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Random Distortion Testing with Linear Measurements

Dominique Pastor, Francois-Xavier Socheleau
IMT Atlantique, Lab-STICC, UBL, Technopole Brest-Iroise CS83818, Brest 29238,

France

Abstract

This paper addresses the problem of testing whether, after linear transfor-
mations and possible dimensionality reductions, a random matrix of interest
Θ deviates significantly from some matrix model θ0, when Θ is observed
in additive independent Gaussian noise with known covariance matrix. In
contrast to standard likelihood theory, the probability distribution of Θ is
assumed to be unknown. This problem generalizes the Random Distortion
Testing (RDT) problem addressed in a former paper. Although the notions
of size and power can be extended so as to deal with this generalized prob-
lem, no Uniformly Most Powerful (UMP) test exists for it. We can however
exhibit a relevant subclass of tests and prove the existence of an optimal test
within this class, that is, a test with specified size and maximal constant
conditional power. As a consequence, this test is also UMP among invariant
tests. The method fits within a wide range of signal processing scenarios. It
is here specifically applied to sequential detection, subspace detection and
random distortion testing after space-time compressive sensing. It is also
used to extend the GLRT optimality properties for testing a waveform am-
plitude in noise.

Keywords: Hypothesis testing, random distortion testing, Mahalanobis
norm, UMPI, sequential detection, subspace detection, compressive
sensing, GLRT.

1. Introduction

In many applications, a sensor captures a multi-dimensional observation
often modeled as a real random vector Y that depends on some vector of
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interest Θ, possibly multi-dimensional as well. A basic problem is then
to test whether this vector of interest, hereafter called the signal, deviates
significantly from a given deterministic model θ0 or not.

A first and usual approach involves posing this problem as a two-sided
testing problem, where Θ is assumed to be deterministic and satisfy either
the null hypothesis Θ = θ0 or the alternative one Θ 6= θ0. This approach can
however be unsatisfactory in practice [1]. Indeed, such a binary hypothesis
testing problem is an idealization of reality. Actually, Θ can hardly equate
θ0, because θ0 is merely a model and, as such, cannot take into account all
the environmental fluctuations that may intervene, without control and re-
gardless of measurement noise. It follows that Θ should better be modeled as
a random vector that exhibits more or less big deviations with respect to θ0.
In other terms, Θ should better be regarded as a random distorted version of
θ0. In this respect, one may think of casting the problem into the Bayesian
framework, which requires an a priori model for the probability distribution
of Θ. Unfortunately, prior knowledge of the possible distribution of this dis-
tortion is hardly possible in many situations where the uncertainty on the
model is so high that standard likelihood theory, including the Generalized
Likelihood Ratio Test [2], the Rao score test [3, Sec. 3, p. 53] and the Wald
test [4, p. 478, Theorem VIII], can poorly cope with the possible model
mismatches.

Whence the proposition made in [1] to test whether Θ deviates signif-
icantly or not from θ0, the distortion being evaluated via an appropriate
distortion measure. By so proceeding, the null hypothesis concerns only the
small deviations of poor interest, whereas the alternative hypothesis encom-
passes large enough deviations, whose detection raises the user’s interest. In
[1], this problem is called Random Distortion Testing (RDT) and addressed
under the additive and signal-independent Gaussian noise model, according
to which the observation is modeled as:

Y = Θ +X, (1)

where Θ has unknown distribution and is independent of X ∼ N(0,C) with
positive definite covariance matrix C. The measure of distortion is then
evaluated via the Mahalanobis norm [5] induced by C. The problem then
becomes that of testing whether the Mahalanobis norm of Θ − θ0 is below
or above some non-negative real tolerance τ . Because the distribution of Θ
is not assumed to be known, standard likelihood theory does not apply to
RDT. The solution established by [1, Theorem 2] is then a semi-parametric
approach that basically combines the advantages of both parametric and non-
parametric approaches: on the one hand, it guarantees robustness against
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model mismatches and, on the other hand, it provides statistical optimality
similar to Neyman-Pearson’s [6].

It turns out that in many applications, sensors capture time-series of
multi-dimensional observations. In these cases and under the Gaussian noise
assumption, the model is still that of (1), where Y , Θ and X are now
random matrices and independence of the signal and noise is defined by the
independence of the vectorized versions of Θ and X.

The present paper then addresses the problem of testing whether, after
some linear transformations and some possible dimensionality reductions,
the signal of interest Θ deviates significantly from some model θ0 or not
when we are given Y . More precisely, suppose that the random matrix Θ is
N ×M . Let A and B be two matrices that have full rank and suppose that
A is n ×N with n 6 N and that B is m ×M with m 6 M . Our purpose
is then to test whether AΘBT deviates from a known n×m matrix θ0. It
is actually an extension of the RDT problem of [1] and, as such, is hereafter
called RDT with linear measurements (RDT`m). The RDT`m problem is
thus very comprehensive by nature and actually fits within a wide range of
signal processing applications. For instance, A and/or B can be projection
matrices for either subspace detectors or (2D) compressive sensing, DFT ma-
trices (in their composite real-valued forms), beamforming vectors, averaging
matrices, time-varying filters etc. Specific examples will be detailed below.

The solution proposed in this paper to the RDT`m problem is encap-
sulated in our main result, namely Theorem 1. This result establishes the
existence of an optimal agnostic test for RDT`m. By agnostic test, it is
meant a test whose output does not depend whatsoever on the distribution
of Θ. This test is hereafter called RDT`m test.

With respect to the outline above, the rest of the paper is divided in five
sections, completed by several appendices. The next section analyzes the
problem mathematically, which will lead to the introduction of definitions
that extend those of [1] and are used to establish our theoretical results.
These ones are then stated in Section 3. In this section, we begin with The-
orem 1 before giving some corollaries of it. In particular, the optimality
properties stated in Theorem 1 induces the optimality of the RDT`m test
among invariant tests. Section 4 tackles several applications of Theorem 1
in statistical signal processing. First, it is shown that our present results
encompass all those established in [1, 7, 8]. Second, a specific focus is given
to an application of our approach to space-time compressive sensing, where
experimental results illustrate the behavior of the RDT`m test. The gen-
eralized likelihood ratio test (GLRT) for testing a waveform amplitude in
noise is also proved to be a RDT`m test.
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Notation: All the vectors considered below are real and columns ones. The
set of all natural numbers 1, 2, . . . is denoted by N. Given a natural number
d, the vector space of all d-dimensional real vectors is denoted as Rd where,
as usual, R is the set of all real values.

All random vectors and variables encountered below are assumed to be
defined on the same probability space (Ω,B,P). For any natural number d,
the set of all d-dimensional real random vectors defined on (Ω,B) is here-
after denoted by M(Ω,Rd). Given X ∈ M(Ω,Rd) and a Borel set B of Rd,
the event X−1(B) = {ω ∈ Ω : X(ω) ∈ B} is hereafter denoted

[
X ∈ B

]
.

The conditional probability of A ∈ B given
[
X ∈ B

]
(resp.

[
X = x

]
with

x ∈ Rd) is denoted by P
[
A |X ∈ B

]
(resp. P

[
A |X = x

]
). The probability

distribution of X will be denoted as PX so that PX(B) = P
[
X ∈ B

]
for

any Borel set B of Rd. A domain of a random variable U is any measurable
subset D of R such that U ∈ D (a-s), so that P

[
U ∈ D

]
= PU (D) = 1.

Given two natural numbers k and `, we denote the set of all real matrices
with k rows and ` columns by the slight abuse of notation Rk×`. The set
of all real random matrices with k rows and ` columns defined on (Ω,B) is
then denoted by M

(
Ω,Rk×`

)
. The superscript T denotes transposition. The

Kronecker product is denoted by ⊗. The vectorization of a given matrix
A , which converts A into a column vector, is denoted by vec(A ). The
dimension of vec(A ) will not be specified because it will be clear from the
context. The inverse of the vectorization from Rk×` to Rk` will be denoted
vec−1.

Let C stand for some positive definite d × d covariance matrix. The
Mahalanobis norm νC : Rd → [0,∞) defined in Rd with respect to C is her-
after called the C-Mahalanobis norm. To any y ∈ Rd, it assigns the positive
real number νC (y) =

√
yTC−1y. The Euclidean norm in Rd is, as usual,

denoted by ‖ • ‖2 and assigns to any y ∈ Rd the non negative real number

‖y‖ =
√∑d

n=1 y
2
n with y = (y1, y2, . . . , yd)

T. In other words, ‖ • ‖2 is the
Id-Mahalanobis norm, where Id henceforth denotes the d×d identity matrix.

Given d ∈ N, a d – dimensional test is defined as a (measurable) map
of Rd into {0, 1}. Similarly, for n,m ∈ N, a n × m – dimensional test
is defined as a (measurable) map of Rn×m into {0, 1}. The generalized
Marcum function Qd/2 is defined for any pair (ρ, η) ∈ [0,∞) × [0,∞) by
Qd/2(ρ, η) = 1 − Fχ2

d(ρ2)(η
2), where Fχ2

d(ρ2) is the cumulative distribution
function of the non-central χ2 distribution χ2

d(ρ
2) with d degrees of freedom

and non-central parameter ρ2. Given γ ∈ (0, 1) and ρ > 0, λd(ρ, γ) > 0
denotes the unique solution in η to Qd/2(ρ, η) = γ.

Finally, the indicator function of a subset A is denoted as 1A and ◦
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designates, as usual, the composition operator.

2. Problem statement

Let Y , Θ, X be three elements of M
(
Ω,RN×M

)
where Θ and X are in-

dependent in the sense that vec(Θ) and vec(X) are independent. Through-
out the rest of this paper, Θ and X denote the signal and independent
noise, respectively. To lighten the text, notation and formulas, this usual
assumption of independence between Θ and X will not be systematically
recalled in the sequel. As mentioned above, Θ is the (multi-dimensional)
signal of interest with unknown distribution, X is the noise matrix satisfy-
ing vec(X) ∼ N(0,Σ), with known NM ×NM positive definite covariance
matrix Σ. We then consider the additive-noise model, where the observation
matrix is Y = Θ +X.

To model possible linear transforms and dimensionality reductions, we
consider two matricesA ∈ Rn×N andB ∈ Rm×M where n 6 N andm 6M .
We assume that A and B have full rank for technical reasons that will be
made clear later on. As specified in the introduction, our purpose is then to
test whetherAΘBT deviates from a known θ0 ∈ Rn×m by using an agnostic
test satisfying a suitable optimality criterion.

To design our test, we need a measure of deviation between AΘBT and
θ0 that can be tested optimally and agnostically. Since norms are standard
means to measure deviations between two vectors, it is thus natural to look
for a suitable norm, hereafter denoted as ν : Rn×m → [0,∞), that meets the
requirements of our test. We thus want to test the null hypothesis H0(Θ)
that ν(AΘBT − θ0) is lesser than some specified value τ ∈ [0,∞) against
the alternative hypothesis H1(Θ) that ν(AΘBT − θ0) is larger than τ .
Formally, the RDT`m problem can therefore be summarized as follows:

[RDT`m] :


Observation:Y = Θ +X


Θ,X ∈M(Ω,RN×M ),
vec(X) ∼ N(0,Σ),
Θ and X independent,

H0(Θ) : ν(AΘBT − θ0) 6 τ,
H1(Θ) : ν(AΘBT − θ0) > τ.

(2)

This problem does not concern a parameterized family of distribu-
tions for the observation, but the huge class of all the random matrices
Θ ∈ M(Ω,RN×M ) with unknown distribution, whereas usual approaches
in statistical signal processing generally assume deterministic unknown pa-
rameters or suppose that random parameters to test have known prior. In
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this respect, the null and alternative hypotheses are then actual probabilis-
tic events, in contrast to standard theory in statistical inference. Basically,
testing H0(Θ) against H1(Θ) when the observation is Y , means that we
want to decide whether ν(AΘ(ω)BT − θ0) 6 τ or not when we are given
Y (ω)= Θ(ω) +X(ω) with ω ∈ Ω.

The issue is then to exhibit a test T∗ : RN×M → {0, 1}, optimal with
respect to a certain criterion to be defined, to test H0(Θ) against H1(Θ).
In the sequel, we put:{

P
[
H0(Θ)

] def
= P

[
ν(AΘBT − θ0) 6 τ

]
P
[
H1(Θ)

] def
= P

[
ν(AΘBT − θ0) > τ

]
Similarly, given F ∈ B, let us write:{

P
[
F
∣∣H0(Θ)

] def
= P

[
F
∣∣ ν(AΘBT − θ0) 6 τ

]
P
[
F
∣∣H1(Θ)

] def
= P

[
F
∣∣ ν(AΘBT − θ0) > τ

]
To tackle the RDT`m problem, we can easily transpose standard terminol-
ogy in statistical inference by:

(i) Defining the [RDT`m]-size of a test T : RN×M → {0, 1} as:

α
[RDT`m]
T = sup

Θ∈M(Ω,RN×M ):P
[
H0(Θ)

]
6=0

P
[
T(Y ) = 1

∣∣H0(Θ)
]

(3)

and saying that T has level γ if αT 6 γ.

(ii) Defining the [RDT`m]-power of T as the map that assigns, to every
Θ ∈M

(
Ω,RN×M

)
with P

[
H1(Θ)

]
6= 0, the value:

β
[RDT`m]
T (Θ) = P

[
T(Y ) = 1

∣∣H1(Θ)
]
. (4)

In a detection context, that is, if τ = 0, α[RDT`m]
T is the probability of false

alarm and β[RDT`m]
T (Θ) the probability of detection when the signal is Θ.

(iii) Seeking a test TUMP that would be Uniformly Most Powerful (UMP)
with level γ in the sense that αT∗ 6 γ and, given Θ ∈ M

(
Ω,RN×M

)
such

that P
[
H1(Θ)

]
6= 0

β
[RDT`m]
TUMP (Θ) > β

[RDT`m]
T (Θ) (5)

for any other test T with level γ.

Unfortunately, as shown in Appendix A, no such UMP test exists for
the RDT`m problem. We thus propose to restrict attention to the class of
[RDT`m]-coherent tests defined as follows.
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Definition 1. An N ×M -dimensional test T : RN×M → {0, 1} is said to be
[RDT`m]-coherent if:

[RDT`m-invariance] For any y and y′ in RN×M such that AyBT =
Ay′BT, T(y) = T(y′);

[RDT`m-constant conditional power]: Given Θ ∈ M
(
Ω,RN×M

)
indepen-

dent of X ∼ N(0,Σ), there exists a domain D of ν(AΘBT−θ0) such that,
for every ρ ∈ D ∩ (τ,∞):

P
[
T(Y ) = 1

∣∣ ν(AΘBT − θ0) = ρ
]
is independent of Pν(AΘBT−θ0). (6)

The class of all [RDT`m]-coherent tests with level γ is henceforth de-
noted by C[RDT`m]

γ .

[RDT`m-constant conditional power] can also be defined by writing that,
for any given Θ ∈M

(
Ω,RN×M

)
independent ofX ∼ N(0,Σ), T satisfies (6)

for Pν(AΘBT−θ0)– almost every ρ > τ , which avoids stipulating any domain
D. For readiness sake, this compact terminology will be avoided in the main
core of the paper.

Basically, Definition 1 is a formalization of the rationale that a test for
the RDT`m problem (2) must return the same result in the well-identified
situations specified by [RDT`m-invariance] and [RDT`m-constant condi-
tional power]. In this respect, the relevance of C[RDT`m]

γ for RDT`m can be
emphasized as follows.

1) [RDT`m-invariance] basically takes into account that the initial obser-
vation Y is transformed into AY BT, so that the test should not but return
the same value for any y and y′ in RN×M such that AyBT = Ay′BT.

2) Regarding [RDT`m-constant conditional power], consider ρ ∈ D ∩
(τ,∞) and ω ∈ Ω such that ν(AΘ(ω)BT − θ0) = ρ. Because of the ran-
domness of the signal and noise, no test T is guaranteed to take the correct
decision to rejectH0(Θ). We can however seek tests for which the conditional
P
[
T(Y ) = 1

∣∣ ν(AΘBT − θ0) = ρ
]
is independent of Θ. This conditional

basically plays the role of the power handled in standard statistical inference.
To better grasp the meaning of this notion of constant conditional power for
RDT`m, consider the particular case where PΘ = pδθ + (1− p)δθ′ with p ∈
[0, 1] and where δθ and δθ′ are the respective Dirac measures on two elements
θ 6= θ′ of RN×M such that ν(AθBT − θ0) = ρ and ν(Aθ′BT − θ0) 6= ρ.
We then have P

[
T(Y ) = 1

∣∣ ν(AΘBT − θ0) = ρ
]

= P
[
T(Y ) = 1

]
. If T

has constant conditional power given ν(AΘBT − θ0) = ρ, it guarantees a
constant value P

[
T(Y ) = 1

]
whenever Y = θ, which is rather natural.

The set C[RDT`m]
γ can be partially ordered as follows. Given two elements
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T and T′ of C[RDT`m]
γ , set T

[RDT`m]
� T′ if, given any Θ ∈M(Ω,RN×M ):

(i) The two tests T and T′ satisfy [RDT`m-constant conditional power],
which means the existence of a domain D of ν(AΘBT − θ0) such that, for
every ρ ∈ D ∩ (τ,∞), (6) holds true on D for both T and T′;

(ii) For any given ρ ∈ D ∩ (τ,∞),

P
[
T(Y ) = 1

∣∣ ν(AΘBT − θ0) = ρ
]

6 P
[
T′(Y ) = 1

∣∣ ν(AΘBT − θ0) = ρ
]
.

The question is then whether we can always exhibit and calculate a max-
imal element T∗ in C[RDT`m]

γ . If such a maximal element T∗ ∈ C[RDT`m]
γ

exists, we call it an optimal [RDT`m]-coherent test and it must satisfy:

[Maximality] : For any Θ ∈M
(
Ω,RN×M

)
and any T ∈ C[RDT`m]

γ ,

T
[RDT`m]
� T∗.

At this stage, we do not know whether such an optimal [RDT`m]-
coherent test actually exists for any given norm ν. We can however exhibit
a norm ν for which the existence and a close form of this optimal test can
be given. This is our main theoretical result stated in the next section.

3. Theoretical results

This section begins by stating the main theoretical result of this paper.
After some comments on this result, we provide a series of applications of it.

3.1. The existence of an optimal [RDT`m]-coherent test

Theorem 1. Let ν : Rn×m → [0,∞) be the norm on Rn×m defined for
each z ∈ Rn×m by setting ν(z) = νC(vec(z)) =

√
vec(z)TC−1vec(z), with

C = (B ⊗A ) Σ (B ⊗A )T. Given γ ∈ (0, 1) and τ > 0, the test T∗ defined
for each y ∈ RN×M by:

T∗(y) =

{
1 if ν(AyBT − θ0) > λnm(τ, γ)
0 otherwise (7)

where λnm(τ, γ) is the unique solution in η to Qnm/2(τ, η) = γ, is an optimal
[RDT`m]-coherent test with size γ and, for any ρ ∈ (0,∞):

P
[
T∗(Y ) = 1

∣∣ ν(AΘBT − θ0) = ρ
]

= Qnm/2(ρ, λnm(τ, γ)). (8)
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Proof. See Appendix B.

The sufficiency specified by Definition 1 restricts our attention to a sub-
class of tests that act after transformation of the initial observation. The
theorem above tells us that, although this restriction entails an unavoid-
able information loss, some optimality formulated in the initial observation
domain can anyway be guaranteed.

Now, to better understand the decision-making performed by the
RDT`m test T∗ and its use of the Mahalanobis norm, note that

T∗(y) = Tλnm(τ,γ)

(
vec(AyBT)

)
(9)

for any y ∈ RN×M , where Tλnm(τ,γ) is defined for every z ∈ Rnm by:

Tλnm(τ,γ)(z) =

{
1 if νC(z − vec(θ0)) > λnm(τ, γ)
0 otherwise. (10)

Eq. (9) shows that the decision is carried out in 3 steps: first, the observation
is transformed; second, the outcome of the transformation is vectorized;
third, the outcome of the vectorization is the statistics used to take the
decision via Tλnm(τ,γ), which is based on the C-Mahalanobis norm. It can
then be easily guessed that the properties of Tλnm(τ,γ) stated by [1, Theorem
2] and resulting from those of the C-Mahalanobis norm will play a crucial
role in establishing the optimality of T∗.

It is also worth noticing that there exists a form without “vectorization”
for T∗. This point is discussed in Appendix C and concerns the particular
case where X1,X2, . . . ,XM

iid∼ N(0,K) with positive definite covariance
matrix K ∈ RN×N .

3.2. Power and unbiasedness
Let Θ be any element of M

(
Ω,RN×M

)
such that P

[
H1(Θ)

]
6= 0. It

follows from (B.10) , (B.13) and (B.16) of Appendix B that P
[
νC(Θ̃ −

vec(θ0)) > τ
]
6= 0 and:

β
[RDT`m]
T∗ (Θ) = P

[
T∗(Y ) = 1

∣∣H1(Θ)
]

= P
[
Tλnm(τ,γ)

(
Θ̃ + X̃

)
= 1

∣∣ νC(Θ̃− vec(θ0)) > τ
]

where Θ̃ = vec(AΘBT) and X̃ = vec(AXBT). It then follows from [1,
Theorem 2 (ii)] that:

β
[RDT`m]
T∗ (Θ) > Qnm/2(τ+, λnm(τ, γ)), (11)
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where τ+ ∈ [τ,∞) is the supremum of the set of all those real values t > τ
such that P

[
τ < ν(AΘBT − θ0) 6 t

]
= 0:

τ+ = sup
{
t > τ : P

[
τ < ν(AΘBT − θ0) 6 t

]
= 0
}
. (12)

According to (11), T∗ is also unbiased for RDT`m in that β[RDT`m]
T∗ (Θ) > γ.

3.3. Invariance under group action and optimality
When no UMP test exists, it is common to restrict the attention to tests

invariant to sets of transformations for which the problem is itself invariant
[9, 10, 11]. The purpose is then to find a UMP test among this class of tests.
In the problem under consideration, the notion of [RDT`m]-coherence is
more immediate and natural than the notion of invariance. Since invariance
is quite standard in the literature, and also for the sake of completeness,
a group that leaves the problem invariant is nevertheless presented in this
section. T∗ is also shown to be UMP invariant with respect to this group.

There exists a group G whose orbits are the surfaces:

Γρ = {y ∈ RN×M : ν(AyBT − θ0) = ρ}, ρ ≥ 0. (13)

This group can be calculated by looking for transformations g such that, for
all y ∈ RN×M :

ν(A g(y)BT − θ0) = ν(AyBT − θ0), (14)

or equivalently:

‖Q vec(A g(y)BT − θ0)‖2 = ‖Q vec(AyBT − θ0)‖2,

where Q = ∆−1/2UT, ∆ = diag(ξ1, . . . , ξnm) is the diagonal matrix
whose diagonal elements ξ1, . . . , ξnm are the eigenvalues of C, ∆ =

diag(ξ−1/2, . . . , ξ
−1/2
nm ) and U∈ O(nm) is such that C = U∆UT is the eigen-

vector decomposition of C. We thus have: QTQ = C−1.
Since the ‖•‖2-norm is invariant under unitary transforms, some routine

algebra then leads to choose G as the set of transforms gR defined for every
y ∈ RN×M by:

gR(y) =

vec−1
((
H+−Q−1RQ

)
vec(θ)+

(
Q−1RQH+IMN−H+H

)
vec(y)

) (15)

where H = B ⊗ A , R ∈ O(nm) and H+ = ΣHT(HΣHT)−1 is a right
pseudo-inverse ofH in thatHH+ = Inm. It then turns out that for anyR ∈
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O(nm), (i) H0(gR(Θ)) = H0(Θ) and H1(gR(Θ)) = H1(Θ); (ii) gR(Y ) =
gR(Θ) +X ′ where X ′ satisfies vec(X ′) ∼ N(0,Σ). In the sense specified by
(i) and (ii), the RDT`m problem (2) is invariant under the action of G.

Definition 2.
(i) T is said to be G-invariant if T(g(y)) = T(y) for any g ∈ G and any
y ∈ RN×M .
(ii) T is said to be G-UMPI with level (resp. size) γ ∈ (0, 1) if T ∈ Cγ (resp.
αT = γ) and

βT(Θ) > βT′(Θ)

for any G-invariant test T′ ∈ Cγ.

Theorem 2. Everything being as above, T∗ is G-UMPI with size γ.

Proof. See Appendix D.

4. Applications

We begin by noticing that [1, Theorem 2], basically derives from Theorem
1 for n = N = d, m = M = 1, A = IN and B = 1. Now, we can address
several applications of the theoretical results established in the section above.
Some of these applications extend standard results and others open new
theoretical and practical prospects.

4.1. Optimality of GLRT for testing the amplitude level of a waveform in
noise

In binary hypothesis testing, the probability density functions (PDFs)
under the null and alternative hypothesis can be incompletely specified.
This often happens in practice. In such cases, likelihood ratio tests such
as Neyman-Pearson’s do not apply. The Generalized Likelihood Ratio Test
(GLRT) is then an alternative to such tests. It accommodates the unknown
parameters of the PDFs by simply replacing these ones by their maximum
likelihood estimates. Basically, the GLRT is not constructed so as to satisfy
some optimality criterion. However, it often performs well, even in compar-
ison to clairvoyant detectors [12, Chapter 6, Section 6.4.2], [13, 14].

Suppose that Y = Θ + X where, as above, Θ ∈ M(Ω,Rd) and X ∼
N(0, Id). In addition, we assume that Θ = ξs where the steering vector
s is known and such that ‖s‖2 = 1, whereas the amplitude level ξ ∈ R is
unknown.
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Consider the composite hypothesis testing problem:
Observation:Y = ξs+X


Θ = ξs,

X ∼ N(0, Id),
Θ and X independent,

Null hyp. (h0): ξ = 0,

Alternative hyp. (h1): ξ 6= 0.

(16)

For this testing problem, which can serve to pose the problem of detecting a
radar target in noise, the GLRT test with size γ is hereafter denoted by ΛG
and is given by [12, Example 7.4.1, p. 255]:

ΛG(Y ) =

{
1 if |sTY | > η

0 otherwise
(17)

where η is the unique solution in t to the equation:

P
[
|W | > η

]
= γ with W ∼ N(0, 1). (18)

The testing problem (16) turns out to be the particular RDT`m problem
(2) with N = d, M = m = n = 1, A = sT, B = 1, Σ = C = Id, θ0 = 0,
νC (•) = | • | and τ = 0. Thereby, the assumption that ξ is deterministic
unknown is even useless in (16). The RDT`m test T∗ of Theorem 1 applied
to Y is then given by

T∗(Y ) = Tλ1(0,γ)

(
|sTY |

)
=

{
1 if |sTY | > λ1(0, γ)

0 otherwise
(19)

Since λ1(0, γ) is the unique solution in η to the equation Q1/2(0, η) = γ
and Q1/2(0, η) = P

[
|W | > η

]
with W ∼ N(0, 1) again, we conclude that

the GLRT test (17) is exactly the RDT`m test (19). All the optimality
properties of the RDT`m test stated in Section 3 thus transfer to the GLRT
test. This finding extends [10] and may open new prospects in connection
with GLRT theory, as enhanced in the conclusion of the present paper.

4.2. Detection of a change in the empirical mean of a process
Change detection is of great importance in many applications such as

quality control, monitoring, tracking, fault detection or statistical process
control [15, 16, 17].

Let (Y )n∈N be a real N -dimensional discrete random process that we
assume to be stationary in mean, in the sense that there exists θ ∈ Rd such
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that E [Yn] = θ for each n ∈ N. The change-in-mean detection problem
is standardly posed [16] [17] as the binary hypothesis testing problem with
null hypothesis H0 : θ = θ0 and alternative hypothesis H1 : θ = θ1 where
θ0 6= θ1 are two known elements of RN . In practice, it seems unrealistic to
assume prior knowledge on the process distribution, especially if the alterna-
tive hypothesis is aimed at modeling the behavior of the process when this
one is out of control. Therefore, prior knowledge of θ1 is questionable and
composite testing with alternative hypothesis θ 6= θ0 is certainly preferable.
In addition, assuming iid observations for the observed process, either under
H0 or H1, is not acceptable in many statistical signal processing applica-
tions. Thence the following approach, which is an extension of [8] to the
change-in-mean detection problem.

As the Shewhart chart [15][16, Sec. 2.2.1][17], we split the obser-
vation process into blocks of M samples each. Given the M samples
Y(k−1)M+1, . . . ,YkM of the process in the kth block, we form the random
matrix Y = (Y(k−1)M+1, . . . ,YkM ) ∈ M

(
Ω,RN×M

)
. We then assume that

Y = Θ + X, where Θ and X are independent elements of M
(
Ω,RN×M

)
with X ∼ N(0,Σ). As above, Σ is assumed to be positive definite. In-
stead of testing H0 against H1 in each successive block until H0 is rejected,
we propound to test whether the empirical mean of Θ in each successive
block deviates significantly from the nominal model θ0 or not, until a block
exhibits a significantly big drift between the empirical mean of Θ and θ0.

In such a formulation, Θ is a signal fluctuating around θ0. It is possi-
bly non-stationary and its probability distribution is unknown, especially in
case the process is out of control. Denoting the empirical mean of a given
finite sequence x1, x2, . . . , xM of N -dimensional real vectors by 〈x〉M so that
〈x〉M = (1/M)

∑M
m=1 xm, the rationale is then that 〈Θ〉M should not sig-

nificantly deviate from θ0 in the nominal situation. Therefore, following [8],
the change-in-mean detection problem can be posed as the problem of test-
ing whether νC (〈Θ〉M − θ0) is below or above tolerance τ ∈ [0,∞), when
we observe Y . The choice of the Mahalanobis norm is motivated by the
same reasons as above and the role of τ is to make the distinction between
small and large deviations. The testing problem resulting from the foregoing
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analysis is then summarized by:
Observation:Y = Θ +X


Θ ∈M(Ω,RN×M ),
vec(X) ∼ N(0,Σ),
Θ and X independent,

Null hyp. (H0(Θ)): νC (〈Θ〉M − θ0) 6 τ,

Alternative hyp. (H1(Θ)): νC (〈Θ〉M − θ0) > τ.

This problem is a particular case of (2) with n = N , A = IN , m = 1 and
B = 1

M (1, . . . , 1)︸ ︷︷ ︸
M terms

. In this case,

vec
(
AY BT

)
= 〈Y 〉M and vec(θ0) = θ0.

Therefore, the RDT`m test provided by Theorem 1 and applied to Y is
T∗(Y ) = TλN (τ,γ) (〈Y 〉M ) . The results given in [8] concern the particular
case where Σ = IM ⊗K and K is positive definite, so that Appendix C
directly applies. Note that this result can be extended to the problem of
mean-change detection after compression by choosing an arbitrary n × N ,
n < N , matrix A .

4.3. Subspace detection
Since the seminal work of Scharf and Friedlander [9], subspace detectors

have been widely used in various applications such as radar [18], functional
MRI [19], passive acoustic monitoring [20], hyperspectral target detection
[21] and many more.

Let Y ,Θ,X be three elements of M
(
Ω,RN×1

)
such that Y = Θ +

X ∈ M
(
Ω,RN×1

)
where Θ has unknown distribution, X ∼ N(0,Σ) is

independent with Θ and Σ is positive definite. We endow RN with the
Mahalanobis norm νΣ(•) associated with Σ so that (RN , νΣ(•)) is an Hilbert
space. Let Ψ denote an N × n matrix that spans a rank-n subspace with
n 6 N . The projection matrix associated with Ψ in the Hilbert space
(RN , νΣ(•)) is

PΨ = Ψ
(
ΨTΣ−1Ψ

)−1
ΨTΣ−1.

Given a tolerance τ > 0, we address the problem of testing whether
νΣ(PΨΘ(ω)) > τ or not, when we are given Y (ω) for some ω ∈ Ω and
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when the probability distribution of Θ is unknown. The problem is summa-
rized as follows:

Observation:Y =Θ+X


Θ∈M

(
Ω,RN×1

)
,

X∼N(0,Σ),
Θ and X independent

Null hyp. (H0(Θ)): νΣ(PΨΘ) 6 τ,

Alternative hyp. (H1(Θ)): νΣ(PΨΘ) > τ.

(20)

This problem actually extends the one considered in [7], which is the particu-
lar case of (20) when Σ = σ2IN . As such, Problem (20) is not formulated as
a particular case of (2) because the Mahalanobis norm in (20) is computed
with respect to Σ and not with respect to the noise covariance matrix after
projection. However, by applying simple transforms, we show that (20) is
actually a particular case of (2). More specifically, we have the following
results.

Since ΨTΣ−1Ψ ∈ M (Ω,Rn×n) is symmetric and positive definite, this
matrix can be written in the form

ΨTΣ−1Ψ = U∆UT, (21)

where U belongs to the orthogonal group of Rn and ∆ is diagonal with ele-
ments equal to the eigenvalues of ΨTΣ−1Ψ. Define, UΨ = Σ−1ΨU∆−1/2.
For all x ∈ RN , the following relation is satisfied

νΣ(PΨx) =

√
(PΨx)T Σ−1PΨx

=
√
xTΣ−1ΨU∆−1/2∆−1/2UTΨTΣ−1x

= ‖∆−1/2UTΨTΣ−1x‖2
= ‖UT

Ψx‖2.

(22)

It then turns out that X̃ = UT
ΨX ∼ N(0, IN ). The testing problem (20) can

thus be reformulated in the form:
Observation:Y =Θ+X


Θ∈M

(
Ω,RN×1

)
,

X∼N(0,Σ),
Θ and X independent

Null hyp. (H0(Θ)): ‖UT
ΨΘ‖2 6 τ,

Alternative hyp. (H1(Θ)): ‖UT
ΨΘ‖2 > τ.

(23)
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We see that the testing problem (23) is equivalent to (2) with θ0 = 0,
m = M = 1, A = UT

Ψ, B = 1 and C = UT
ΨΣUΨ. Since UT

ΨΣUΨ = In,
it follows that νC

(
UT

ΨY
)

= νΣ(PΨY ). Therefore, the optimal test advised
by Theorem 1 and applied to Y is

T∗(Y ) = TλN (τ,γ)

(
UT

ΨY
)
.

We retrieve [7, Eq. (3)] when Σ = σ2IN . The results given above thus
generalize [9].

4.4. Space-time compressive sensing
We here consider a compressive sensing based array processing scenario

where Y contains time series of multiple sensors. In this case, A and B
can represent time and space compressed measurement matrices, respec-
tively [22]. Such matrices are usually random and contain sub-Gaussian
i.i.d. entries [23]. If one wants to apply a random distortion test directly in
the compressed domain (without recovering the original signal), two natural
questions to ask are: how to set the tolerance in the compressed domain if
a given tolerance is specified in the original domain and what is the perfor-
mance loss induced by running the test after compression instead of running
it without compression? More formally, the original problem of interest is
expressed as

Observation:Y = Θ +Xwith


Θ ∈M(Ω,RN×M ),
vec(X) ∼ N(0,Σ),
Θ and X independent,

Null hyp. (H0(Θ)): νΣ
(
vec(Θ− θNC

0 )
)
6 τ1,

Alternative hyp. (H1(Θ)): νΣ
(
vec(Θ− θNC

0 )
)
> τ1,

(24)

and after compressive measurements it becomes
Observation:Z = AY BT

Null hyp. (H0(Θ)): ν(AΘBT − θ0) 6 τ2,

Alternative hyp. (H1(Θ)): ν(AΘBT − θ0) > τ2

(25)

where θ0 = AθNC
0 BT .

For a specified size γ and based on the results of Sec. 3, the optimal
decision for problem (24) is

T∗1(Y ) =

{
1 if νΣ

(
vec(Y − θNC

0 )
)
> λNM (τ1, γ)

0 otherwise (26)
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and for problem (25)

T∗2(Y ) =

{
1 if νC

(
vec(Z − θNC

0 )
)
> λnm(τ2, γ)

0 otherwise. (27)

Given that the tolerance τ1 is fixed and known, how do we choose a reason-
able value for τ2 and what is the performance loss induced by compression?

To simplify the analysis, we assume that the measurement matrices are
random orthoprojectors, i.e., AA T = In and BBT = Im, and consider a
diagonal noise covariance matrix Σ = INM . The norm in both tests (26) and
(27) then becomes the `2-norm. The choice of τ2 can be made by assuming
that ‖vec(Z − θ0)‖2 concentrates around

√
nm
NM ‖vec(Y − θNC

0 )‖2. In fact,
for ε ∈ (0, 1) and c > 0, the following relation is satisfied [24, 25]

√
1− ε‖vec(Θ− θNC

0 )‖2 ≤
√
NM

nm
‖vec(AΘBT − θ0)‖2

≤
√

1 + ε‖vec(Θ− θNC
0 )‖2,

(28)

with probability 1 − 2e−cnmε
2 . Based on (28), a reasonable tolerance for

problem (25) is therefore τ2 =
√

nm
NM τ1. The loss of performance due to

compression cannot be assessed exactly as it depends on the distribution of
the distortion around θNC

0 , which is unknown. However, based on (28), a
rough analysis can be conducted. From Sec. 3, the conditional power of T∗1
and T∗2 can be derived, that is

P
[
T∗1(Y ) = 1

∣∣ ∥∥vec
(
Θ− θNC

0

)∥∥
2

= τ ′1 > τ1

]
= QNM/2(τ ′1, λNM (τ1, γ))

(29)
and

P
[
T∗2(Z) = 1

∣∣ ‖vec(AΘBT − θ0)‖2 = τ ′2 > τ2

]
= Qnm/2(τ ′2, λnm(τ2, γ)).

(30)
The actual conditional power of interest useful to quantify the price of com-
pression is P

[
T∗2(Z) = 1|

∥∥vec
(
Θ− θNC

0

)∥∥
2

= τ ′1 > τ1

]
, i.e., the probability

of making the right decision in the compressed domain given that the distor-
tion in the original domain is greater than the tolerance τ1. Based on (28)
and (30), and following the same approach as in [25, Eq. (20)], the following
approximation is obtained

P
[
T∗2(Z) = 1

∣∣ ‖vec
(
Θ− θNC

0

)
‖2 = τ ′1 > τ1

]
≈ Qnm/2

(√
nm

NM
τ ′1, λnm(τ2, γ)

)
.

(31)
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Figure 1: ROC curves, DNR=-5dB, NM = 600, τ1 = τ ′1/4, τ2 =
√

nm
NM

τ1.

Figure 2: Conditional power as a function of DNR, γ = 0.05, NM = 600, nm = 150,
τ2 =

√
nm
NM

τ1.

Setting the same size γ for both tests, the performance loss is then the
difference between (29) and (31). Note that in practice, depending on the
given instance of matrices A and B, the actual performance may slightly
deviate from (31). However, numerical simulations (not shown here) have
confirmed that the expected performance curves with respect to random
draws of A and B match with (31).

Figures 1 and 2 illustrate the impact on the performance of the various
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parameters involved in problem (24) and (25). For both figures, the condi-
tional power displayed is the one predicted by (31). The distortion-to-noise
ratio (DNR) is defined as

DNR =
τ ′21

E
[
‖vec (X)‖22

] =
τ ′21

NM
. (32)

Note that when θNC
0 = 0, the DNR is homogeneous to a signal-to-noise ratio.

Fig. 1 shows the receiver operating characteristic (ROC) curve of T∗2 for
several compression ratio. As expected, increasing nm improves the perfor-
mance. However, for compression ratio smaller than 2 (i.e., NM/nm < 2),
the improvement becomes rather marginal.

The impact of the DNR on (31) is shown in Fig. 2 for several values of
tolerance τ1. The choice of τ1 is based on prior knowledge of the problem
and a large value for τ1 is sometimes desirable. This is the case for instance
when we want to detect a random signal in noise with the possible presence
of interference whose norm is bounded with a high probability. τ1 is therefore
useful to avoid recurrent triggering of false alarms when this interference is
present. Consequently, increasing τ1, when τ ′1 remains constant, makes the
detector become more conservative, which yields a decrease in probability of
correct detection as illustrated in Fig. 2.

5. Conclusions

On the basis of noisy observations, we have proposed a random distortion
testing approach to decide whether a multi-dimensional signal of interest de-
viates significantly from some known model after some linear transformations
and possible dimensionality reductions. As in [1], this problem does not con-
cern a parameterized family of distributions for the observation, but the huge
class of all the random matrices modeled by (1). In addition, the test bears
on a random matrix with unknown distribution, whereas usual approaches
in statistical signal processing generally assume deterministic unknown pa-
rameters or suppose that the random parameters to test have known prior.
The proposed test, named RDT`m, generalizes the results presented in [1]
and relies on the computation of Mahalanobis norm of the difference between
the linearly transformed and compressed observation and the known model.
The RDT`m test is shown to satisfy optimal properties such as maximal
constant conditional power and it is also uniformly most powerful among
invariant tests. The framework described in this paper is very general and
can be applied to a vast range of applications where decisions must be made
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after linear transformations and/or compression of the observation. A few
examples have been presented to illustrate the possible scope of the method.

Some findings presented in this paper open new prospects in connection
with other decision theories. To begin with, the present paper embraces
two different GLRT problems and tests. Indeed, in addition to Section 4.1,
Section 4.3 establishes that the GLRT test for matched subspace detection
[9] is a RDT`m test and, as such, satisfies the optimality properties of the
latter. It can then be wondered whether such links between RDT`m and
GLRT tests are merely coincidental or more fundamental. In this respect,
algebraic properties encountered in this paper and [1] are certainly crucial.
Such algebraic mechanisms may also deserve attention for the crucial role
they have played above to transfer optimality from one representation do-
main to another. It should be profitable to better understand such mech-
anisms so as to generalize them for multiple transfer of optimality, from
one single representation domain to possibly a sheaf of different represen-
tation domains. Finally, the RDT`m approach should also be relevant in
machine learning for the following reasons. As many approaches in statis-
tical inference, RDT`m tests can be regarded as means to decide whether
observations after transformations are similar enough to models describing
our prior knowledge. One main feature of the RDT`m approach is to allow
for unknown observation distributions, which should therefore be beneficial
to address novelty, outlier, anomaly and change-point detection issues in
various machine learning approaches [26].

Appendix A.

With the notation introduced in Section 2, let us prove that there exists
no UMP test T∗, that is, a test satisfying (5) in (iii). To this end, consider
the specific case where Θ takes two values θ0 and θ1 in RN×M only, such
that ν(θ0−θ0)6τ and ν(θ1−θ0)>τ . In this case, the hypothesis ν(AΘBT−
θ0)6τ is equivalent to the hypothesis h0 : vec(Y ) ∼ N(vec(θ0),Σ) and the
alternative ν(AΘBT−θ0)>τ is equivalent to the hypothesis h1 : vec(Y ) ∼
N(vec(θ1),Σ). If a UMP test TUMP existed, then its size — in the usual
sense [27] — for testing h0 against h1 would be less than or equal to γ.
This follows from the expression of αTUMP deriving from (3). In addition,
under h1, β

[RDT`m]
T (Θ) = P

[
T ◦ vec−1 (vec(θ1) + vec(X)) = 1

]
for any

N × M - dimensional test. Therefore, the TUMP would verify P
[
TUMP ◦

vec−1 (vec(θ1) + vec(X)) = 1
]
> P

[
T ◦ vec−1 (vec(θ1) + vec(X)) = 1

]
. In

other words, TUMP◦vec−1 would have power better — in the usual sense [27],
again — than that of any other test. Therefore, this test should necessarily
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equate the Neyman-Pearson test, which is known to exist for testing h0

against h1. But this should hold for any pair (θ0,θ1) of elements of RN×M ,
which is impossible since the Neyman-Pearson test is different in each case.

Appendix B. Proof of Theorem 1

Our proof requires a series of elementary results. In this respect, we
begin with the following two nested lemmas.

Lemma 1. The linear map x ∈ RN×M → AxBT ∈ Rn×m is surjective.

Proof. Let y ∈ Rn×m. A has full rank. Therefore AAT is invertible. Set
z = AT

(
AAT

)−1
y. Since z ∈ RN×m, v = zT ∈ Rm×N . Denote by vi

with i ∈ J1, NK, the N columns of v. Each vi is an element of Rm and
v = (v1,v2, . . . ,vN ). Since B has full rank then, for each i ∈ J1, NK, there is
at least one ui ∈ RM such that Bui = vi. Set now x = (u1,u2, . . . ,uN )T.
We have:

BxT = B(u1,u2, . . . ,uN )
= (Bu1,Bu2, . . . ,BuN )
= (v1,v2, . . . ,vN )
= v
= zT.

Therefore, xBT = z and AxBT = Az = AAT
(
AAT

)−1
y = y.

Lemma 2. An N × M -dimensional test T : RN×M → {0, 1} satisfies
[RDT`m-invariance] if and only if there exists a unique n×m-dimensional
test T : Rn×m → {0, 1} such that, for any x ∈ RN×M , T(x) = T(AxBT).
We call T the reduced form of the test T.

Proof. Let T : RN×M → {0, 1} be some given N × M -dimensional test.
The existence of an n × m-dimensional test T : Rn×m → {0, 1} such that
T(x) = T(AxBT) for all x ∈ RN×M straightforwardly implies that T satis-
fies [RDT`m-invariance]. We thus limit our attention to the direct implica-
tion of the statement.

Given y ∈ Rn×m, Lemma 1 implies that K(y) =
{
x ∈ RN×M : AxBT =

y
}

is not empty. Since T is assumed to verify [RDT`m-invariance], T is
constant on K(y). We can thus set T(y) = T(x) where x is any element of
K(y). Now, for any y ∈ RN×M , y ∈ K

(
AyBT

)
and T(AyBT) = T(y).

We now establish that the reduced form T is unique. To this end, suppose
that T′ : Rn×m → {0, 1} is such that T(x) = T′(AxBT). For any y ∈ Rn×m,
the surjectivity of y 7→ AyBT guarantees the existence of x ∈ RN×M such
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that y = AxBT. We thus have: T′(y) = T′(AxBT) = T(AxBT) = T(y).
It follows that T′ = T.

Note that the binary valuation of T plays no actual role in the proof.

The results above lead to the following ones that will prove useful in the
sequel. The notation introduced below will be kept throughout the rest of
the proof with always the same meaning. To begin with, we define ỹ ∈ Rnm
for each y ∈ RN×M by setting:

ỹ = vec(AyBT). (B.1)

It then follows from [28, Lemma 2.2.2., Sec. 2.2., p. 74] that, for any
y ∈ RN×M :

ỹ = Hvec(y) with H = B ⊗A . (B.2)

In particular, it follows from the foregoing definition that:

[P1] X̃ ∼ N(0,C) with C = (B ⊗A ) Σ (B ⊗A )T

[P2] The independence of Θ and X implies that of Θ̃ and X̃.

It is also worth noticing that the bijectivity of vec and Lemma 1 directly
entails that:

[P3] The map that assigns ỹ ∈ Rnm to any given y ∈ RN×M is surjective.

For each N ×M -dimensional test T satisfying [RDT`m-invariance], we
now define the test T̂ : Rnm → {0, 1} by setting:

T̂ = T ◦ vec−1. (B.3)

It follows from this definition that:

∀y ∈ RN×M ,T(y) = T̂(ỹ). (B.4)

The bijectivity of vec and the uniqueness of T guaranteed by Lemma 2 for
any T satisfying [RDT`m-invariance] imply that:

[P4] The map that assigns T̂ to any given T satisfying [RDT`m-invariance] is
injective.

A straightforward computation based on the results above yields the equality:

∀y ∈ RN×M , ν(AyBT − θ0) = νC(ỹ − vec(θ0)). (B.5)

Given any Θ ∈M
(
Ω,RN×M

)
, it straightforwardly follows from (B.5) that:

Pν(AΘBT−θ0) = P
νC(Θ̃−vec(θ0))

(B.6)
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and, for any ρ ∈ [0,∞), with the help of (B.4), we have:

P
[
T(Θ +X) = 1 | ν(AΘBT − θ0) = ρ

]
= P

[
T̂(Θ̃ + X̃) = 1 | νC(Θ̃− vec(θ0)) = ρ

]
(B.7)

On the basis of the foregoing results, we can now tackle the proof of
Theorem 1. As a first step, let us consider the RDT problem — as defined
in [1, see Sec. III, Eq. (5)] — of testing the hypothesis H0(Ξ) that νC(Ξ−
vec(θ0)) 6 τ against its alternative H1(Ξ) that νC(Ξ− vec(θ0)) > τ , when
we observe Z = Ξ + X̃ where Ξ ∈ Rnm. This problem can be summarized
as:

[RDT]:


Observation:Z = Ξ + X̃

{
Ξ ∈M(Ω,Rnm),

Ξ and X̃ independent,
H0(Ξ) : νC(Ξ− vec(θ0)) 6 τ,
H1(Ξ) : νC(Ξ− vec(θ0)) > τ.

(B.8)

Similarly to Section 2, we set:{
P
[

H0(Ξ)
] def

= P
[
νC(Ξ− vec(θ0)) 6 τ

]
P
[

H1(Ξ)
] def

= P
[
νC(Ξ− vec(θ0)) > τ

]
and given F ∈ B:{

P
[
F
∣∣H0(Ξ)

] def
= P

[
F
∣∣ νC(Ξ− vec(θ0)) = τ

]
P
[
F
∣∣H1(Ξ)

] def
= P

[
F
∣∣ νC(Ξ− vec(θ0)) = τ

]
Given γ ∈ (0, 1), define the class C[RDT]

γ of those nm-dimensional tests
T : Rnm → {0, 1} with [RDT]-size:

α
[RDT]
T

def
= sup

Ξ∈M(Ω,Rnm):P
[
H0(Ξ)

]
6=0

P
[
T(Ξ + X̃) = 1

∣∣H0(Ξ)
]
6 γ (B.9)

and [RDT-constant conditional power]: for any Ξ ∈M(Ω,Rnm) independent
of X̃, there exists a domain D of νC(Ξ − vec(θ0)) such that, for any ρ ∈
D ∩ (τ,∞),

P
[
T(Ξ + X̃) = 1

∣∣ νC(Ξ− vec(θ0)) = ρ
]
is independent of PνC(Ξ−vec(θ0)).

As straightforwardly verified, [RDT] is the particular [RDT`m] problem
where, in (2), RN×M , Θ and X are replaced by Rn×m, Ξ and X̃, respec-
tively, and the nm×nm identity matrix is substituted for both A and B. In
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this specific case, it follows from (7) that the test T∗ of Theorem 1 reduces to
Tλnm(τ,γ) defined in (10). [RDT`m]-size and [RDT`m-invariance] then re-
duce to [RDT]-size and [RDT-constant conditional power], respectively. The
class C[RDT]

γ is thus the particular instance of C[RDT`m]
γ for the [RDT] prob-

lem (B.8).

We can then endow C[RDT]
γ with a partial order

[RDT]
� as follows. Given

T and T′ of C[RDT]
γ , say that T

[RDT]
� T′ if, given any Ξ ∈M(Ω,Rnm), there

exists a domain D of νC(Ξ − vec(θ0)) such that, for every ρ ∈ D ∩ (τ,∞),
both P

[
T(Ξ+X̃) = 1

∣∣ νC(Ξ−vec(θ0)) = ρ
]
and P

[
T′(Ξ+X̃) = 1

∣∣ νC(Ξ−
vec(θ0)) = ρ

]
are independent of νC(Ξ− vec(θ0)) = ρ and such that:

P
[
T(Ξ + X̃) = 1

∣∣ νC(Ξ− vec(θ0)) = ρ
]

6 P
[
T′(Ξ + X̃) = 1

∣∣ νC(Ξ− vec(θ0)) = ρ
]
. (B.10)

According to [1, Theorem 2], it then turns out that Tλnm(τ,γ) is maximal in
C[RDT]
γ with [RDT]-size equal to γ, so that:

α
[RDT]
Tλnm(τ,γ)

= γ (B.11)

and

∀T ∈ C[RDT]
γ ,T

[RDT]
� Tλnm(τ,γ), (B.12)

This establishes Theorem 1 in this particular [RDT`m] problem that
[RDT] is.

We now consider the general case. We begin by proving that C is non-
singular, which is necessary to guarantee the existence of the Mahalanobis
norm involved in the definition of ν. Since A ∈ Rn×N and B ∈ Rm×M ,
B ⊗ A ∈ Rnm×NM . In addition, A and B have full rank. Therefore,
rank(B ⊗ A ) = rank(A )rank(B) = nm. The full rank of B ⊗ A then
implies the nonsingularity of C and the C-Mahalanobis norm is actually
well defined.

We are now going to show that:

[P5] If T ∈ C[RDT`m]
γ , then T̂ ∈ C[RDT]

γ .

To this end, suppose that T ∈ C[RDT`m]
γ . We begin by comparing α[RDT`m]

T

to α[RDT]
T̂

. Given Θ ∈ M
(
Ω,RN×M

)
such that P[H0(Θ)] 6= 0, it follows

from (B.4) and (B.5) that:

P
[
T(Θ +X) = 1

∣∣H0(Θ)
]

= P
[
T̂(Θ̃ + X̃) = 1

∣∣H0(Θ̃)
]

(B.13)
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Therefore, according to Properties (P1) and (P2), we obtain:

P
[
T(Θ +X) = 1

∣∣H0(Θ)
]

6 sup
Ξ∈M(Ω,Rnm):P

[
H0(Ξ)

]
6=0

P
[
T̂(Ξ + X̃) = 1

∣∣H0(Ξ)
] (B.14)

From (3) & (B.9), the inequality above implies that α[RDT`m]
T 6 α

[RDT]
T̂

.
Conversely, given any Ξ ∈ M(Ω,Rnm) such that P

[
H0(Ξ)

]
6= 0, [P3]

and (B.5) induce the existence of Θ0 ∈ RN×M such that Ξ = Θ̃0 and
P
[
H0(Θ0)

]
6= 0. It results from (B.13) applied to Θ0, that:

P
[
T̂(Θ̃0 + X̃) = 1

∣∣H0(Θ̃0)
]

= P
[
T(Θ0 +X) = 1

∣∣H0(Θ0)
]

As a consequence of this equality and the definition (3) of [RDT`m]-size,
we obtain α[RDT]

T̂
6 α

[RDT`m]
T , and we conclude from the foregoing that

α
[RDT`m]
T = α

[RDT]
T̂

. (B.15)

Now, still given T ∈ C[RDT`m]
γ , we aim to show that T̂ has [RDT-

constant conditional power]. To this end, let us consider an element Ξ of
M(Ω,Rnm). According to [P3], there exists Θ0 ∈ M

(
Ω,RN×M

)
such that

Ξ = Θ̃0. Consider a domain D of ν(AΘ0B
T − θ0). As a consequence

of (B.5), D is a domain of νC(Ξ − vec(θ0)) as well. It follows from (B.7)
and [RDT`m-constant conditional power] satisfied by T that, for all ρ ∈
D ∩ (τ,∞), P

[
T̂(Ξ + X̃) = 1 | νC(Ξ − vec(θ0)) = ρ

]
is independent of

PνC(Ξ−vec(θ0)). Therefore, T̂ has [RDT-constant conditional power].
Conversely, suppose that T̂ has [RDT-constant conditional power]. Given

any Θ ∈ M
(
Ω,RN×M

)
, there exists a domain D of νC(Θ̃ − vec(θ0)) such

that, for any ρ ∈ D ∩ (τ,∞), P
[
T̂(Θ̃ + X̃) = 1 | νC(Θ̃ − vec(θ0)) = ρ

]
is independent of P

νC(Θ̃−vec(θ0))
. It then follows from (B.6) and (B.7) that

P
[
T(Θ + X) = 1 | ν(Θ − θ0) = ρ

]
is independent of Pν(AΘBT−θ0). This

exactly means that T satisfies [RDT`m-constant conditional power]. We
thus have shown that T has [RDT`m-constant conditional power] if and
only if T̂ has [RDT-constant conditional power]. This property and (B.15)
establish [P5].

We can now conclude the proof of Theorem 1. First, Lemma 2 and (10)
imply that T∗ ∈ C[RDT`m]

γ with reduced form T∗ = Tλnm(τ,γ) ◦ vec. It then
follows from this equality and (B.3) that

T̂∗ = T∗ ◦ vec−1 = Tλnm(τ,γ). (B.16)
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and [P4] guarantees that T∗ is the sole N × M -dimensional test satisfy-
ing (B.16). Therefore, thanks to (B.11) and (B.15), we have α[RDT`m]

T∗ =

α
[RDT]
T̂∗

= α
[RDT]
Tλnm(τ,γ)

= γ, which establishes the [RDT`m]-size of T∗. Sec-
ond, T∗ satisfies [RDT`m-constant conditional power] and (8) as a direct
consequence of (B.7), (B.16) and [1, Theorem 2, (i)]. It thus remain to prove
that T∗ is actually maximal in C[RDT`m]

γ . In this respect, let T ∈ C[RDT`m]
γ

and Θ ∈ M
(
Ω,RN×M

)
. By [P5], T̂ ∈ C[RDT]

γ . We derive from (B.12)
and (B.10) the existence of a domain D of νC(Θ̃ − vec(θ0)) such that,
for every ρ ∈ D ∩ (τ,∞), both P

[
T̂(Θ̃ + X̃) = 1

∣∣ νC(Θ̃ − vec(θ0)) = ρ
]

and P
[
Tλnm(τ,γ)(Θ̃ + X̃) = 1

∣∣ νC(Θ̃ − vec(θ0)) = ρ
]
are independent of

νC(Θ̃− vec(θ0)) = ρ and such that:

P
[
T̂(Θ̃ + X̃) = 1

∣∣ νC(Θ̃− vec(θ0)) = ρ
]

6 P
[
Tλnm(τ,γ)(Θ̃ + X̃) = 1

∣∣ νC(Θ̃− vec(θ0)) = ρ
]
.

It then suffices to inject (B.4), (B.7) and (B.16) into the inequality above to

conclude that T
[RDT`m]
� T∗.

Appendix C. T∗ without vectorization

Suppose that X1,X2, . . . ,XM
iid∼ N(0,K) where K ∈ RN×N is positive

definite. We then have vec(X) ∼ N
(
0, IM ⊗K

)
. In this case, Σ = IM ⊗K.

B full rank implies that the symmetric matrix BBT ∈ Rm×m is positive
definite and thus invertible. A full rank implies that the symmetric matrix
AKAT ∈ Rn×n is positive definite and thus invertible. It follows from
[28, statements (d), (f) & (g), p. 74, Sec. 2.2, Chap. 2] that C−1 =(
BBT

)−1⊗ (AKAT)−1. The compact expression we can give to T∗ in this
case is stated by Lemma 4, where Ψ and Φ are defined as follows.

With the same notation as above, let BBT = V δV T be an eigenvalue
decomposition of the positive definite symmetric matrix BBT ∈ Rm×m,
where δ = diag(ζ1, ζ2, . . . , ζm) is a diagonal matrix such that ζ1, ζ2, . . . , ζm
are the eigenvalues of BBT and V ∈ Rm×m is orthogonal. In the same
way, let AKAT = U∆UT be an eigenvalue decomposition of the posi-
tive definite symmetric matrix AKAT, where ∆ = diag(ξ1, ξ2, . . . , ξn) is
a diagonal matrix such that ξ1, ξ2, . . . , ξn are the eigenvalues of AKAT

and U ∈ Rn×n is orthogonal. Set Ψ = δ−1/2 V T ∈ Rm×m with
δ−1/2 = diag(ζ

−1/2
1 , ζ

−1/2
2 , . . . , ζ

−1/2
d ) and Φ = ∆−1/2UT ∈ Rn×n with

∆−1/2 = diag(ξ
−1/2
1 , ξ

−1/2
2 , . . . , ξ

−1/2
d ). We then have the following lemma.
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Lemma 3. ∀x ∈ Rn×m, νC (vec(x)) = ‖ΦxΨT‖F .

Proof. Since
(
BBT

)−1
= ΨTΨ = V δ−1V T and (AKAT)−1 = ΦTΦ =

U∆−1UT, we derive from [28, Property (f), Section 2.2, p. 74] that:

C−1 =
(
BBT

)−1 ⊗ (AKAT)−1 = ΨTΨ⊗ΦTΦ.

Therefore, for any x ∈ Rnm,

νC (x) =
√
xT
(
ΨTΨ⊗ΦTΦ

)
x.

For all x ∈ Rn×m, it follows from [28, Lemma 2.2.3. (iii)]:

vec(x)T
(
ΨTΨ⊗ΦTΦ

)
vec(x) =

tr
(
ΨxTΦTΦxΨT

)
= tr

((
ΦxΨT

)T (
ΦxΨT

))
.

On the other hand,
√

tr(xTx) = ‖x‖F . It follows from the foregoing that:

νC (x) =

√
tr
(

(ΦxΨT)T (ΦxΨT)
)

= ‖ΦxΨT‖F ,

which concludes the proof.

The compact form for T∗ is a straightforward consequence of the previous
lemma and can be stated as follows.

Lemma 4. For any x ∈ RN×M ,

T∗(x) =

{
1 if ‖Φ

(
AxBT−θ0

)
ΨT‖F > λnm(τ, γ)

0 otherwise

where ‖ • ‖F is the Froebenius norm in RN×M .

Appendix D. Proof of Theorem 2

We begin with a partial extension of [1, Lemma 7].

Proposition 1. Given T : RN×M → {0, 1} and X ∈ M
(
Ω,RN×M

)
, define

the power function of T with respect to X as the function βT(•) defined for
every θ ∈ RN×M by:

βT(θ) = P
[
T(θ +X) = 1

]
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Let ≡ be a relation of equivalence in RN×M . Suppose the existence of a
function µ : RN×M → Rq with q ∈ N such that:

µ(θ) = µ(θ′) iff θ ≡ θ′ (D.1)

for any given pair (θ,θ′) of elements of RN×M . Let µ
(
RN×M

)
stand for the

image of RN×M by µ.
If the power function of T is constant on each equivalence class of ≡ then,

for any Θ ∈ M
(
Ω,RN×M

)
independent of X, T has constant conditional

power given µ(Θ) = x for Pµ(Θ) – almost every x ∈ µ
(
RN×M

)
, in the sense

that, for Pµ(Θ) – almost every x ∈ µ
(
RN×M

)
:

P
[
T(Θ +X) = 1 |µ(Θ) = x

]
= βT(θ)

for any θ in the pre-image µ−1({x}) of x.

Proof. Note that (D.1) amounts to saying that µ is constant on every equiv-
alence class of ≡. It follows from (D.1) that, given θ ∈ RN×M , µ−1

(
{µ(θ)}

)
is the equivalence class of θ. The proof now mimics [1, Lemma 7] as follows.

If T has constant power function with respect to X on each equivalence
class of ≡, we can define the map R : Rq → [0, 1] such that, for every
x ∈ µ(RN×M ):

R(x) = βT(θ) (D.2)

where θ is any element of µ−1({x}).
Let Θ ∈M

(
Ω,RN×M

)
independent of X and B be any borel set of Rq.

We derive from the definition of R and the independence of Θ and X that:

P
[
T(Θ+X) = 1, µ(θ) ∈ B |Θ=θ

]
= 1B

(
µ(θ)

)
βT(θ)

= 1B

(
µ(θ)

)
R(µ(θ))

where 1B stands for the indicator function of B: given x ∈ Rq, 1A(x) = 1
if x ∈ A and 1A(x) = 0, otherwise. It follows from the standard change of
variable [29, Theorem 17.2, p. 225]:∫

1B(µ(θ))R(µ(θ))Pµ(Θ)(dθ)

= E
[
1B

(
µ(Θ)

)
R(µ(Θ))

]
=

∫
B∩µ(RN×M )

R(x)Pµ(Θ)(dx)
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On the one hand, we derive from the foregoing that:

P
[
T(Θ +X) = 1, µ(Θ) ∈ B

]
=

∫
P
[
T(Θ +X) = 1, µ(Θ) ∈ B |Θ = θ

]
PΘ(dθ)

=

∫
B∩µ(RN×M )

R(x)Pµ(Θ)(dx)

On the other hand:

P
[
T(Θ +X) = 1, µ(Θ) ∈ B

]
=

∫
B∩µ(RN×M )

P
[
T(Θ +X) = 1 |µ(Θ) = x

]
Pµ(Θ)(dx)

Since B is arbitrary, it follows from the equalities above and the definition
of conditional probability that P

[
T(Θ + X) = 1 |µ(Θ) = x

]
= R(x) for

Pµ(Θ) – almost every x ∈ µ(RN×M ).

We now complete the proof of Theorem 2. First, by definition of G

(see (14)), T∗ ∈ Cγ is basically G-invariant. Let T ∈ Cγ be another G-
invariant test. Since the orbits of G form a partition of RN×M , we can
define the relation of equivalence ≡ for every given pair (θ,θ′) of RN×M by
setting: θ ≡ θ′ if θ and θ′ belong to the same orbit. In addition, the map
µ : RN×M → [0,∞) defined for each x ∈ RN×M by µ(x) = ν(AΘBT− θ0),
is a maximal invariant of G and, as such, satisfies (D.1). It thus follows from
Proposition 1 that T has constant conditional power given ν(AΘBT−θ0) =
ρ for Pν(AΘBT−θ0) – almost every ρ > 0. By Bayes’s axiom, we have:

βT(Θ) =
1

P
[
H1(Θ)

]×∫
(τ,∞)

P
[
T(Θ +X) = 1 | ν(AΘBT − θ0) = ρ

]
Pν(AΘBT−θ0) dρ

(D.3)

and

βT∗(Θ) =
1

P
[
H1(Θ)

]∫
(τ,∞)

P
[
T∗(Θ +X) = 1 | ν(AΘBT − θ0) = ρ

]
Pν(AΘBT−θ0) dρ

(D.4)

By the maximality property established for T∗ by Theorem 1, the integrand
in (D.3) does not exceed the integrand in (D.4), which completes the proof.
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