the errors and after this 
moment continues with a similar efficiency than the other 
methods. LMT had the highest accuracy. 

A new text was introduced within 3 training days. Figure 2 
contains the results obtained. We can see that SMA provides 
better results than LMT, until the users change its behavior, then 
LMT provides the best results. However, main problem with this 
algorithm is that it is not efficient enough because the execution 
time is very high. The execution time of LMT was 5177 seconds 
as compared to other techniques which had their execution time 
below 60 milliseconds.    



 
Fig 2. Evolution of the number of errors made by the CBR with learning based 

on one day.  

 

Fig 3. Evolution of the number of errors made by the CBR during a three day 

learning. 

In conclusion, the multi agent system does not have a great 
capacity of generalization but it provides better performance 
when new cases arrive to the system. The best characteristic of 
the multi agent system is that it doesn’t have to store the cases 
in order to retrain them in the system. This makes data 
processing easier because it is not necessary to store them. 
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