
HAL Id: hal-01736256
https://hal.science/hal-01736256

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperation in Adaptive Multi-Agent Systems through
System of Systems modeling

Teddy Bouziat, Valérie Camps, Stéphanie Combettes

To cite this version:
Teddy Bouziat, Valérie Camps, Stéphanie Combettes. Cooperation in Adaptive Multi-Agent Systems
through System of Systems modeling. 2nd Global Conference on Artificial Intelligence (GCAI 2016),
Sep 2016, Berlin, Germany. pp. 214-226. �hal-01736256�

https://hal.science/hal-01736256
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 18892 

The contribution was presented at XX :  
http://easychair.org/smart-program/GCAI2016/ 

 
To link to this article URL : http://dx.doi.org/10.29007/kqfk 

 

To cite this version : Bouziat, Teddy and Camps, Valérie and 
Combettes, Stéphanie Cooperation in Adaptive Multi-Agent Systems 
through System of Systems modeling. (2016) In: 2nd Global 
Conference on Artificial Intelligence (GCAI 2016), 29 September 
2016 - 2 October 2016 (Berlin, Germany). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Cooperation in Adaptive Multi-Agent Systems through

System of Systems modeling

Teddy Bouziat, Valérie Camps, Stéphanie Combettes

IRIT, Paul Sabatier University - Toulouse III

Abstract

This paper addresses the modeling and design of Systems of Systems (SoS) as well as inter multi-

agent systems cooperation. It presents and illustrates a new generic model to describe formally SoS.

Then, this model is used to propose a study of inter-AMAS (Adaptive Multi-Agent System) cooperation.

Each AMAS, reified as a component-system of a SoS, uses a cooperative decision process in order

to interact with other AMAS and to collectively give rise to a relevant overall function at the SoS

level. The proposed model as well as the inter-AMAS study are instantiated to a simulated resources

transportation problem.

1 Introduction

The evolution of technologies offers new services in ambient intelligence, IOT, ICT, Factory
of Future etc. In those domains, systems tend to be more and more complex. One part of
this complexity comes from the high number as well as the dynamics of interrelationships
in these complex systems [13][4]. Indeed, complex systems are generally composed of many
interdependent subsystems that usually have been independently designed but that are linked
together to fulfill an overall goal [14]. In a general way, subsystems and the “global” system
have to dynamically adapt the entire architecture to propose the best solution. Moreover all of
these systems are often plunged into a dynamic and opened environment.

To face this complexity, current researches on SoS focuse on a large variety of problems
[17] to develop new methods of engineering or architecting. SoS architecting research focuses
on how, in an efficient manner, a SoS can have a dynamic, network-centric and collaborative
architecture [14]. SoS literature shows that Agent-Based Modeling and Simulation (ABM&S) is
a natural way to develop this new kind of architecture [3] [8] because they permit to describe and
test new architecture dynamics, by varying the behavior of component-systems in the SoS. This
paper presents a new model for formalizing SoS as well as an adaptive multi-agent approach
for implementing SoS based on cooperation between component-systems.

After a general introduction, section 2 offers an overview of SoS, SoS architecting, architect-
ing methodologies based on ABM and collaboration as well as the AMAS approach. Section 3
contains the description of SApHESIA (Sos Architecting HEuristic SImulAtor) model, a new
one to implement SoSs. The cooperative decision algorithm of each component-system that
enables dynamic and cooperative architecting is described in Section 4. Section 5 explains the



Table 1: Classical systems vs SoS architecture

Classical systems SoS

• Controlled development • Collaborative emergent development

• Domain specific systems level • Network-centric

• Static architecture • Dynamic architecture

case study for the evaluation of our proposal. Section 6 contains an instantiation of SAphESIA
model and cooperative architecting as well as a comparison with different experiments on a
resources transportation problem. We conclude and plan some future works in section 7.

2 Related Works

Even if the definition of SoS is not consensual, [13] explains that a SoS is “an integration of
a finite number of constituent systems which are independent and operable, and which are net-
worked together for a period of time to achieve a certain higher goal”. Moreover, there is an
agreement on what their main characteristics are [17]. For instance, Maier in [16] gives two main
characteristics of a SoS : ”A system-of-systems is an assemblage of components which individu-
ally may be regarded as systems, and which possesses two additional properties: (1) managerial
independence of the components and (2) operational independence of the components.”. More
recently, these widely accepted characteristics have been extended by Firesmith in [11] : “a SoS
is a particular kind of system where each constituent tends to be: (1) managerial independent,
(2) operationally independent, (3) physically distributed, (4) heterogeneous and (5) reusable.”.
Finally, in [5], authors propose a SoS concept map that can be sum up as: A SoS is a system:
with no clear boundary, exhibiting complex properties(Emergence, Heterogeneity, evolution...)
and composed of systems linked together and that are not SoS. Notice that this last definition
does not permit recursive definition of a SoS.

System of Systems Architecting - SoSs tend to have distributed control, and component-
systems tend to choose themselves to participate or not in a SoS (i.e. decide to consume
resources to achieve goal of the SoS). In other words, SoS architecting tends to be dynamic
and focuses on interactions between component-systems. According to [13], SoS architecture is
one of the main problems for developing SoS as the classical system architecting is really far
from SoS architecting. Azani [3] identifies the main differences between classical engineering
architecture and SoS one (table 1). The emphasis on SoS concerns interface architecting to
foster collaborative functions among independent systems and the focus is put on the way
to choose the collection of systems satisfying the requirements. Thus, contrary to classical
systems, SoS architecting focuses on collaboration between component-systems to get the right
organization.

ABM&S (Agent-Based Modeling & Simulation) are powerful techniques to model and sim-
ulate SoS. Indeed, Bonabeau in [6] wrote that it is best to use ABM when “the interactions
between the agents are complex, nonlinear, discontinuous, or discrete [...] the population is
heterogeneous,[...] ; when the topology of the interactions is heterogeneous and complex,[...] and
when the agents exhibit complex behavior, including learning and adaptation.”. Thanks to these
characteristics, ABM&S have been used to study SoS and proposed new ways to architecture



them using collaboration between components.

Collaborative Architecting - In [8], authors develop a methodology to model collaboration
between systems, which uses a global social utility function for SoS. Based on satisficing game
theory [18], this function allows the SoS to calculate the best options from the preferences and
interdependencies of component-systems. To calculate its preferences, each component-system
has two “roles”: one based on the effectiveness of an action and the other one based on the
inefficiency of an action and an interdependence function is computed from inter-dependencies
of systems However, this approach is limited by the complexity of the construction of this
function as designers have to define all inter-dependencies of component-systems, which are
statics problem-dependent and difficult to define with numerous systems [18].

Agent-Based Wave Model - The methodology based on an agent-based wave model devel-
oped in [2] couples a genetic algorithm, fuzzy logic and negotiation to propose new architecture
of SoS during time. In this model, a variable represents the propensity for an agent to collabo-
rate with the SoS and other component-systems. For the genetic algorithm part, a chromosome
is used as a representation of the current SoS architecture. Then, a fitness function defined
by a fuzzy assessor is able to propose and to rate new chromosomes (representing new SoS
architectures). The limitation of this approach is the need to design a fitness function that
is problem dependent, and the irrelevancy of the assessor that leads to the irrelevance of the
proposed architecture.

The AMAS approach - This approach is relevant to design adaptive multi-agent systems.
It enables to solve complex problems that can be incompletely specified and for which an a
priori known algorithmic solution does not exist. It considers the system as composed of parts
(i.e. agents) and focuses on the local agent behavior for making them adaptive (to their local
environment) while ensuring that the collective behavior emerging from interactions between
agents is the one expected; in that case the system is said “functionally adequate”. Each
agent must have a local cooperative behavior for this purpose [9] [12]. The AMAS approach
incorporates the notion of criticality, defined as the “distance between the current situation
and the local purpose of the agent” [15]. Thus, “the further the agent is from its goal, the more
critical it considers its current situation”. Considering this notion, an agent is cooperative if
it acts in order to help the most critical agent of its neighborhood. Thus, all agents within
an AMAS try to continuously reduce the criticality of the most critical agent (possibly itself),
while avoiding another agent becoming even more critical. If an agent is not able to help the
most critical agent of its neighborhood, it may help other less critical agents. Thus, doing so, it
hopes these agents will be able to help the most critical agent thanks to the reduction of their
own criticality.

3 SApHESIA model

We propose a SoS model to be able to model more expressive problems than existing SoS
models [1] [4], to compute them and to compare architecting approach in the same manner.
We introduce the concept of resources that permit to model any kind of SoS example where
resources are needed. Thus we describe the SApHESIA model used to represent a SoS, its
components and the environment of the SoS.



3.1 Component-System Model

A component-system Si that is the smallest part of a SoS (it represents the second S of SoS)
is defined as: Si = {F,R,G,L} where:

• F = {F1, ..., Fm} is a set of functionalities;

• R = {R1, ..., Rn} is a set of resources;

• G = {G1, ..., Gp} is a set of goals;

• L = {L1, ..., Lq} is a set of links with others component-systems.

A resource i is a structure Ri = {type : String, quantity : Float} representing passive elements
in the SoS (i.e. which have no effector on the environment or on the SoS itself). A function-
ality is an effector on the environment or on the SoS itself which enables to give operational
independence to the component-system. The functionality can affect the resources, the state
and/or the links of a component-system. A functionality F is defined as a triplet : F : {f, t, p}
where f is the function of F defined as: f : Conditions → Effects; t is the execution time
of F and p ∈ [0, 1] is the performance of F (it represents the probability of F to succeed).
Conditions and Effects can concern (i) a certain quantity of resources; (ii) the existence of
a link between two component-systems and (iii) the existence of a component-system.

A goal is a special state that a component-system tries to reach and it enables to give the
managerial independence to this component-system. Thus, a goal can be defined in two distinct
ways :

• GR = {type : String, value : Float, kind : {=, 6=}, p : Int} : a component-system tries to
(un)equal a certain resource type to the value value with a priority p;

• GL = {Sj} : a component-system tries to add a link with another component-system Sj .

A link is an oriented association between two component-systems permitting to represent
the acquaintance between them and to share and exchange resources. As indicated in the
functionality paragraph, links may be created and destructed by a functionality.

3.2 SoS Model

A SoS is defined as SoS = {S,G} where S is a set of component-systems and G is a set of
goals of the component-systems of S. G represents the high-level goals of the SoS : SoS =
{{S1, S2, S3}, {GR}}.

3.3 Environment Model

The SoS environment is the frame in which the SoS evolves and interacts with. It represents
entities that do not belong to the SoS and rules (physical, economic, social...).

Formally, an environment is defined as E = {E,Rules} where E is a set of entities and
Rules is a set of rules.

Entity Model - An entity is an active independent object able to affect the environment
or the SoS itself; it is not a part of the SoS.

Ei = {F,R,G,L} where:

• F = {F1, ..., Fm} is a set of functionalities;

• R = {R1, ..., Rn} is a set of resources;

• G = {G1, ..., Gp} is a set of goals;



• L = {L1, ..., Lq} is a set of links with entities or component-systems.

It is important to notice that an entity can be linked to a component-system or to another
entity.

Rule Model - A rule represents the frame in which the SoS evolves. It permits to model how
the environment reacts while interacting with the SoS. A rule needs conditions to be fulfilled
to apply effects and can affect all the entities in the environment or all component-systems in
the SoS. A rule is like an “omniscient” functionality.

Rule = {Conditions→ Effects}.
With all these elements, SApHESIA model is generic and expressive enough to model a

large variety of problems (economical, transport,...). Moreover, it is easily computable and
its genericity permits to focus on generic architecting problems such as dynamic evolution of
interactions between component-systems and emergence.

4 Cooperative Agent Decision

To present a SoS architecting methodology based on cooperation, we propose a decentralized
decision algorithm using the AMAS (Adaptive Multi-Agent System) approach. In this approach,
each agent has to decide its next action by taking into account the instant difficulty (criticality)
of its neighborhood.

4.1 The Criticality : Metric of Cooperation

[7] presents a generic multi-agent evaluation metric in order to know the criticality an agent
is faced with. More precisely, this metric represents the distance between the current state of
an agent and the final state it tries to reach. Basically, each agent tries to minimize both its
own criticality and the criticality of its neighbors. We integrate this metric in SApHESIA to
have a cooperative decision algorithm for architecting SoS. Thus, each component-system is
agentified and this metric is translated using resources and goals. Indeed, the current state
of a component-system can be represented by its resources and the state to reach (its goals).
To be able to compare its own criticality with the criticality of other component-systems, each
component-system calculates its criticality with the same function CSi

defined as:

CSi
(t) =

∑

Gj∈Gi
(CGj

(t) ⋆ Gj .priority)
∑

Gj∈Gi
(Gj .priority)

with Si = {Fi, Ri, Gi, Li} and CGj
(t) is the criticality of the goal Gj at time t. This one is

calculated with the following sigmoid functions:

CGj
(t) =







1 + 1

e
∆Gj

(t)+a −
1

e
∆Gj

(t)−a if Gj .kind = EQ

− 1

e
∆Gj

(t)+a + 1

e
∆Gj

(t)−a if Gj .kind = NEQ

with ∆Gj
(t) = Gj .value − Si.Ri(Gj .type)(t). Si.Ri(Gj .type)(t) is the amount of resource

Ri(Gj .type) at time t.

It is important to notice that criticality is always between 0 and 1. So, if agents have
different priority scales on goals, each agent has the same importance in term of criticality.
Thus an agent cannot always become more critical than the others because of goal priorities.



4.2 Cooperative Agent Algorithm

This algorithm is based on criticality comparison between agents. Basically, each agent com-
pares its criticality with its neighborhood for each of its available actions. Then, it chooses the
action that leads to the minimum of the maximum of the criticality of its neighborhood. To do
that, an agent A1 computes its own anticipated criticality as well as the anticipated criticality
of its neighborhood until a final time tf (corresponding to the time it cannot use its action
anymore). Then, A1 computes a set of comparable actions (called F10% in algorithm 1) in order
to eventually find an action leading to a similar result in a quicker time. This behavior tends
to minimize the maximum of neighborhood criticality: each agent “helps” its neighborhood by
choosing the action that, in the worst case, provokes the minimum raise of criticality. More
details about the cooperative decision of component-systems of a SoS are given in algorithms 1
and 2 where the component-system (respect. functionality) corresponds to an agent (respect.
an action).

Let’s take S = {S1, ..., Sn} | n ∈ N} where: ∀i ∈ n, Si = {Fi, Ri, Gi, Li} and ∀i ∈ n,
CSi

(t) is the criticality of Si at time t.

forall the f ∈ Fi do
∆f ←− ∅ ;
tf ←− calculateF inalT ime(f) ;
forall the Sj ∈ Li do

C ′

Sj
(t)←− calculateAnticipatedCrit(Sj , f) ;

∆fSj ←− C ′

Si
(tf )− C ′

Sj
(tf ) *Calculate diff of criticality for neighbors*;

∆f ←− ∆f ∪∆fSj ;

end

end
Let’s define bestf ∈ F such as min

g∈Fi

(max
Sj∈S

(∆gSj)) ∈ ∆bestf ;

min∆←− min
g∈Fi

(max
Sj∈S

(∆gSj)) *Choose f that minimize the max of criticality*;

F10% ←− {g ∈ F | max
Sj∈S

(∆gSj)± 10%×min∆} ;

forall the g ∈ F10% do
if tg << tf then

bestf ←− g
tf ←− tg

end

end

Algorithm 1: Cooperative component-system Si decision

The function Effect (not described here) returns a delta representing how the application of
f will influence Sj . The calculateAnticipatedCrit procedure returns a linear approximation of
the anticipated criticality of Sj if f is applied by Sj until time t. In this manner, a component-
system is able to approximate the functionality influence on its neighborhood. It is important
to notice that the component-systems do not need to exchange a lot of information as they only
need to know their criticality and the one of their neighborhood to take their decisions.



/*Find a and b, such as C ′

Sj
(t) = a× t+ b*/

calculateAnticipatedCrit(System Sj , Functionality f):
b←− CSj

(t− 1) ;
t0 ←− t− 1 ;
if ¬ hasEffect(Sj, f) then

a←− CSj
(t)− CSj

(t− 1) ;
end
else

a←− (CSj
(t) + Effect(Sj , f))− CSj

(t− 1) ;
end
return C ′

Sj
(t) = a× (t− t0) + b

Algorithm 2: Anticipated criticality of Sj when applying f until t.

5 Case Study: A Box Transportation System

CoCaRo is an AMAS used to model and simulate a carrying system of colored boxes by robots.
More precisely a robot has to find and catch a box and to deposit it in the nest having the
same color as the box. Each robot has an initial amount of energy that it consumes at each
movement. However when a robot deposits a box, it receives a reward in the form of energy
allowing it to remain longer alive. The value of the reward depends on the color of the deposited
box compared to the color of the robot; i.e. a robot will get a better reward if it deposits a box
of its own color.

The environment is composed of three different object types: (i) The Displacement Grid
that is an object of the plan and is made of 50x50 square cells. A cell may be empty or may
contain a robot, a box and/or a nest; (ii) the Nest that is an object in which robots deposit
boxes. The grid contains three nests that are blue, red and green and that are equidistant from
each other in order to prevent bias related to the proximity of 2 nests into simulations and (iii)
the Boxes that may be carried and deposited into nests by robots. A box may be red, blue or
green and appears randomly on the grid, at regular time interval.

The robot agent may perform one of the following actions : move, deposit, take and go.
The robot agent moves on the grid according to a Monte Carlo distribution until it finds a box.
Moreover, an agent has four states : carried (the agent is carrying a box), target (the agent
has targeted a box), onPosBox (the agent is on the same cell as its target box) and onPosNest
(the agent is on the same cell as the nest corresponding to its carried box). The agent chooses
the most appropriate action according to its current state and its perceptions:

• if it perceives target then it go(targeted box);

• if it perceives target ∧ onPosBox then it take(targeted box);

• if it perceives carried ∧ onPosNest then it deposit(carried box);

• if it perceives ¬target ∧ ¬carried then it move;

The criticality indicates the level of difficulty of a robot agent and is defined in terms of
its energy level. The effectiveness of an agent is related to its energy level and may rapidly
deteriorate. In this context, the criticality Cri of a robot agent ri is a temporal function
calculated as follows, where Neri(t) is the battery level of agent ri at time t and MaxNe is the
maximum battery level:

Cri(t) = MaxNe −Neri(t)



The criticality is thus an integer ranging from 0 to MaxNe (agents having a big criticality).

The anticipated criticality is a function allowing the robot agent to know the criticality
it is going to get once the box bk deposited in the nest. It enables the robot agent to choose
the box that will offer it most energy. The anticipated criticality of robot agent ri for the box
bk is calculated as follows: CAri(bk, t) = MaxNe −Nea(bk, t) with

Nea(bj , t) =



















Nri(t+ td) + recri(bk) if 0 < . < MaxNe

MaxNe if . > MaxNe

0 else

td is the time taken by the agent ri to go from its current position to the box bk and then to

the nest : td = distance(ri,bk)+distance(bk,Nest)
Speedri

(t) Speedri(t) is a function representing the speed of

agent ri. This speed decreases with Neri(t). It permits to represent that a robot is less efficient
when its battery is low. Initially, the case study of CoCaRo has to show the usefulness of the
cooperation algorithm we propose. To this aim two systems have been implemented.

5.1 System 1 : Non cooperative Agents

In this system, robot agents do not use any cooperative mechanisms. An agent is looking for
the most interesting box for it in order to have a maximum amount of energy and therefore
to transport a maximum of boxes. Agents do not try to exchange boxes even if it could be
advantageous for them.

Decision Algorithm - To achieve its goal (to maximize its energy level), a robot agent
applies a decision algorithm using its current criticality and its anticipated criticality. While
returning to the nest an agent may change its carried box if it finds a box enabling it to get
more energy than it would have with the one it carries. This algorithm is described in algorithm
3 by reading only the black part.

5.2 System 2 : Cooperative Agents

In this system, robot agents are cooperative; they can exchange boxes between them through
message sending according to their current and anticipated criticalities.

Decision Algorithm - When a robot agent ri is detecting a box bk enabling it to get more
energy, ri is checking if the box is already owned by a robot agent rj . If it is the case, the agent
ri is sending a message to rj which is containing the criticality and the anticipated criticality
of ri for the box bk. These information required by the cooperative mechanism make the agent
rj to choose either to exchange the box bk (if rj does not become too critical because of the
exchange), or to keep it (if rj becomes too critical because of the exchange). The algorithm 3
(with red part) shows the decision process.

Cooperative Mechanism - The cooperation mechanism of a robot agent is implemented
in the function Cooperative request process invoked in the algorithm 3 and detailed in the algo-
rithm 4.

The agent rj carrying the box bk considers at each time step, the cooperative request received
at t − 1. As it is cooperative, the agent rj has to determine if the request sender ri is more
critical than it, in which case rj has to give the box to ri. For that, rj compares its anticipated
criticality with the one of ri and then checks if the exchange will not cause a criticality increase
on the long term.



while Ne(t) 6= 0 do
if carried then

CAcurrent = CAri(carried box, t)
end
if target then

CAcurrent = CAri(targeted box, t)
end
Update visible boxes ;
forall the bk ∈ visible boxes do

temp Ca := CAri(bk, t) ;
if temp Ca < CAcurrent then

if holder(bk) 6= null then
SendCoopReq(rj , Cri(t), CAri(bk, t))

end
else

CAcurrent := temp Ca ;
targeted box := bk ;
if carried then

deposit(carried box) ;
end

end

end

end

end
coop request processing();

Algorithm 3: Decision for a cooperative robot agent ri

if Crj (t) < Cri(t) then
if CAri(bk, t) < Cri(t) then

accept exchange();
deposit(bk);

end
else

refuse exchange() ;
end

end
else

if CArj(bk, t) < Crj (t) then
refuse exchange() ;

end
sinon

accept exchange() ;
deposit(bk);

fin

end
Algorithm 4: coop request processing() of agent rj carrying bk



5.3 System 3 : Instantiation of SApHESIA model

To validate our architecting cooperative approach for SoS presented in section 4 and to study
inter-AMAS cooperation, we decide to instantiate CoCaRo as a SoS by using SApHESIA model.
First, it seems natural that each group of robots of the same color of the AMAS CoCaRo can be
seen as a “sub”-AMAS and may be reified as component-system (red, green and blue) of a SoS:
each of them can be modeled with goals, functionalities, resources, links and then criticality.
For instance, the goal of a component-system is to avoid robots with empty battery. Resources
can be robots themselves. Functionalities can be actions of robots, etc. To enable cooperation,
resources and functionalities are added to component-systems to compute a representative crit-
icality and then help other component-systems. To design functionalities, a component-system
may help another one by simply giving the right boxes to others. To do that, each component
has the possibility to change perceptions of its robots concerning box rewards. We illustrate
our reasoning by considering the red component-system Sr. Sr has the functionalities to change
the perceptions about blue and green boxes for red robots. Thus, red robots may consider these
boxes as much important as red ones for themselves. In this way, red robots may take blue
and/or green boxes and may give them to other robots. At the SoS level, it may be seen as
a way for red component-system to help green and/or blue ones when they are more critical.
Thereafter are the details of the model for a red component-system defined as in section 3.1,
Sr = {Fr, Gr, Rr, Lr} with: Rr = {robot, robot.color = ”red”};
RDying = {robot, robot.battery < MaxNe

/3};
Fhelpblue = {Rblue → {robot.rec(blue)← robot.rec(red)}};
Fhelpgreen = {Rgreen → {robot.rec(green)← robot.rec(red)}};
Fcontact = {RDying > Rr/2→ RredTo{Sb, Sg}};
Gr = RDying = 0, Lr = {Sb, Sg}.

6 Experimentation

The three previously presented systems have been implemented using GAMA [10]. GAMA is a
platform to model and simulate large-scale multi-agent systems, easy to use, which integrates
analysis and performance visualization tools. Each system is then assessed in terms of efficiency
and robustness using three metrics representing the state of the system over time: the number
of functional robots, the average energy level of the agents and the number of boxes present in
the environment.

6.1 Description

Simulations for the 3 systems have the same initial conditions: (i) the number of robots is set
to 90 (30 of each color ); (ii) the initial energy level (Ni) is set to 300; (iii) the maximum
energy level (MaxNe

) is set to 300; (iv) the energy consumption per time (conso) is set to 1;
(v) perception and communication scopes of a robot are set to a radius of 3 squares around
its current position; (vi) the number of boxes appearing in the environment is set to 1 every 3
time units and (vii) the initial placement of boxes and robots is the same for all simulations.

Fhelpblue and Fhelpgreen (in system 3) permit to change the perceptions about blue and green
boxes for red robots. As shown in formal definition of Sr, these functionalities can be activated
only when another system (Sb or Sg) will use Fcontact. It happens only when at least the half of
the system robots have their battery under max/3. The resource RDying represents the number



of robots with a low battery. Then the goal Gr represents the fact that each component-system
tries to avoid low battery robot. Finally, to decide if a component-system will help others, it
simply computes its criticality thanks to goal Gr (cf. section 4.1) and uses the algorithm 1 to
take its decision.

6.2 Results and Discussion

In fig.1 the black curves represent the system without cooperation, the light gray color curves
represent the system with cooperation and the dark gray curves represent the SoS according to
SApHESIA. The top-left curves present the mean battery level of robots. The top-right curves
present the number of boxes in the environment. Finally, the bottom curves present the number
of alive robots in the environment. The comparison of the three systems clearly shows that the
exchange of criticality improves the systems efficiency. Indeed, the underlying mechanism of
cooperation with this exchange allows a greater number of agents to survive. Consequently the
cooperative system covers a larger part of the grid thus improving the system’s ability to detect
boxes. In a second time, the use of our cooperation process for SoS enables cooperation at a
higher level as the reification of each group of robots as a component-system permits to improve
global performance (number of boxes, battery level and number of alive robots). These results
legitimate the study of cooperation in SoS and are encouraging concerning the inter-AMAS
cooperation.

Figure 1: Mean battery of robots, Boxes number, Number of alive red robots

7 Conclusion and perspectives

The aim of this paper was to show (i) the contribution of the criticality as a social attitude of
an agent in terms of cooperation and (ii) the contribution of SoS modeling with SApHESIA.



First, criticality permits an agent to choose its action in a cooperative way. Cooperation is
a social attitude of each agent, which leads to a global increase of the system performance
comparing to selfish agents. Then, to study the benefit of SoS in this kind of problems, we
instantiate a new model called SApHESIA and show that performance of the system is better
than the one with simple cooperation. Indeed, SoS approach enables a “macro-cooperation”
between systems and leads to better anticipate and react to problems that may appear in the
environment. Concerning futures works, the proposed architecture will be evaluated in more
problem domains to show its generality. Then, energy and time consumption of communication,
perception and decision making will be taken into account in our simulations to be closer to
the reality in our case studies.

References

[1] P. Acheson, L. Pape, C.H. Dagli, N. Kilicay-Ergin, J. Columbi, and K. Haris. Understanding
system of systems development using an agent- based wave model. Procedia Computer Science,
12:21 – 30, 2012. Complex Adaptive Systems 2012.

[2] S. Agarwal, L.E. Pape, N. Kilicay-Ergin, and C.H. Dagli. Multi-agent Based Architecture for
Acknowledged System of Systems. Procedia Computer Science, 28:1–10, 2014.

[3] C. Azani. An Open Systems Approach to System of Systems Engineering, pages 21–43. John Wiley
and Sons, Inc., 2008.

[4] W.C. Baldwin and B. Sauser. Modeling the characteristics of system of systems. 2009 IEEE
International Conference on System of Systems Engineering (SoSE), 2009.

[5] M. Bjelkemyr, D. Semere, and B. Lindberg. An engineering systems perspective on system of
systems methodology. In Systems Conference, 2007 1st Annual IEEE, pages 1–7, April 2007.

[6] E. Bonabeau. Agent-based modeling: methods and techniques for simulating human systems.
Proceedings of the National Academy of Sciences, 99(suppl. 3):7280–7287, 2002.

[7] T. Bouziat, S. Combettes, V. Camps, and P. Glize. La criticite comme moteur de la cooperation
dans les systemes multi-agents adaptatifs. In Journees Francophones sur les Systemes Multi-Agents
(JFSMA), pages 149–158. Cepadues Editions, 2014.

[8] D.S. Caffall and J.B. Michael. System of Systems Collaborative Formation. Systems Journal,
3(3):385–401, 2009.

[9] V. Camps. Vers une théorie de l’auto-organisation dans les systèmes multi-agents basée sur la
coopération : application à la recherche d’information dans un système d’information répartie.
PhD thesis, Univ. Paul Sabatier, Toulouse, 1998.

[10] A. Drogoul, E. Amouroux, P. Caillou, B. Gaudou, A. Grignard, N. Marilleau, P. Taillandier,
M. Vavasseur, D. A. Vo, and J.D. Zucker. GAMA: multi-level and complex environment for
agent-based models and simulations. In AAMAS, pages 1361–1362, Saint-Paul, MN, USA, 2013.

[11] D. Firesmith. Profiling systems using the defining characteristics of systems of systems (sos). Tech-
nical Report CMU/SEI-2010-TN-001, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2010.

[12] M.-P. Gleizes, V. Camps, J.-P. Georgé, and D. Capera. Engineering Systems which Generate
Emergent Functionalities. In Danny Weyns, Sven Brueckner, and Yves Demazeau, editors, En-
gineering Environment-Mediated Multiagent Systems - Satellite Conference held at The European
Conference on Complex Systems (EEMMAS), Dresden, Germany, 01/10/2007-05/10/2007, num-
ber 5049 in Lecture Notes in Artificial Intelligence (LNAI), http://www.springerlink.com/, juillet
2008.

[13] M. Henshaw, C. Siemieniuch, M. Sinclair, V. Barot, S. Henson, C. Ncube, S. Lim, H. Dogan,
M. Jamshidi, and D. Delaurentis. The Systems of Systems Engineering Strategic Research Agenda
Systems of Systems Engineering. (2), 2013.



[14] M. Jamshidi. System of systems engineering - new challenges for the 21st century. IEEE Aerospace
and Electronic Systems Magazine, 23(5):4–19, May 2008.

[15] S. Lemouzy. Systèmes interactifs auto-adaptatifs par systèmes multi-agents auto-organisateurs :
application à la personnalisation de l’accès à l’information. Thèse de doctorat, Université Paul
Sabatier, Toulouse, France, juillet 2011. (Soutenance le 13/07/2011).

[16] M. Maier. Architecting principles for systems-of-systems. Systems Engineering, 1(4):267–284,
1998.

[17] S. Selberg and M. Austin. Toward an evolutionary system of systems architecture. 18th Annual
International Symposium of the International Council on Systems Engineering, INCOSE 2008,
4(1):2394–2407, 2008.

[18] W.C. Stirling and R.L. Frost. Social utility functions-part ii: applications. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 35(4):533–543, 2005.




