
HAL Id: hal-01736178
https://hal.science/hal-01736178v2

Submitted on 11 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of Mysticete Calls: a Sparse
Representation-Based Approach
François-Xavier Socheleau, Flore Samaran

To cite this version:
François-Xavier Socheleau, Flore Samaran. Detection of Mysticete Calls: a Sparse Representation-
Based Approach. [Research Report] RR-2017-04-SC, Dépt. Signal et Communications (Institut
Mines-Télécom-IMT Atlantique-UBL); Laboratoire en sciences et technologies de l’information, de
la communication et de la connaissance (UMR 6285 - CNRS - IMT Atlantique - Université de Bre-
tagne Occidentale - Université de Bretagne Sud - ENSTA Bretagne - Ecole Nationale d’ingénieurs de
Brest); École nationale supérieure de techniques avancées Bretagne. (Ministère de la Défense). 2017.
�hal-01736178v2�

https://hal.science/hal-01736178v2
https://hal.archives-ouvertes.fr


Collection des rapports de recherche d’IMT Atlantique
RR-2017-04-SC

François-Xavier Socheleau

Flore Samaran

IMT Atlantique
Dépt. Signal & Communications
Technopôle de Brest-Iroise - CS 83818
29238 Brest Cedex 3
Téléphone : +33 (0)2 29 00 13 04
Télécopie : +33 (0)2 29 00 10 12
URL : www.imt-atlantique.fr

Detection of Mysticete Calls: a Sparse
Representation-Based Approach

Date d’édition : 3 septembre 2018
Version : 1.1

http://www.imt-atlantique.fr/


CONTENTS

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Data model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Dictionary-based sparse representation of mysticete calls . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4. Illustration with real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1. DCLDE 2015 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1. Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2. OHASISBIO 2015 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1. Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

RR-2017-04-SC 1



TABLES

Figures

1. Functional block diagram of SRD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. Spectrogram of seven consecutive D calls extracted from the DCLDE 2015 dataset. . . . 9
3. Spectrogram examples of non-D call transient signals. (a) Blue whale pulsed and tonal

calls [28]. (b) Fin whale “40 Hz” calls [48]. (c) Unidentified recurrent transient sounds.
(d) Unidentified periodic transient sounds plus a frequency modulated sound. . . . . . . 10

4. Signal-to-noise ratio distribution of the D calls (expressed in percentage of the total
number of annotated D calls). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5. Receiver operating characteristic curve of SRD for several dictionary sizes M . . . . . . 11
6. Receiver operating characteristic curve of SRD for several sparsity constraints K . . . . . 12
7. Detection rate of SRD as a function of the signal-to-noise ratio. The false alarm rate is set

to 2.3 false alarms per hour of processed signal. . . . . . . . . . . . . . . . . . . . . . . 12
8. (a)-(b) : spectrograms of signals detected by SRD but not selected by the experienced

human operator as D calls. (c)-(d) : spectrograms selected by the experienced human
operator as D calls but rejected by SRD. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

9. Performance comparison between SRD-PPS, SRD-KSVD, XBAT and a bank of matched
filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

10. The blue circles represent the scatter plot of the triplets ( f0, f1, f2) obtained by maximum
likelihood estimation on the training dataset. The green, black and red crosses represent
the 2D projections of these triplets on the ( f0, f1), ( f0, f2), ( f1, f2)-planes, respectively. 14

11. Spectrogram of “Madagascar” pygmy blue whale calls composed of units A (left) and B
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

12. Signal-to-noise ratio distribution of B units (expressed in percentage of the total number
of annotated calls). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

13. Time-frequency kernel used for the detection of “Madagascar” pygmy blue whale calls
(unit B) with Mellinger and Clark’s method [9]. . . . . . . . . . . . . . . . . . . . . . . 17

14. Performance comparison between SRD-KSVD (K=2, M=10) and Mellinger and Clark’s
method with the time-frequency kernel shown in Fig. 13. . . . . . . . . . . . . . . . . . 18

15. Detection rate as a function of the signal-to-noise ratio for SRD-KSVD (K=2, M=10) and
Mellinger and Clark’s method with the time-frequency kernel shown in Fig. 13. For both
methods the false alarm rate is set to 1.6 false alarms per hour of processed signal. . . . . 18

Tables

1. Signal-duration-to-run-time ratio (SDRTR) as a function of the number of atoms M and
the sparsity constraint K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

RR-2017-04-SC 2



1. INTRODUCTION

Abstract
This paper presents a methodology for automatically detecting mysticete calls. This methodology relies on
sparse representations of these calls combined with a detection metric that explicitly takes into account the
possible presence of interfering transient signals. Sparse representations can capture the possible variability
observed for some vocalizations and can automatically be learned from the time series of the digitized
acoustic signals, without requiring prior transforms such as spectrograms, wavelets or cepstrums. The
proposed framework is general and applicable to any mysticete call lying in a linear subspace described by
a dictionary-based representation. The potential of the detector is illustrated on North Pacific blue whale
D calls extracted from the DCLDE 2015 low frequency database as well as on “Madagascar” pygmy
blue whale calls extracted from the OHASISBIO 2015 database. Receiver operating characteristic curves
(ROC) are calculated and performance is compared with three other methods used for automatic call
detection: the XBAT bank of matched spectrograms, a bank of matched filters derived from a generalized
likelihood ratio approach and a kernel-based spectrogram detector. On the test data, the ROC curves show
that the proposed detector outperforms these three methods.

1. Introduction
Long-term passive acoustic monitoring (PAM) has been used successfully in many oceans of the

world to study the presence, distribution and migration patterns of baleen whales, or mysticetes [1, 2].
Mysticetes are ideal candidates for PAM since they are known to produce different types of distinctive
sounds year-round or at a specific season, depending on the species [3, 4]. Their repertoire is composed of
a wide variety of intense, often low-frequency sounds including tonal, frequency-modulated or pulsive
sounds. PAM provides an alternative method to traditional visual surveys. It is less affected by weather
and sighting conditions and acoustic recorders can collect data continuously throughout days, seasons
or years. However, manual detection (aurally or by visual inspection of spectrograms) of the mysticete
sounds in these large volume of recordings is a long and laborious task whose efficiency can potentially
be affected by the experience and the degree of fatigue of the operator. For most long term acoustic
recordings, manual detection is unrealistic. Therefore, the development of efficient and robust automatic
detection methods is rising over the past decade [5, 6, 7, 8].

Mysticetes calls are usually not erratic and present some form of “structure” which is often revealed
through a local concentration of energy on spectrograms. Such a structure can be formalized by expressing
calls into linear expansions of elementary waveforms that belong to a dictionary of known functions. These
functions are classically extracted from Fourier or chirp bases [9, 10, 11, 12] and represent the salient
features of a specific vocalization. When automated detectors are applied on data, the prior knowledge of
this dictionary is very useful to discriminate a particular signal of interest from other sounds. Kernel-based
spectrogram detectors [9], (bank of) matched spectrograms [13], bank of matched filters [14], or subspace
detectors [10] make (implicit) use of such a dictionary.

The way these dictionary-based detectors have been implemented has shown to be very efficient
for stereotyped mysticete calls [9, 10]. However, they often fail to capture calls whose time-frequency
pattern may differ depending on factors such as season, behavior of the animal, propagation or ambient
noise conditions [15, 16, 17, 18]. In such scenarios, the difficulty for detectors is to take into account
this variability while avoiding the detection of interfering transient sounds of no interest for the intended
application. In [14], the detection of variable mysticete calls is addressed for North Atlantic right whale.
It relies on a very general signal model whose parameters are not assumed to be known in advance by
the detector. A polynomial-phase signal model is chosen and, for each observation, the unknown call
characteristics (start frequency, frequency slope and curvature) are estimated with a maximum likelihood
approach. Based on these estimates, a likelihood ratio test is then used. The main drawback of such an
approach is that it requires a full statistical model of the acoustic data processed by the detector. Such
a model may be very difficult to obtain when the data are heterogeneous and contain a wide variety of
transient sounds. Moreover, if the data do not match the statistical model, interfering transient signals
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1. INTRODUCTION

can trigger the detector and generate many false alarms. Designing an ad-hoc post-processing algorithm
to remove these false alarms is still possible but it usually requires tune the detector with numerous
dataset-specific parameters [12]. Given the huge diversity of sound sources underwater, this kind of
methods lacks of general applicability as the features of interferences may greatly vary from one dataset
to another.

In this paper, we generalize the standard approach of dictionary-based detection by modeling mysticete
calls with sparse representations. Such representations express a given signal as a linear combination
of base elements in which many of the coefficients are zero [19]. In our context, the key idea behind
sparse representations is to use a dictionary of large dimension spanning all possible variations of the
call to detect, while modeling each occurrence of this call as a linear combination of very few elements
of that dictionary so as to limit false alarms. Sparse representations have been successfully applied in
various fields such as computer vision [20], image and speech denoising [21, 22], compressed sensing
[23], and more. The elements of the dictionary can either be chosen from theoretical bases but can also be
automatically learned from the time series of real data [19]. Both cases are considered in this work.

The proposed detector is an extension to the sparse framework of the decision statistic presented in [10].
This statistic was shown to offer optimal properties with respect to false alarm and detection probabilities
and can be interpreted as an estimate of the signal-to-interference-plus-noise ratio (SINR). This SINR
measures the match between the observed data and the assumed sparse representation of the call to detect.
As opposed to fully parametric methods, it does not require to learn a priori the features of interfering
signals. The potential of the proposed method is illustrated with data extracted from two databases
annotated by human analysts and containing different types of blue whale (Balaenoptera musculus) calls:
the DCLDE 2015 low frequency database [24] and the OHASISIBIO 2015 database [25, 26]. The first
database contains North Pacific blue whale D calls [27]. Repeated with no regular intervals, D calls have
been recorded in the presence of blue whales in many locations and have been suggested as contact calls
or feeding calls [28]. Unlike stereotyped calls, blue whale D calls have variable characteristics in duration,
frequency content and frequency sweep (e.g. downsweeps [29], upsweeps [30], archsounds [31]) with no
obvious geographic variation [30, 32]. The second database contains “Madagascar” call types produced
by pygmy blue whales in the west and central part of the Indian Ocean [33]. This call type consists of a
phrase with two long units repeated in patterned sequences every 90-100 s, over a period extending from a
few minutes to hours [34]. These two databases exhibit complementary characteristics in terms of call
variability, call complexity, signal-to-noise ratio and occurrence of interfering transient signals and are
thus relevant to illustrate the general applicability of the proposed method.

The paper is organized as follows. In Sec. 2, the observation model as well as the dictionary-based
sparse representation of mysticete calls are presented. Sec. 3 details the detection strategy, which is then
assessed with real data in Sec. 4. Finally, conclusions are given in Sec. 5.

Notation: Throughout this paper, lowercase boldface letters denote vectors, e.g., x, and uppercase
boldface letters denote matrices, e.g., A. The superscript T means transposition. The N ×N identity matrix
is denoted by IN . ‖ · ‖p designates the `p norm and ‖ · ‖F is the Frobenius norm. The symbol � denotes
the Hadamard (entrywise) product between matrices. The cardinality of a set A is denoted |A|. Finally,
the distribution of a Gaussian random vector with mean m and covariance matrix Σ is denoted N (m,Σ).
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2. DATA MODEL

2. Data model
2.1. Observation model
PAM systems process digitized time series representing underwater sounds received on hydrophones.

The acquired data result from the mixture of signals of different nature. From a detector perspective, these
signals can be classified into three categories:

� The mysticete sound of interest (sound to detect when present in the data).
� The transient noise or interference, which designates any transient signal of no interest for the

intended application (e.g., ship noise, airguns, earthquakes, ice tremors, calls of other whales,
etc.).

� The background noise that results from the mixture of numerous unidentifiable ambient sound
sources. As opposed to what is called interference in this work, background noise does not include
any transient signal.

Therefore, given an observation window of N samples, the observation vector y ∈ RN is here
represented as

y
∆
= µs + εψ + w, (1)

where s ∈ RN designates the signal of interest,ψ ∈ RN is the interference and w ∈ RN is the background
noise. µ and ε are random variables valued in {0,1} modeling the possible presence or absence of s and
ψ, respectively. Eq. (1) is here assumed to model the recorded time series after signal shaping. Classical
shaping includes whitening or spectral equalization and band-pass filtering [6] (it sometimes includes
baseband conversion as well, in this case, y is complex-valued).

As detailed in Sec. 2.2, the signal of interest is assumed to be “structured”, which here means that it
lies in a linear subspace that can be described by a dictionary-based representation. No parametric model
is assumed for interferences since they can be very heterogeneous and are often random. However, to
differentiateψ from s, some assumptions must be made.ψ is here defined as any transient signal whose
energy lies mostly outside the subspace in which s resides (more details are given in Sec. 2.3). Finally, in
agreement with several statistical analyzes conducted in the frequency range of mysticete sounds [14, 10],
the background noise w is modeled as a Gaussian vector.

2.2. Dictionary-based sparse representation of mysticete calls
The vast majority of mysticete calls are not erratic and present some structures which are often visible

on time-frequency representations such as spectrograms. Formally, these structures can be taken into
account by assuming that the signal of interest can be decomposed into a linear expansions of M < N
waveforms, called atoms, that belong to a dictionary of functions, i.e.,

s(n) ≈
M−1∑
m=0

dm (n) × θm , (2)

where 0 ≤ n ≤ N − 1 is the time index and θm is a coefficient for the atom dm (n). Using matrices, (2)
can also be expressed as

s ≈ Dθ, (3)

where D ∈ RN×M denotes the dictionary and θ ∈ RM is the vector containing the weighting factors. In
other words, θ is the vector of coordinates of s in a linear subspace spanned by the columns of D. When
the sound of interest satisfies this model, the knowledge of D, that characterizes the salient features of s,
is very useful to design an efficient detector.

Several existing detection methods implicitly rely on the dictionary-based framework of (3). For
instance, the well known detectors based on spectrogram correlation or spectrogram kernels [9] assume
that the energy of the signal to detect is well localized in the time-frequency plane. In that case, the
underlying dictionary is a Fourier-like basis where each oscillating component is weighted by some
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2. DATA MODEL

masking function whose values are chosen by analyzing the spectrogram of the signal of interest. Formally,
D then satisfies the following relationship

D = (C � P)T , (4)

where the entries of C ∈ RM×N contain M oscillating atoms, e.g., [C]mn = cos(πnm/M), with m the
frequency index. P ∈ RM×N denotes the time-frequency mask. In other approaches such as [10, 11], the
dictionaries are built from oscillating atoms whose instantaneous frequencies are determined by known
analytic expressions.

Model (3) has shown to be very efficient when the sound to detect is highly stereotyped and when its
time-frequency pattern is rather simple [10]. In that case, the number M of atoms is rather small. However,
such assumptions may be too restrictive. Within the same vocalization class, some mysticete sounds may
exhibit a time-frequency variability depending on individuals [35], body condition [36], social behaviors
[37], increase in ocean background noise [15], propagation conditions [18], etc. and may also exhibit
non trivial frequency patterns. Therefore, the desired dictionary should incorporate enough variability to
model all possible calls of the same type (i.e., M large), while limiting the range of variation for a single
call so as not to design an interference-sensitive detector. Both goals can be achieved simultaneously by
finding a compact representation of the signal of interest in terms of linear combination of atoms in a
dictionary that can be of large dimension. Considering these remarks, model (3) is extended to

s ≈ Dθ, with ‖θ‖0 ≤ K << M, (5)

where ‖θ‖0 denotes the `0 (pseudo-)norm that returns the number of non-zero coefficients in θ. When s
can be represented by a small number of non-zero coefficients in the basis D, model (5) is referred to
as sparse representation in the signal processing literature [19]. The inequality ‖θ‖0 ≤ K is called the
sparsity constraint.

D calls of blue whales [27] are typical examples that fit well with (5). Each single call is a simple
frequency-modulated (FM) sweep that could well be approximated by a linear combination of a few atoms.
However, such calls exhibit variability in initial frequency, FM rate, duration, and bandwidth. Therefore,
the `0 norm of θ is small for each single call but the active atoms, corresponding to non-zero entries of θ,
can be different from one call to another.

There exist two main approaches to design relevant dictionaries for detection problems. The first
approach relies on the choice of theoretical “preconstructed” atoms, usually chosen to match some time-
frequency patterns. For PAM systems, this approach is rather standard: the atoms are chosen after analyzing
a set of training data and are usually extracted from Fourier, chirp or wavelet bases [9, 10, 11, 14, 38].

The second approach, less common in the PAM context, relies on recent advances in signal processing
and constructs empirically-learned dictionaries, in which the generating atoms are automatically designed
from the data [19]. Given a set of L ≥ M training signals {si }Li=1, such an approach seeks the dictionary D
that leads to the “best possible” representation for each signal in this set with the sparsity constraint of (5).
The training signals are stored in a training matrix S ∈ RN×L and the dictionary D is found by solving the
following minimization problem

min
D,Θ
‖S − DΘ‖2F subject to ‖θi ‖0 ≤ K, ∀1 ≤ i ≤ L, (6)

where Θ = {θi }
L
i=1. This problem describes each given signal si as the best sparse representation θi over

the unknown dictionary D, and aims to jointly find the proper representations and the dictionary [19].
Numerical solutions to problem (6) can be obtained with the method of optimized directions (MOD) [39],
K-SVD [40] or other algorithms such as [41].

Choosing whether the dictionary should be designed from a mathematical model of the data or from
the data itself is context dependent. For simple chirp-like calls, choosing the first approach may be a good
option: the parameters of the model can easily be learned from the training data using standard approaches
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3. DETECTION METHOD

such as maximum likelihood estimation and the risk of overfitting the training data may be reduced by
choosing simple analytical models. However, for more complex calls, such mathematical models may be
over-simplistic and/or not easy to build. In that case, designing the dictionary directly from the data may
be a good option. The benefits of both approaches are discussed in Sec. 4.

2.3. Interference
Using model (5) for s is also very useful to bound our lack of knowledge on interfering transient

signals. Such signals are often very heterogeneous (abiotic, biological or anthropogenic sound sources)
and their features can rarely be represented by a single parametric model. Intuitively, interference ψ is
defined as a transient signal having not much in common with the signal of interest s. More formally, it
can be defined as a signal whose energy lies mostly outside the subspace in which s resides. Based on
model (5), this can be expressed as

max
U : |U |=K

‖PD(U )ψ‖
2 < ‖ψ‖2/2, (7)

whereU is any K-combination of the setM ∆
= {0,1, · · · ,M − 1}, D(U ) ∈ RN×K is the submatrix of D

with columns indexed inU and PD(U ) = D(U )
(
D(U )TD(U )

)−1
D(U )T is the projection matrix onto

the subspace spanned by the columns of D(U ). Note that ‖PD(U )ψ‖
2 may be non null sinceψ and s may

not be orthogonal because of partial time-frequency similarities. As opposed to other approaches such
as [14, 42, 12], no statistical model is assumed forψ, no particular interference subspace is considered,
and it is not assumed that interfering transient sounds share common features that the detector can learn
thanks to a training dataset.

3. Detection method
Based on the observation model (1) and for each observation window of size N , our detection problem

is to decide whether µ equals 0 or 1. The decision must be made even if the observation contains interfering
signals (ε = 1). This problem can be cast in the standard binary hypothesis testing framework:




Observation : y = µs + εψ + w, with w ∼ N
(
0,σ2IN

)
,

Null hypothesis H0 : µ = 0,
Alternative hypothesis H1 : µ = 1.

(8)

To be efficient, the detector can take advantage of its knowledge of D. Note that it cannot know θ a priori
because (i) the index of the non-zero entries of θ may change from one call to another and (ii) θ contains
random amplitudes that can strongly be affected by propagation conditions which are not perfectly known
to the detector.

Based on the theory of subspace detector [43, 44], we recently proposed in [10] a detector that shows
optimal properties with respect to false alarm and detection probabilities in the specific case where K = M ,
i.e., without sparsity constraints. This detector can be expressed, in our context, as the following threshold
test [10, Eq. (12)]

Tη (y) =




1 if
‖Dθ̂‖22
‖y − Dθ̂‖22

> η,

0 otherwise,
(9)

where η is the detection threshold and θ̂ is the least-square estimate of θ which satisfies θ̂ = (DTD)−1DT y.
The decision to accept the alternative hypothesis is made when Tη (y) = 1. The detection metric can be
interpreted as an estimate of the signal-to-interference-plus-noise ratio (SINR): Dθ̂ is an estimate of the
signal of interest s and y − Dθ̂ an estimate of the interference plus noise εψ + w. When µ = 0, the SINR
equals and becomes significant for µ = 1. Test (9) was shown in [10] to be asymptotically uniformly most
powerful among invariant tests [45, Ch. 6 & 13]. This property states that when N is much larger than K
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4. ILLUSTRATION WITH REAL DATA

Figure 1– Functional block diagram of SRD.

and for a given false alarm probability, Tη (y) is the test that yields the highest probability of detection
(among invariant tests) for the problem formalized in (5), (7) and (8). Note that in practice, N is often
much larger than K (see Sec. 4 and [10] for instance).

When K << M, i.e., with a sparsity constraint, we suggest to keep the same threshold test (9) but
with a different estimate of θ. This is needed because the least-square estimate of θ is a vector that is very
likely to be filled since no sparsity constraint is enforced. Finding an estimate of θ with K << M is known
as sparse coding in the signal processing literature and is performed with pursuit algorithms [46, 47, 19].
For an observation vector y and a known dictionary D, these algorithms obtain θ̂ as the (approximate)
solution of

min
θ∈RM

‖y − Dθ‖22 subject to ‖θ‖0 ≤ K. (10)

The combination of Eq. (9) and (10) is next referred to as the sparse representation-based detector (SRD).
In practice, long time-series must be analyzed without knowing the time-of-arrival of each individual

call. The standard detection approach in this situation is to repeat test Tη on a sliding window of size
N with an overlap of N − ∆ samples between consecutive windows. The overall detection strategy is
illustrated in Fig. 1.

4. Illustration with real data
The performance of SRD is illustrated with data extracted from two databases: the DCLDE 2015 low

frequency database [24] that contains annotated blue whale D calls and the OHASISBIO 2015 database
[25, 26] that contains annotated “Madagascar” pygmy blue whale calls. These two datasets have been
chosen because they exhibit complementary characteristics in terms of call variability, call complexity,
signal-to-noise ratio and occurrence of transient interfering signals. For the experiments, we do not apply
a cross validation procedure as usually done in supervised machine learning approaches (e.g., 60% of the
available data for training the detector, another 20% for cross-validation, and the rest for test). We believe
that the benefit of an automated detector is the ability, within a data set, to detect much of the data based
on few labelled examples from that particular data (saving human analyst’s effort). Hence, 10% (or less)
training data are randomly selected for the validation. Details are given hereafter.
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Figure 2– Spectrogram of seven consecutive D calls extracted from the DCLDE 2015 dataset.

4.1. DCLDE 2015 dataset
4.1.1. Dataset description

The DCLDE 2015 low frequency database contains annotated blue whale D calls (see Fig. 2) obtained
with high-frequency acoustic recording packages deployed in the Southern California Bight. The analysis
is conducted on data recorded at the CINMS B site (latitude: 34-17.0 N, longitude: 120-01.7 W) in summer
2012. This dataset contains 906 calls over more than 9 days (223.7 h) and the ambient soundscape is very
rich and includes many different kind of interferences (a few examples are shown in Fig. 3). Note also that
interferences occur much more often than D calls so that P[ε = 1] >> P[µ = 1].

The raw data are sampled at 2 kHz. Prior to detection, the data are band-pass filtered between 10 and
120 Hz and down-sampled at f s = 250 Hz. They are also whitened using a FIR filter whose time-varying
impulse response is derived from the knowledge of the noise power spectral density estimated every 300 s
as described in [10, App. A]. Fig. 4 shows the signal-to-noise ratio (SNR) distribution of the D calls. For
each noisy observation y of a call, the SNR is estimated in the 10 to 120 Hz bandwidth as

ESNR =
yT y

N σ̂2
− 1, (11)

where σ̂2 is given by the robust estimator detailed in [10, App. A].

4.1.2. Performance

In this section, the performance of SRD is analyzed for different dictionary sizes M as well as
different sparsity constraints K . It is also compared with the spectrogram correlation-based detector of
the eXtensible BioAcoustic Tool package (XBAT) developed by the Cornell University Laboratory of
Ornithology [13] as well as with a bank of matched filters derived from the generalized likelihood ratio
(GLRT) approach presented in [14]. A total of 815 calls were used to test the performance of the detectors
while the other L = 91 calls (i.e., 10% of the dataset) were used for training the detectors. The training
calls were randomly selected among those with a SNR greater than 5 dB.

Two types of dictionary are tested for SRD. The first one is based on a parametric model known as the
third degree polynomial-phase model (PPM) which represents each atom as [49]

dm (n) = cos *
,
2π

3∑
k=1

fk−1,m

k

(
n
f s

)k
+ α0,m+

-
, 0 ≤ m ≤ M − 1 < L, 0 ≤ n ≤ N − 1, (12)
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4. ILLUSTRATION WITH REAL DATA
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Figure 3– Spectrogram examples of non-D call transient signals. (a) Blue whale pulsed and tonal calls [28].
(b) Fin whale “40 Hz” calls [48]. (c) Unidentified recurrent transient sounds. (d) Unidentified periodic
transient sounds plus a frequency modulated sound.
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Figure 4– Signal-to-noise ratio distribution of the D calls (expressed in percentage of the total number of
annotated D calls).
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4. ILLUSTRATION WITH REAL DATA

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# false alarms per hour

D
et
ec
ti
o
n
ra
te

M=3

M=10

M=30

M=90

K=3

Figure 5– Receiver operating characteristic curve of SRD for several dictionary sizes M .

where α0,m is the initial phase of the m-th atom, f0,m its start frequency, and f1,m and f2,m its frequency
slope and curvature, respectively. This model is well adapted to simple chirps and has already been
successfully applied to the detection of North Atlantic right whale contact calls [14]. The coefficients
fk−1,m are found by minimizing the mean square error between (12) and each training signals. To limit
the search space, it is assumed that f0,m ∈ [20; 110] Hz, f1,m ∈ [−50; 0] Hz/s, f2,m ∈ [0; 10] Hz/s2. Note
that to be invariant to the initial random phase, the in-phase and quadrature components of the signals are
used. SRD combined with model (12) is next referred to as SRD-PPM. The second type of dictionary is
directly build from the data itself where (6) is solved using the K-SVD algorithm [40]. SRD combined
with K-SVD is next referred to as SRD-KSVD.

For the detection, N is set to 1250 (max. call duration=5 s) and ∆ = 15. In Eq. (10), θ̂ is obtained by
applying the orthogonal matching pursuit algorithm (OMP) [47] (the Matlab code for K-SVD and OMP
is available at http://www.cs.technion.ac.il/~ronrubin/software.html). The performance is
assessed by assuming that the annotations provided by the experienced human operators (EHO) represent
the ground truth. Most results are displayed as receiver operating characteristic (ROC) curves, which show
the detection rate of SRD as a function of the average number of false alarms per hour of processed signal.
The number of false alarms is controlled by the choice of the threshold η. The performance analysis is
first conducted with SRD-PPM and then a comparison with SRD-KSVD as well as with other detection
methods is presented.

Fig. 5 shows the impact of the dictionary size M on the performance of SRD-PPM. The M atoms are
built with the M best triplets ( f0,m , f1,m , f2,m ) that minimize the mean square error between (12) and the
L = 91 training signals. The choice of the size M must be made in relation to the level of call variability
observed in the dataset. For truly stereotyped calls, SRD can work well with M small. However, if M is
underestimated, it can degrade the detector performance. This is emphasized by Fig. 5, where the best
performance for detecting D calls in this dataset is obtained for a dictionary size of at least 30 atoms.
Choosing more than 30 atoms only adds some redundancy in the dictionary and therefore does not bring
any performance improvement. However, it does increase the processing time as discussed at the end of
this subsection.

The sparsity constraint K is directly related to the “complexity” of each single call to detect. Signals
combining variability and high complexity (such as erratic signals) must be constructed from a large
number of atoms while signals of low complexity should be composed of a few atoms. As shown in Fig.
6, the simple FM structure of D calls (see Fig. 2) can be well detected by setting K = 3 in (10). If K is
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4. ILLUSTRATION WITH REAL DATA
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Figure 6– Receiver operating characteristic curve of SRD for several sparsity constraints K .
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Figure 7– Detection rate of SRD as a function of the signal-to-noise ratio. The false alarm rate is set to
2.3 false alarms per hour of processed signal.

overvalued, SRD will tend to detect D calls as well as other more complex signals, which will generate
more false alarms. If K is too small, the assumed signal subspace may be to small to capture the D call
variability and SRD may miss some calls.

Fig. 7 details the performance of SRD-PPM as a function of the SNR. The detection threshold is set
to -10 dB, which corresponds to 2.3 false alarms per hour for the setting K = 3 and M = 30. As expected,
the detection rate increases with the SNR and becomes greater than 90% for calls with a SNR greater than
5 dB. Examples of false alarms and missed detections obtained with this setting are displayed in Fig. 8.

The performance of SRD-PPM and SRD-KSVD are compared in Fig. 9. Building the dictionary
from the mathematical model (12) or from the data itself using K-SVD does not significantly impact the
performance for the DCLDE 2015 dataset. However, SRD-KSVD performs slightly worse than SRD-PPM
because of possible overfitting. Slight overfitting can occur when the number L of training signals is not
sufficiently large (in comparison to the possible call variability) so that K-SVD does not learn enough to

RR-2017-04-SC 12



4. ILLUSTRATION WITH REAL DATA

Time (s)

F
re
q
u
en
cy

(H
z)

0 5 10 15

20

40

60

80

100

Time (s)

F
re
q
u
en
cy

(H
z)

0 2 4 6 8

20

40

60

80

100

(a) (b)

Time (s)

F
re
q
u
en
cy

(H
z)

0 2 4 6 8 10

20

40

60

80

100

Time (s)

F
re
q
u
en
cy

(H
z)

0 5 10 15

20

40

60

80

100

(c) (d)

Figure 8– (a)-(b): spectrograms of signals detected by SRD but not selected by the experienced human
operator as D calls. (c)-(d): spectrograms selected by the experienced human operator as D calls but
rejected by SRD.

generalize from trend but tends to memorize too much the training data. Overfitting can also impact the
sensitivity of the detector to the dictionary size and the sparsity constraint. The impact of these parameters
on the ROC curve of SRD-KSVD (not shown here) is very similar to what is observed in Fig. 5 and
Fig. 6, except that SRD-KSVD is slightly more sensitive to change in K and M. Therefore, when the
call structure is quite simple, using a parametric model for the dictionary may be more robust than an
empirical approach. However, as discussed Sec. 4.2, KSVD can be useful when the call structure is more
complex.

SRD is also compared in Fig. 9 with two other detectors: the XBAT software [13], commonly used
to analyze blue whale calls [50, 51, 52], and a bank of matched filters similar to the GLRT expressed in
[14, Eq. (18)]. As opposed to SRD which computes its detection statistics on time series, XBAT performs
spectrogram correlations between the data and some templates pre-selected in the dataset. For the tests, the
30 templates with the highest SNR in the learning dataset were selected. The spectrogram was computed
using a Hamming window of 512 samples with 384 overlapping samples. The bank of matched filters
is derived from a parametric model of the probability density function of the observation y under both
hypothesis H0 and H1 as defined in (8). Given that D calls are simple FM sweeps like contact calls of
North Atlantic right whale, the same model as in [14] is used for comparison. y is assumed to be a locally
stationary Gaussian process whose mean is null under H0 and is a third degree polynomial-phase signal
under H1. For each observation, the unknown parameters ( f0, f1, f2) are replaced by their maximum
likelihood estimates in a likelihood ratio test [53, Ch. 6]. The search space for this estimation is the set of
triplets ( f0, f1, f2) obtained by applying a maximum likelihood estimation on the L = 91 training signals.
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Figure 9– Performance comparison between SRD-PPS, SRD-KSVD, XBAT and a bank of matched filters.
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Figure 10– The blue circles represent the scatter plot of the triplets ( f0, f1, f2) obtained by maximum
likelihood estimation on the training dataset. The green, black and red crosses represent the 2D projections
of these triplets on the ( f0, f1), ( f0, f2), ( f1, f2)-planes, respectively.

These triplets are shown in Fig. 10. As in [14], this parametric approach implicitly assumes thatψ + w is a
zero-mean Gaussian process but with a short period of stationarity to deal with possible impulsiveψ. In
the experiment, this period is set to 15 s so that the covariance matrix of the process is estimated every 15
s using the method described in [14, Sec. III].

As shown in Fig. 9, SRD largely outperforms both XBAT and the bank of matched filters. For less than
10 false alarms per hour, SRD detects between 15% and 20% more calls than XBAT and, for an average
detection rate of 80%, XBAT produces six times more false alarms than SRD. Tests (not shown here)
have also been conducted with a larger number of XBAT templates without showing any performance
improvement. The bank of matched filters performs very poorly and cannot be used as such in rich
soundscapes similar to the DCLDE 2015 dataset. Both methods mostly fail because they are very sensitive
and generate more false alarms than SRD. These results are not imputable to a wrong signal modeling.
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4. ILLUSTRATION WITH REAL DATA

K=3
M 3 10 30 90

SDRTR 301 264 179 38
M=30

K 1 3 10 30
SDRTR 191 179 132 109

Table 1– Signal-duration-to-run-time ratio (SDRTR) as a function of the number of atoms M and the
sparsity constraint K .

Indeed, the D call signal model underlying the XBAT detector can be seen as a specific case of (5) with
K = 1 and real-data atoms, and the signal model for the bank of matched filters is also the one of (5),
with K = 1, combined with the parametric model (12) for the atoms. The way the interfering transient
signals are modeled or implicitly considered by the detectors are responsible for these bad results. For
instance, to derive the GLRT approach of [14], a statistical model of the interference plus noise (ψ + w)
must be chosen. A locally stationary Gaussian model is used for the test. Given the complexity of the
underwater acoustic environment, a single parametric model can hardly encompasses all the diversity of
interfering signals. It seems difficult to find a relevant model when the nature ofψ is very heterogeneous
(Fig. 3) and when P[ε = 1] >> P[µ = 1]. This limitation was already identified in [12] and addressed by
applying a multi-stage method: a GLRT followed by a classification algorithm. While this method can
offer satisfying results, it suffers from a major drawback: the features of the interfering transient noise
must first be identified or learned by the detector (e.g. “The models are based on the spectral properties of
typical kinds of impulsive noise observed in the data.” [12, pp. 360]). Such an approach lacks of general
applicability because the features ofψ may greatly vary from one dataset to another. One strength of SRD
is that it does not try to model the interference itself but defines it with respect to the model of s (see Eq.
(7)).

Table 1 shows the signal-duration-to-run-time ratio (SDRTR) of SRD as a function of M and K .
This ratio is computed as the dataset duration (223.7 h) divided by the total processing time. SRD is
implemented in Matlab (without parallel computing) and runs on a workstation with an Intel Core i7 CPU
M 620 @ 2.67GHz x4 with 5 Gio of RAM. Most of the computation time is spent solving (10) using OMP,
which makes the SDRTR decrease with M and K . For K = 3 and M = 30, SRD can process 24 hours of
signal in less than 12 minutes, which meets the requirements needed to ensure a wide scale deployment.

4.2. OHASISBIO 2015 dataset
4.2.1. Dataset description

The OHASISBIO network of hydrophones was initially deployed in December 2009 at fives sites in
the Southern Indian Ocean to monitor low-frequency sounds, produced by seismic and volcanic events,
and by large baleen whales [25, 26]. 50 hours of signals were extracted from the data recorded nearby La
Reunion Island hydrophone in the Madagascar Basin (latitude: 26-05.0 S, longitude: 058-08 E) in May
2015. These data contain recurrent pygmy blue whale calls of Madagascar type. As shown in Fig. 11,
these calls are composed of two units, named unit A and B is this paper. Unlike the DCLDE 2015 dataset,
the 50 hours of signals extracted from the OHASISBIO dataset does not contain many interfering transient
signals. There are only a few Z-calls of Antarctic blue whales [52] and some earthquakes. Therefore, to
challenge the detector, only the detection of unit B will be considered so that the first unit will act as
an interfering signal from a signal processing perspective. Out of the 50 hours of signals, 1040 B units
were manually annotated by an EHO. The structure of B units is more complex than D calls. It starts
with a pulse centered around 30 Hz, followed by a FM downsweep with harmonics. The pattern of B
units slightly changes from one call to another. Its duration can fluctuate from 15 to 25 s and the relative
amplitude of harmonics may also change but the frequency bandwidth remains the same.
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Figure 11– Spectrogram of “Madagascar” pygmy blue whale calls composed of units A (left) and B
(right).
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Figure 12– Signal-to-noise ratio distribution of B units (expressed in percentage of the total number of
annotated calls).

The data are sampled at f s = 250 Hz and band-pass filtered between 20 and 40 Hz before detection.
They are also whitened using the approach described in Sec. 4.1. Fig. 12 shows the signal-to-noise ratio
distribution of the B units. For each noisy observation y of a call, the SNR is estimated in the 20 to 40 Hz
bandwidth. Note that it contains a large amount of low SNR calls.

4.2.2. Performance

In this section, the performance of SRD is compared with Mellinger and Clark’s spectrogram-based
detector [9]. This detector computes the correlation between a user-defined kernel with the spectrogram
of the data. It has proven efficient to detect calls with relatively stable time-frequency patterns and is
thus a good candidate for pygmy blue whale calls. For this method, the spectrogram is computed using a
512-samples sliding time Hamming window with 384 overlapping samples. 4 hours of signal containing
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Figure 13– Time-frequency kernel used for the detection of “Madagascar” pygmy blue whale calls (unit
B) with Mellinger and Clark’s method [9].

60 calls were randomly chosen to built the training dataset. A total of 46 hours containing 980 calls were
therefore used to test the performance of both detectors.

For Mellinger and Clark’s method, the learning consisted in designing several time-frequency kernels
that match the time-frequency pattern of training signals. The time-frequency kernel resulting in the best
ROC curve on the 4 hours of training data was chosen for the comparison with SRD. This kernel is shown
in Fig. 13. Note that a posteriori verification showed that it was also the one performing the best on the
test dataset. For SRD, the dictionary was learned using K-SVD. As opposed to D calls, the complexity of
B units make it difficult to find a mathematical expression for the dictionary in (5). Although it may be
possible to find one, this expression would probably require to tune many ad-hoc parameters, which is
not desirable. Therefore, designing the dictionary directly from the data is a good option in this context.
The dictionary parameters K and M were chosen as those maximizing the ROC curve on the training
dataset, leading to K = 2 and M = 10. Note that since the B units are quite stable, the performance of
SRD-KSVD is not very sensitive to change in K and M .

SRD-KSVD is compared with Mellinger and Clark’s method in Fig. 14. On the OHASISBIO 2015
dataset, SRD performs the best. As shown in Fig. 15, for a false alarm rate set to the same value (1.6 false
alarms per hour) for both detectors, it is more difficult for Mellinger and Clark’s method to detect low SNR
signals than it is for SRD-KSVD. Since these kind of signals represent a large proportion of the dataset,
the global detection rate is significantly better for SRD-KSVD, especially when the false alarm rate is
smaller than 10 false alarms per hour (note that these numerical results may slightly be affected by errors
that EHO could possibly make in annotating low SNR signals). The signal representations used by the
two detectors may explain the performance difference. On the one hand, the short-time Fourier transform
used in [9] is, by definition, adapted to linear combinations of sine and cosine but is not guaranteed
to be the best representation for signals with more complex structures. One the other hand, the sparse
representation (5) is built from the data itself so it is expected to represent the real data well, and therefore
to be more sensitive to low SNR signals. However, this performance improvement comes at the expense
of computational complexity. Comparison of detector run times shows that, on average, Mellinger and
Clark’s method is 2.3 times faster than SRD-KSVD on the workstation whose configuration is detailed at
the end of Sec. 4.1.
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Figure 14– Performance comparison between SRD-KSVD (K=2, M=10) and Mellinger and Clark’s
method with the time-frequency kernel shown in Fig. 13.
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Figure 15– Detection rate as a function of the signal-to-noise ratio for SRD-KSVD (K=2, M=10) and
Mellinger and Clark’s method with the time-frequency kernel shown in Fig. 13. For both methods the
false alarm rate is set to 1.6 false alarms per hour of processed signal.
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5. CONCLUSION

5. Conclusion
Sparse representations offer new prospects for the detection of mysticete calls. They generalize

standard representations based on time-frequency dictionaries, they can handle the variability of a given
type of call, and, when no parametric model is available, they can automatically be learned from the
digitized time-domain data without requiring prior transforms such as spectrograms, wavelets, cepstrums,
etc. In addition, sparse representations are easy to design since they rely on two parameters only: the
dictionary size and the sparsity constraint. These parameters reflect the degree of variability and complexity
of the call to detect.

When combined with the SINR decision statistic, sparse representations can lead to good detection
performance. Application of this approach to D calls of North Pacific blue whales has shown that a 15%
to 20% detection gain can be achieved compared to a bank of matched spectrograms and also that the
proposed method is much more robust to interfering transient signals than a fully parametric bank of
matched filters. The proposed framework is very general and is applicable to any mysticete call that lies in
a linear subspace that can be described by a dictionary-based representation. The method has also been
applied to “Madagascar” pygmy blue whale calls and has shown to outperform Mellinger and Clark’s
kernel-based spectrogram detector on low SNR calls.

A natural extension of this work would be to apply sparse representations to classify mysticete sounds
[54]. Our intuition is that it may require to tune less (hyper-)parameters than time-frequency contour-based
[7] and/or neural network-based classifiers [55]. In addition, applying a metric similar to the SINR statistic
(9) at the output of a classifier may be relevant to reject any interfering signals, without trying to explicitly
(and exhaustively) learn their features during a training phase. Further research needs to be conducted to
validate these hypotheses.

Acknowledgments
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