Time evolution of the depth profile of {113} defects during transient enhanced diffusion in silicon
Résumé
The evolution of {113} defects as a function of time and depth within Si implant-generated defect profiles has been investigated by transmission electron microscopy. Two cases are considered: one in which the {113} defects evolve into dislocation loops, and the other, at lower dose and energy, in which the {113} defects grow in size and finally dissolve. The study shows that dissolution occurs preferentially at the near-surface side of the defect band, indicating that the silicon surface is the principal sink for interstitials in this system. The results provide a critical test of the ability of physical models to simulate defect evolution and transient enhanced diffusion.
Domaines
Physique [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|