
HAL Id: hal-01736068
https://hal.science/hal-01736068v1

Submitted on 20 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-view Metric Learning in Vector-valued Kernel
Spaces

Riikka Huusari, Hachem Kadri, Cécile Capponi

To cite this version:
Riikka Huusari, Hachem Kadri, Cécile Capponi. Multi-view Metric Learning in Vector-valued Ker-
nel Spaces. The 21st International Conference on Artificial Intelligence and Statistics, Apr 2018,
Lanzarote, Spain. �hal-01736068�

https://hal.science/hal-01736068v1
https://hal.archives-ouvertes.fr


Multi-view Metric Learning in Vector-valued Kernel Spaces

Riikka Huusari Hachem Kadri Cécile Capponi

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Abstract

We consider the problem of metric learning for
multi-view data and present a novel method
for learning within-view as well as between-
view metrics in vector-valued kernel spaces,
as a way to capture multi-modal structure
of the data. We formulate two convex opti-
mization problems to jointly learn the metric
and the classifier or regressor in kernel feature
spaces. An iterative three-step multi-view
metric learning algorithm is derived from the
optimization problems. In order to scale the
computation to large training sets, a block-
wise Nyström approximation of the multi-view
kernel matrix is introduced. We justify our ap-
proach theoretically and experimentally, and
show its performance on real-world datasets
against relevant state-of-the-art methods.

1 Introduction

In this paper we tackle the problem of supervised multi-
view learning, where each labeled example is observed
under several views. These views might be not only
correlated, but also complementary, redundant or con-
tradictory. Thus, learning over all the views is expected
to produce a final classifier (or regressor) that is better
than each individual one. Multi-view learning is well-
known in the semi-supervised setting, where the agree-
ment among views is usually optimized [4, 28]. Yet, the
supervised setting has proven to be interesting as well,
independently from any agreement condition on views.
Co-regularization and multiple kernel learning (MKL)
are two well known kernel-based frameworks for learn-
ing in the presence of multiple views of data [31]. The
former attempts to optimize measures of agreement
and smoothness between the views over labeled and
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unlabeled examples [26]; the latter tries to efficiently
combine multiple kernels defined on each view to exploit
information coming from different representations [11].
More recently, vector-valued reproducing kernel Hilbert
spaces (RKHSs) have been introduced to the field of
multi-view learning for going further than MKL by in-
corporating in the learning model both within-view and
between-view dependencies [20, 14]. It turns out that
these kernels and their associated vector-valued repro-
ducing Hilbert spaces provide a unifying framework for
a number of previous multi-view kernel methods, such
as co-regularized multi-view learning and manifold reg-
ularization, and naturally allow to encode within-view
as well as between-view similarities [21].

Kernels of vector-valued RKHSs are positive semidefi-
nite matrix-valued functions. They have been applied
with success in various machine learning problems, such
as multi-task learning [10], functional regression [15]
and structured output prediction [5]. The main advan-
tage of matrix-valued kernels is that they offer a higher
degree of flexibility in encoding similarities between
data points. However finding the optimal matrix-valued
kernel of choice for a given application is difficult, as is
the question of how to build them. In order to overcome
the need for choosing a kernel before the learning pro-
cess, we propose a supervised metric learning approach
that learns a matrix-valued multi-view kernel jointly
with the decision function. We refer the reader to [3] for
a review of metric learning. It is worth mentioning that
algorithms for learning matrix-valued kernels have been
proposed in the literature, see for example [9, 8, 17].
However, these methods mainly consider separable ker-
nels which are not suited for multi-view setting, as will
be illustrated later in this paper.

The main contributions of this paper are: 1) we intro-
duce and learn a new class of matrix-valued kernels de-
signed to handle multi-view data 2) we give an iterative
algorithm that learns simultaneously a vector-valued
multi-view function and a block-structured metric be-
tween views, 3) we provide generalization analysis of
our algorithm with a Rademacher bound; and 4) we
show how matrix-valued kernels can be efficiently com-
puted via a block-wise Nyström approximation in order
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to reduce significantly their high computational cost.

2 Preliminaries

We start here by briefly reviewing the basics of vector-
valued RKHSs and their associated matrix-valued ker-
nels. We then describe how they can be used for learn-
ing from multi-view data.

2.1 Vector-valued RKHSs

Vector-valued RKHSs were introduced to the machine
learning community by Micchelli and Pontil [19] as a
way to extend kernel machines from scalar to vector
outputs. In this setting, given a random training sample
{xi, yi}ni=1 on X × Y, optimization problem

arg min
f∈H

n∑
i=1

V (f,xi, yi) + λ‖f‖2H, (1)

where f is a vector-valued function and V is a loss
function, can be solved in a vector-valued RKHS H by
the means of a vector-valued extension of the represen-
ter theorem. To see this more clearly, we recall some
fundamentals of vector-valued RKHSs.
Definition 1. (vector-valued RKHS)
A Hilbert space H of functions from X to Rv is called
a reproducing kernel Hilbert space if there is a positive
definite Rv×v-valued kernel K on X × X such that:

i. the function z 7→ K(x, z)y belongs to H, ∀z,x ∈
X , y ∈ Rv,

ii. ∀f ∈ H,x ∈ X , y ∈ Rv, 〈f,K(x, ·)y〉H =
〈f(x),y〉Rv (reproducing property).

Definition 2. (matrix-valued kernel)
An Rv×v-valued kernel K on X × X is a function
K(·, ·) : X × X → Rv×v; it is positive semidefinite if:

i. K(x, z) = K(z,x)>, where > denotes the transpose
of a matrix,

ii. and, for every r ∈ N and all {(xi, yi)i=1,...,r} ∈
X × Rv,

∑
i,j〈yi,K(xi,xj)yj〉Rv ≥ 0.

Important results for matrix-valued kernels include the
positive semidefiniteness of the kernelK and that we ob-
tain a solution for regularized optimization problem (1)
via a representer theorem. It states that solution f̂ ∈ H
for a learning problem can be written as

f̂(x) =

n∑
i=1

K(x,xi)ci, with ci ∈ Rv.

Some well-known classes of matrix-valued kernels in-
clude separable and transformable kernels. Separable

kernels are defined by

K(x, z) = k(x, z)T,

where T is a matrix in Rv×v. This class of kernels is
very attractive in terms of computational time, as it
is easily decomposable. However the matrix T acts
only on the outputs independently of the input data,
which makes it difficult for these kernels to encode nec-
essary similarities in multi-view setting. Transformable
kernels are defined by

[K(x, z)]lm = k(Smx, Slz).

Here m and l are indices of the output matrix (views
in multi-view setting) and operators {St}vt=1, are used
to transform the data. In contrast to separable kernels,
here the St operate on input data; however choosing
them is a difficult task. For further reading on matrix-
valued reproducing kernels, see, e.g., [1, 6, 7, 15].

2.2 Vector-valued multi-view learning

This section reviews the setup for supervised multi-view
learning in vector-valued RKHSs [14, 21]. The main
idea is to consider a kernel that measures not only the
similarities between examples of the same view but also
those coming from different views. Reproducing ker-
nels of vector-valued Hilbert spaces allow encoding in a
natural way these similarities and taking into account
both within-view and between-view dependencies. In-
deed, a kernel function K in this setting outputs a
matrix in Rv×v, with v the number of views, so, that
K(xi,xj)lm, l,m = 1, . . . , v, is the similarity measure
between examples xi and xj from the views l and m.

More formally, consider a set of n labeled data
{(xi, yi) ∈ X × Y, i = 1, . . . , n}, where X ⊂ Rd and
Y = {−1, 1} for classification or Y ⊂ R for regression.
Also assume that each input instance xi = (x1

i , . . . ,x
v
i )

is seen in v views, where xli ∈ Rdl and
∑v
l=1 dl = d.

The supervised multi-view learning problem can be
thought of as trying to find the vector-valued function
f̂(·) = (f̂1(·), . . . f̂v(·)), with f̂ l(x) ∈ Y, solution of

arg min
f∈H,W

n∑
i=1

V (yi,W(f(xi))) + λ‖f‖2. (2)

Here f is a vector-valued function that groups v learn-
ing functions, each corresponding to one view, and
W : Rv → R is combination operator for combining
the results of the learning functions.

While the vector-valued extension of the representer
theorem provides an algorithmc way for computing the
solution of the multi-view learning problem (2), the
question of choosing the multi-view kernel K remains
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crucial to take full advantage of the vector-valued learn-
ing framework. In [14], a matrix-valued kernel based on
cross-covariance operators on RKHS that allow mod-
eling variables of multiple types and modalities was
proposed. However, it has two major drawbacks: i) the
kernel is fixed in advance and does not depend on the
learning problem, and ii) it is computationally expen-
sive and becomes infeasible when the problem size is
very large. We avoid both of these issues by learning a
block low-rank metric in kernel feature spaces.

3 Multi-View Metric Learning

Here we introduce an optimization problem for learning
simultaneously a vector-valued multi-view function and
a positive semidefinite metric between kernel feature
maps, as well as an operator for combining the answers
from the views to yield the final decision. We then
derive a three-step metric learning algorithm for multi-
view data and give Rademacher bound for it. Finally
we demonstrate how it can be implemented efficiently
via block-wise Nyström approximation and give a block-
sparse version of our formulation.

3.1 Matrix-valued multi-view kernel

We consider the following class of matrix-valued kernels
that can operate over multiple views

K(xi,xj)lm =
〈
Φl(x

l
i), CXlXm

Φm(xmj )
〉
, (3)

where Φl (resp. Φm) is the feature map associated to
the scalar-valued kernel kl (resp. km) defined on the
view l (resp. m). In the following we will leave out the
view label from data instance when the feature map
or kernel function already has that information, e.g.
instead of Φl(x

l
i) we write Φl(xi). CXlXm

: Hm → Hl
is a linear operator between the scalar-valued RKHSs
Hl and Hm of kernels kl and km, respectively. The
operator CXlXm

allows one to encode both within-view
and between-view similarities.

The choice of the operator CXlXm
is crucial and depends

on the multi-view problem at hand. In the following we
only consider operators CXlXm

that can be written as
CXlXm

= ΦlAlmΦT
m, where Φs = (Φs(x1), ...,Φs(xn))

with s = l,m and Alm ∈ Rn×n is a positive definite
matrix which plays the role of a metric between the
two features maps associated with kernels kl and km
defined over the views l and m. This is a large set of
possible operators, but depends on a finite number of
parameters. It gives us the following class of kernels

K(xi,xj)lm =
〈
Φl(xi),ΦlAlmΦT

mΦm(xj)
〉

=
〈
ΦT
l Φl(xi),AlmΦT

mΦm(xj)
〉

= 〈kl(xi),Almkm(xi)〉 , (4)

where we have written kl(xi) = (kl(xt,xi))
n
t=1. We

note that this class is not in general separable or trans-
formable. However in the special case when it is possi-
ble to write Aml = AmAl the kernel is transformable.

It is easy to see that the lm-th block of the block
kernel matrix K built from the matrix-valued kernel (4)
can be written as Klm = KlAlmKm, where Ks =(
ks(xi,xj)

)n
i,j=1

for view s. The block kernel matrix
K =

(
K(xi,xj)

)n
i,j=1

in this case has the form

K = HAH, (5)

where H = blockdiag(K1, · · · ,Kv),1 and the matrix
A = (Alm)vl,m=1 ∈ Rnv×nv encodes pairwise similari-
ties between all the views. Multi-view metric learning
then corresponds to simultaneously learning the met-
ric A and the classifier or regressor.

From this framework, with suitable choices of A, we can
recover the cross-covariance multi-view kernel of [14],
or for example a MKL-like multi-view kernel containing
only one-view kernels.

3.2 Algorithm

Using the vector-valued representer theorem, the multi-
view learning problem (2) becomes

arg min
c1,...,cn∈Rv

n∑
i=1

V

yi,W
 n∑
j=1

K(xi,xj)cj


+ λ

n∑
i,j=1

〈ci,K(xi,xj)cj〉.

We set V to be the square loss function and assume
the operator W to be known. We choose it to be
weighted sum of the outputs: W = wT ⊗ In giving us
Wf(x) =

∑v
m=1 wmf

m(x). Let y ∈ Rn be the output
vector (yi)

n
i=1. The previous optimization problem can

now be written as

arg min
c∈Rnv

‖y − (wT ⊗ In)Kc‖2 + λ 〈Kc, c〉 ,

where K ∈ Rnv×nv is the block kernel matrix associated
to the matrix-valued kernel (3) and w ∈ Rv is a vector
containing weights for combining the final result.

Using (5), and considering an additional regularizer
we formulate the multi-view metric learning (MVML)
optimization problem:

min
A,c

‖y − (wT ⊗ In)HAHc‖2 + λ 〈HAHc, c〉 (6)

+ η‖A‖2F , s.t. A � 0.

1Given a set of n × n matrices K1, · · · ,Kv, H =
blockdiag(K1, · · · ,Kv) is the block diagonal matrix sat-
isfying Hl,l = Kl, ∀l = 1, . . . , v.



Multi-view Metric Learning in Vector-valued Kernel Spaces

Here we have restricted the block metric matrix A to
be positive definite and we penalize its complexity via
Frobenius norm.

Inspired by [8] we make a change of variable g = AHc
in order to obtain a solution. Using a mapping (c,A)→
(g,A) we obtain the equivalent learning problem:

min
A,g

‖y − (wT ⊗ In)Hg‖2 + λ
〈
g,A†g

〉
(7)

+ η‖A‖2F , s.t. A � 0.

It is good to note that despite the misleading similari-
ties between our work and that of [8], we use different
mappings for solving our problems, which are also for-
mulated differently. We also consider different classes
of kernels as [8] considers only separable kernels.
Remark. The optimization problem (7) is convex. The
main idea is to note that

〈
g,A†g

〉
is jointly convex (see

e.g. [32]).

We use an alternating scheme to solve our problem.
We arrive to the following solution for g with fixed A:

g = (H(wT⊗In)T (wT⊗In)H+λA†)−1H(wT⊗In)Ty.
(8)

The solution of (7) for A for fixed g is obtained by
gradient descent, where the update rule is given by

Ak+1 = (1− 2µη) Ak + µλ
(
Ak
)†

ggT
(
Ak
)†
, (9)

where µ is the step size. Technical details of the deriva-
tions can be found in the supplementary material (Ap-
pendix A.1). It is important to note here that Equa-
tion (9) is obtained by solving the optimization prob-
lem (7) without considering the positivity constraint
on A. Despite this, (when µη < 1

2 ) the obtained A is
symmetric and positive (compare to [13]), and hence
the learned matrix-valued multi-view kernel is valid.

If so desired, it is also possible to learn the weights w.
For fixed g and A the solution for w is

w = (ZTZ)−1ZTy, (10)

where Z ∈ Rn×v is filled columnwise from Hg.

Our MVML algorithm thus iterates over solving A, g
and w if weights are to be learned (see Algorithm 1,
version a). The complexity of the algorithm is O(v3n3)
for it computes the inverse of the nv × nv matrix A,
required for calculating g. We will show later how
to reduce the computational complexity of our algo-
rithm via Nyström approximation, while conserving the
desirable information about the multi-view problem.

3.3 Illustration

We illustrate with simple toy data the effects of learn-
ing both within- and between-view metrics. We com-
pare our method, MVML, to MKL that considers only

Algorithm 1 Multi-View Metric Learning: with a)
full kernel matrices; b) Nyström approximation
Initialize A � 0 and w
while not converged do

Update g via Equation a) 8 or b) 15
if w is to be calculated then

Update w via Equation a) 10 or b) 17
if sparsity promoting method then

Iterate A with Equation a) 12 or b) 18
else

Iterate A via Equation a) 9 or b) 16
return A, g, w

within-view dependencies, and to output kernel learn-
ing (OKL) [8, 9] where separable kernels are learnt. We
generated an extremely simple dataset of two classes
and two views in R2, allowing for visualization and
understanding of the way the methods perform classifi-
cation with multi-view data. The second view in the
dataset is completely generated from the first, through
a linear transformation (a shear mapping followed by a
rotation). The generated data and transformation aris-
ing from applying the algorithms are shown in Figure 1.
The space for transformed data is R2 since we used
linear kernels for simplicity. Our MVML is the only
method giving linear separation of the two classes. This
means that it groups the data points into groups based
on their class, not view, and thus is able to construct a
good approximation of the initial data transformations
by which we generated the second view.

3.4 Rademacher complexity bound

We now provide a generalization analysis of MVML al-
gorithm using Rademacher complexities [2]. The notion
of Rademacher complexity has been generalizable to
vector-valued hypothesis spaces [18, 27, 24]. Previous
work has analyzed the case where the matrix-valued
kernel is fixed prior to learning, while our analysis
considers the kernel learning problem. It provides a
Rademacher bound for our algorithm when both the
vector-valued function f and the metric between views
A are learnt. We start by recalling that the feature
map associated to the matrix-valued kernel K is the
mapping Γ : X → L(Y,H), where X is the input space,
Y = Rv, and L(Y,H) is the set of bounded linear oper-
ators from Y to H (see, e.g., [19, 7] for more details).
It is known that K(x, z) = Γ(x)∗Γ(z). We denote
by ΓA the feature map associated to our multi-view
kernel (Equation 4). The hypothesis class of MVML is

Hλ = {x 7→ fu,A(x) = ΓA(x)∗u : A ∈ ∆, ‖u‖H ≤ β},

with ∆ = {A : A � 0, ‖A‖F ≤ α} and β is a regu-
larization parameter. Let σ1, . . . ,σv be an iid family
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img/toy_data.pdf img/toy_mkl.pdf img/toy_mvml.pdf img/toy_okl.pdf

Figure 1: Simple two-view dataset and its transformations - left: original data where one of the views is completely
generated from the other by a linear transformation (a shear mapping followed by a rotation), left middle: MKL
transformation, right middle: MVML transformation and right: OKL transformation. MVML shows a linear
separation of classes (blue/pale red) of the views (circles/triangles), while MKL and OKL do not.

of vectors of independent Rademacher variables where
σi ∈ Rv, ∀ i = 1, . . . , n. The empirical Rademacher
complexity of the vector-valued class Hλ is the function
R̂n(Hλ) defined as

R̂n(Hλ) =
1

n
E

[
sup
f∈H

sup
A∈∆

n∑
i=1

σ>i fu,A(xi)

]
.

Theorem 1. The empirical Rademacher complexity
of Hλ can be upper bounded as follows:

R̂n(Hλ) ≤
β
√
α‖q‖1
n

,

where q =
(
tr(K2

l )
)v
l=1

, and Kl is the Gram matrix
computed from the training set {x1, . . . , xn} with the
kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β
√
ατv

n
.

The proof for the theorem can be found in the supple-
mentary material (Appendix A.2). Using well-known
results [22, chapter 10], this bound on Rademacher com-
plexity can be used to obtain a generalization bound
for our algorithm. It is worth mentioning that in our
multi-view setting the matrix-valued kernel is com-
puted from the product of the kernel matrices defined
over the views. This is why our assumption is on the
trace of the square of the kernel matrices Kl. It is
more restrictive than the usual one in the one-view
setting (tr(Kl) ≤ τn), but is satisfied in some cases,
like, for example, for diagonally dominant kernel ma-
trices [25]. It is interesting to investigate whether our
Rademacher bound could be obtained under a much
less restrictive assumption on the kernels over the views,
and this will be investigated in future work.

3.5 Block-sparsity and efficient implemen-

tation via block-Nyström approximation

In this section we consider variant of our formulation (6)
which allows block-sparse solutions for the metric ma-
trix A, and further show how to reduce the complexity
of the required computations for our algorithms.

Block-sparsity We formulate a second optimization
problem to study the effect of sparsity over A. In-
stead of having for example l1-norm regularizer over
the whole matrix, we consider sparsity on a group level
so that whole blocks corresponding to pairs of views
are put to zero. Intuitively, the block-sparse result will
give insight as to which views are interesting and worth
taking into account in learning. For example, by tun-
ing the parameter controlling sparsity level one could
derive, in some sense, an order of importance to the
views and their combinations. The convex optimization
problem is as follows

min
A,c

‖y − (wT ⊗ In)HAHc‖2 + λ 〈HAHc, c〉

+ η
∑
γ∈G
‖Aγ‖F , (11)

where we have a l1/l2-regularizer over set of groups G
we consider for sparsity. In our multi-view setting these
groups correspond to combinations of views; e.g. with
three views the matrix A would consist of six groups:

We note that when we speak of combinations of views
we include both blocks of the matrix that this combi-
nation corresponds to. Using this group regularization,
in essence, allows us to have view-sparsity in our multi-
view kernel matrix.

To solve this optimization problem we introduce the
same mapping as before, and obtain the same solution
for g and w. However (11) does not have an obvious
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closed-form solution for A so it is solved with proximal
gradient method, the update rule being

[Ak+1]γ = (12)(
1− η

‖[Ak − µk∇h(Ak)]γ‖F

)
+

[Ak − µk∇h(Ak)]γ ,

where µk is the step size, h(Ak) = λ
〈
g, (Ak)†g

〉
, and

∇h(Ak) = −λ(Ak)−1ggT (Ak)−1.

We note that even if we begin iteration with positive
definite (pd) matrix the next iterate is not guaranteed
to be always pd, and this is the reason for omitting
the positivity constraint in the formulation of sparse
problem (Equation 11). Nevertheless all block-diagonal
results are pd, and so are other results if certain condi-
tions hold. In experiments we have observed that the
solution is positive semidefinite. The full derivation of
the proximal algorithm and notes about positiveness
of A are in supplementary material (Appendix A.1).

Nyström approximation As a way to reduce the
complexity of the required computations we propose
using Nyström approximation on each one-view ker-
nel matrix. In Nyström approximation method [30],
a (scalar-valued) kernel matrix M is divided in four
blocks,

M =

[
M11 M12

M21 M22

]
,

and is approximated by M ≈ QW†QT , where Q =[
M11 M12

]T and W = M11. Denote p as the number
of rows of M chosen to build W. This scheme gives a
low-rank approximation of M by sampling p examples,
and only the last block, M22, will be approximated.

We could approximate the block kernel matrix K di-
rectly by applying the Nyström approximation, but this
would have the effect of removing the block structure
in the kernel matrix and consequently the useful multi-
view information might be lost. Instead, we proceed in
a way that is consistent with the multi-view problem
and approximate each kernel matrix defined over one
view as Kl ≈ QlW

†
lQ

T
l = Ql(W

†
l )

1/2(W†
l )

1/2QT
l =

UlU
T
l ,∀ l = 1, . . . , v. The goodness of approximation

is based on the p chosen. Before performing the approx-
imation a random ordering of the samples is calculated.
We note that in our multi-view setting we have to
impose the same ordering over all the views. We intro-
duce the Nyström approximation to all our single-view
kernels and define U = blockdiag(U1, · · · ,Uv). We
can now approximate our multi-view kernel (5) as

K = HAH ≈ UUTAUUT = UÃUT ,

where we have written Ã = UTAU. Using this scheme,
we obtain a block-wise Nyström approximation of K

that preserves the multi-view structure of the kernel
matrix while allowing substantial computational gains.

We introduce Nyström approximation into (6) and (11)
and write g̃ = ÃUT c, resulting in

min
Ã,g̃,w

‖y − (wT ⊗ In)Ug̃‖2 + λ〈g̃, Ã†g̃〉 (13)

+ η‖Ã‖2F , s.t. Ã � 0

and

min
Ã,g̃,w

‖y − (wT ⊗ In)Ug̃‖2 + λ〈g̃, Ã†g̃〉 (14)

+ η
∑
γ∈G
‖Ãγ‖F .

We note that the optimization problems are not strictly
equivalent to the ones before; namely we impose the
Frobenius norm regularization over Ã rather than over
A. The obtained solution for (13) will again satisfy
the positivity condition when µη < 1

2 . For the sparse
solution the positivity is unfortunately not always guar-
anteed, but is achieved if certain conditions hold.

We solve the problems as before, and obtain:

g̃ = (UT (wT⊗In)T (wT⊗In)U+λÃ†)−1UT (wT⊗In)Ty,
(15)

Ãk+1 = (1− 2µη) Ãk + µλ(Ãk)†g̃g̃T (Ãk)†, (16)

and
w = (Z̃T Z̃)−1Z̃Ty. (17)

Here Z̃ ∈ Rn×v is filled columnwise from Ug̃. For our
block-sparse method with we get update rule

[Ãk+1]γ = (18)1− η∥∥∥[Ãk − µk∇f(Ãk)]γ

∥∥∥
F


+

[
Ãk − µk∇f(Ãk)

]
γ
,

where ∇f(Ãk) = −λ(Ãk)−1ggT (Ãk)−1 and µk is the
step size.

We follow the same algorithm than before for calcu-
lating the solution; now over Ã and g̃ (Algorithm 1,
version b). The complexity is now of order O(v3p3)
rather than O(v3n3), where p � n is the number of
samples chosen for the Nyström approximation in each
block. From the obtained solution it is possible to
calculate the original g and A if needed.

To also reduce the complexity of predicting with our
multi-view kernel framework, our block-wise Nyström
approximation is used again on the test kernel matrices
Ktest
s computed with the test examples. Let us recall
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Figure 2: Regression on Sarcos1-dataset. Left: normalized mean squared errors (the lower the better), middle:
R2-score (the higher the better), right: running times; as functions of Nyström approximation level (note the
logartithmic scales). The results for KRR are calculated without approximation and are shown as horizontal
dashed lines. Results for view 2 and early fusion are worse than others and outside of the scope of the two plots.

that for each of our single-view kernels, we have an
approximation K ≈ UsU

T
s = QsW

†
sQ

T
s . We choose

Qtest
s to be p first columns of the matrix Ktest

s , and
define the approximation for the test kernel to be

Ktest
s ≈ Qtest

s W†
sQ

T
s = Qtest

s

(
W†

s

)1/2
UT
s .

In such an approximation, the error is in the last n− p
columns of Ktest

s . We gain in complexity, as if forced
to use the test kernel as is, we would need to calculate
A from Ã in O(vn3) operations.

4 Experiments

Here we evaluate the proposed multi-view metric learn-
ing (MVML) method on real-world datasets and com-
pare it to relevant methods. The chosen datasets are
"pure" multi-view datasets, that is to say, the view
division arises naturally from the data.

We perform two sets of experiments with two goals.
First, we evaluate our method in regression setting
with a large range of Nyström approximation levels in
order to understand the effect it has on our algorithm.
Secondly, we compare MVML to relevant state-of-the-
art methods in classification. In both cases, we use non
multi-view methods to justify the multi-view approach.
The methods we use in addition to our own are:
• MVML_Cov and MVML_I: we use pre-set
kernels in our framework: MVML_Cov uses the
kernel from [14] and MVML_I refers to the case
when have only one-view kernel matrices in the
diagonal of the multi-view kernel.2

• lpMKL is an algorithm for learning weights for
MKL kernel [16]. We apply it to kernel regression.

• OKL [8, 9] is a kernel learning method for sepa-
rable kernels.

• MLKR [29] is an algorithm for metric learnig in
kernel setting.

2Code for MVML is available at https://lives.lif.univ-
mrs.fr/?page_id=12

• KRR and SVM: We use kernel ridge regression
and support vector machines with one-view as well
as in early fusion (ef) and late fusion (lf) in order to
validate the benefits of using multi-view methods.

We perform our experiments with Python, but for OKL
and MLKR we use the MATLAB codes provided by
authors3. In MVML we set weights uniformly to 1

v .
For all the datasets we use Gaussian kernels, k(x, z) =
exp(− 1

2σ2 ‖x− z‖2).

4.1 Effect of Nyström approximation

For our first experiment we consider SARCOS-dataset4,
where the task is to map a 21-dimensional input space (7
joint positions, 7 joint velocities, 7 joint accelerations)
to the corresponding 7 joint torques. Here we present
results to the first task.

The results with various levels of Nyström approxi-
mation - averaged over four approximations - from
1% to 100% of data are shown in Figure 2. Regu-
larization parameters were cross-validated over values
λ ∈ [1e-08, 10] and η ∈ [1e-04, 100]. Kernel parameter
γ = 1/2σ2 was fixed to be 1/number of features as
a trade-off between overfitting and underfitting. We
used only 1000 data samples of the available 44484 in
training (all 4449 in testing) to be feasibly able to show
the effect of approximating the matrices on all levels,
and wish to note that using more data samples with
moderate approximation level we can yield a lower error
than presented here: for example with 2000 training
samples and Nyström approximation level of 8% we
obtain error of 0.3915. However the main goal of our
experiment was to see how our algorithm behaves with
various Nyström approximation levels and because of
the high complexity of our algorithm trained on the
full dataset without approximation we performed this
experiment with low amount of samples.

3https://www.cs.cornell.edu/∼kilian/code/code.html
and https://github.com/cciliber/matMTL.

4http://www.gaussianprocess.org/gpml/data.
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Table 1: Classification accuracies ± standard deviation. The number after the dataset indicates the level of
approximation of the kernel. The results for efSVM classification for Flower17-dataset are missing as only similarity
matrices for each view were provided. Last column reports the best result obtained when using only one view.

METHOD MVML MVMLsp. MVML_Cov MVML_I lpMKL OKL MLKR

Flower17 (6%) 75.98 ± 2.62 75.71 ± 2.48 75.71 ± 2.19 76.03 ± 2.36 75.54 ± 2.61 68.73 ± 1.95 63.82 ± 2.51
Flower17 (12%) 77.89 ± 2.41 77.43 ± 2.44 77.30 ± 2.36 78.36 ± 2.52 77.87 ± 2.52 75.19 ± 1.97 64.41 ± 2.41
Flower17 (24%) 78.60 ± 1.41 78.60 ± 1.36 79.00 ± 1.75 79.19 ± 1.51 78.75 ± 1.58 76.76 ± 1.62 65.44 ± 1.36
uWaveG. (6%) 92.67 ± 0.21 92.68 ± 0.17 92.34 ± 0.20 92.34 ± 0.19 92.34 ± 0.18 70.09 ± 1.07 71.09 ± 0.94
uWaveG. (12%) 93.03 ± 0.11 92.86 ± 0.26 92.53 ± 0.18 92.59 ± 0.13 92.48 ± 0.21 74.07 ± 0.26 80.22 ± 0.38
uWaveG. (24%) 92.59 ± 0.99 93.26 ± 0.15 92.66 ± 0.05 93.10 ± 0.11 92.85 ± 0.13 76.65 ± 0.33 86.38 ± 0.31

METHOD efSVM lfSVM 1 view SVM

Flower17 (6%) - 15.32 ± 1.94 11.59 ± 1.54
Flower17 (12%) - 23.82 ± 2.38 15.74 ± 1.54
Flower17 (24%) - 38.24 ± 2.31 22.79 ± 0.79
uWaveG. (6%) 80.00 ± 0.74 71.24 ± 0.41 56.54 ± 0.38
uWaveG. (12%) 82.29 ± 0.63 72.53 ± 0.16 57.50 ± 0.17
uWaveG. (24%) 84.07 ± 0.23 72.99 ± 0.06 58.01 ± 0.05

The lowest error was obtained with our MVMLsparse
algorithm at 8% Nyström approximation level. All
the multi-view results seem to benefit from using the
approximation. Indeed, approximating the kernel ma-
trices can be seen as a form of regularization and our
results reflect on that [23]. Overall our MVML learning
methods have much higher computational cost with
large Nyström parameters, as can be seen from Figure 2,
rightmost plot. However with smaller approximation
levels with which the methods are intended to be used,
the computing time is competitive.

4.2 Classification results

In our classification experiments we use two real-world
multi-view datasets: Flower175 (7 views, 17 classes,
80 samples per class) and uWaveGesture6 (3 views, 8
classes, 896 data samples for training and 3582 samples
for testing). We set the kernel parameter to be mean
of distances, σ = 1

n2

∑n
i,j=1 ‖xi − xj‖. The regulariza-

tion parameters were obtained by cross-validation over
values λ∈ [1e-08, 10] and η ∈ [1e-03, 100]. The results
are averaged over four approximations.

We adopted one-vs-all classification approach for multi-
class classification. The results are displayed in Table 1.
The MVML results are always notably better than the
SVM results, or the results obtained with OKL or
MLKR. Compared to MVML, OKL and MLKR ac-
curacies decrease more with low approximation levels.
We can see that all MVML methods perform very sim-
ilarly, sometimes the best result is obtained with fixed
multi-view kernel, sometimes when A is learned.

5http://www.robots.ox.ac.uk/∼vgg/data/flowers/17.
6http://www.cs.ucr.edu/∼eamonn/time_series_data.

As an example of our sparse output with MVML we
note that running the algorithm with Flower17 dataset
with 12% approximation often resulted in a spd matrix
as in Figure 3. Indeed the resulting sparsity is very
interesting and tells us about importance of the views
and their interactions.

img/flower_sparse_A.pdf

Figure 3: An example of learned Ã with MVMLsparse
from Flower17 (12%) experiments.

5 Conclusion

We have introduced a general class of matrix-valued
multi-view kernels for which we have presented two
methods for simultaneously learning a multi-view func-
tion and a metric in vector-valued kernel spaces. We
provided iterative algorithms for the two resulting opti-
mization problems, and have been able to significantly
lower the high computational cost associated with ker-
nel methods by introducing block-wise Nyström ap-
proximation. We have explained the feasibility of our
approach onto a trivial dataset which reflects the ob-
jective of learning the within-view and between-view
correlation metrics. The performance of our approach
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was illustrated with experiments with real multi-view
datasets by comparing our method to standard multi-
view approaches, as well as methods for metric learning
and kernel learning. Our sparse method is especially
promising in the sense that it could give us information
about importance of the views. It would be interesting
to investigate the applicability of our framework in
problems involving missing data in views, as well as
the generalization properties with the Nyström approx-
imation. We would also like to continue investigating
the theoretical properties of our sparse algorithm in
order to prove the positiveness of the learned metric
matrix that we observed experimentally.
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A Appendix

A.1 MVML optimization

Here we go through the derivations of the solutions
A, D and w for our optimization problem. The pre-
sented derivations are for the case without Nyström
approximation; however the derivations with Nyström
approximation are done exactly the same way.

Solving for g and w

Let us first focus on the case where A and w are fixed
and we solve for g. We calculate the derivative of the
expression in Equation (7):

d

dg
‖y − (wT ⊗ In)Hg‖2 + λ

〈
g,A†g

〉
=

d

dg
〈y,y〉 − 2〈y, (wT ⊗ In)Hg〉

+ 〈(wT ⊗ In)Hg, (wT ⊗ In)HD〉+ λ〈g,A†g〉
= −2H(wT ⊗ In)Ty

+ 2H(wT ⊗ In)T (wT ⊗ In)Hg + 2λA†g

By setting this to zero we obtain the solution

g = (H(wT⊗In)T (wT⊗In)H+λA†)−1H(wT⊗In)Ty.

As for w when A and g are fixed, we need only to
consider optimizing

min
w
‖y − (wT ⊗ In)Hg‖2. (19)

If we denote that Z ∈ Rn×v is equal to reshaping Hg
by taking the elements of the vector and arranging
them onto the columns of Z, we obtain a following
form:

min
w
‖y − Zw‖2. (20)

One can easily see by taking the derivative and setting
it to zero that the solution for this is

w =
(
ZTZ

)−1
ZTy. (21)

Solving for A in (6)

When we consider g (and w) to be fixed in the MVML
framwork (6), for A we have the following minimization
problem:

min
A

λ
〈
g,A†g

〉
+ η‖A‖2F

Derivating this with respect to A gives us

d

dA
λ
〈
g,A†g

〉
+ η‖A‖2F

=
d

dA
λ
〈
g,A†g

〉
+ η tr(AA)

= −λA†ggTA† 7 + 2ηA

Thus the gradient descent step will be

Ak+1 = (1− 2µη) Ak + µλ
(
Ak
)†

ggT
(
Ak
)†

when moving to the direction of negative gradient with
step size µ.

Solving for A in (11)

To solve A from equation (11) we use proximal mini-
mization. Let us recall the optimization problem after
the change of the variable:

min
A,g,w

‖y − (wT ⊗ In)Hg‖2 + λ〈g,A†g〉

+ η
∑
γ∈G
‖Aγ‖F ,

and denote
h(A) = λ

〈
g,A†g

〉
and

Ω(A) = η
∑
γ∈G
‖Aγ‖F

for the two terms in our optimization problem that
contain the matrix A.

7Matrix cookbook (Equation 61): https://www.math.
uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Without going into detailed theory of proximal opera-
tors and proximal minimization, we remark that the
proximal minimization algorithm update takes the form

Ak+1 = proxµkΩ(Ak − µk∇h(Ak)).

It is well-known that in traditional group-lasso situation
the proximal operator is

[proxµkΩ(z)]γ =

(
1− η

‖zγ‖2

)
+

zγ ,

where z is a vector and + denotes the maximum of
zero and the value inside the brackets. In our case we
are solving for a matrix, but due to the equivalence
of Frobenious norm to vector 2-norm we can use this
exact same operator. Thus we get as the proximal
update

[Ak+1]γ =(
1− η

‖[Ak − µk∇h(Ak)]γ‖F

)
+

[Ak − µk∇h(Ak)]γ ,

where

∇h(Ak) = −λ(Ak)−1ggT (Ak)−1.

We can see from the update fromula and the derivative
that if Ak is a positive matrix, the update without
block-multiplication, Ak − µk∇h(Ak), will be positive,
too. This is unfortunately not enough to guarantee the
general positivity of Ak+1. However we note that it is,
indeed, positive if it is block-diagonal, and in general
whenever a matrix of the multipliers α

αst =

(
1− η

‖[Ak − µk∇h(Ak)]st‖2

)
+

is positive, then Ak+1 is, too (see [12] for reference -
this is a blockwise Hadamard product where the blocks
commute).

A.2 Proof of Theorem 1

Theorem 1. Let H be a vector-valued RKHS asso-
ciated with the the multi-view kernel K defined by
Equation 4. Consider the hypothesis class Hλ =
{x 7→ fu,A(x) = ΓA(x)∗u : A ∈ ∆, ‖u‖H ≤ β},
with ∆ = {A : A � 0, ‖A‖F ≤ α}. The empirical
Rademacher complexity of Hλ can be upper bounded as
follows:

R̂n(Hλ) ≤
β
√
α‖q‖1
n

,

where q =
(
tr(K2

l )
)v
l=1

, and Kl is the Gram matrix
computed from the training set {x1, . . . , xn} with the
kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β
√
ατv

n
.

Proof. We start by recalling that the feature map asso-
ciated to the operator-valued kernel K is the mapping
Γ : X → L(Y,H), where X is the input space, Y = Rv,
and L(Y,H) is the set of bounded linear operators
from Y to H (see, e.g., [19, 7] for more details). It is
known thatK(x, z) = Γ(x)∗Γ(z). We denote by ΓA the
feature map associated to our multi-view kernel (Equa-
tion 4). We also define the matrix Σ = (σ)ni=1 ∈ Rnv

R̂n(Hλ) =
1

n
E

[
sup
f∈H

sup
A∈∆

n∑
i=1

σ>i fu,A(xi)

]

=
1

n
E

[
sup
u

sup
A

n∑
i=1

〈σi,ΓA(xi)
∗u〉Rv

]

=
1

n
E

[
sup
u

sup
A

n∑
i=1

〈ΓA(xi)σi, u〉H

]
(1)

≤ β

n
E

[
sup
A
‖

n∑
i=1

ΓA(xi)σi‖H

]
(2)

=
β

n
E

sup
A

 n∑
i,j=1

〈σi,KA(xi, xj)σj〉Rv


1
2

 (3)

=
β

n
E
[
sup
A

(〈Σ,KAΣ〉Rnv )
1/2

]
=
β

n
E
[
sup
A
〈Σ,HAHΣ〉1/2

]
=
β

n
E
[
sup
A
tr(HΣΣ>HA)1/2

]
≤ β

n
E
[
sup
A
tr([HΣΣ>H]2)1/4tr(A2)1/4

]
(4)

≤ β

n
E
[
sup
A
tr(H2ΣΣ>)1/2tr(A2)1/4

]
≤ β
√
α

n
E
[
sup
A
tr(H2ΣΣ>)1/2

]
=
β
√
α

n
E
[
tr(H2ΣΣ>)1/2

]
≤ β
√
α

n

(
E
[
tr(H2ΣΣ>)

])1/2

(5)

=
β
√
α

n

(
tr
[
H2 E(ΣΣ>)

])1/2

=
β
√
α

n

√
‖(tr(K1

2), . . . , tr(Kv
2))‖1.

Here (1) and (3) are obtained with reproducing prop-
erty, (2) and (4) with Cauchy-Schwarz inequality, and
(5) with Jensen’s inequality. The last equality follows
from the fact that tr(H2) =

∑v
l=1 tr(Kl

2). For kernels
kl that satisfy tr(K2

l ) ≤ τn, l = 1, . . . , v, we obtain
that

R̂n(Hλ) ≤ β
√
ατv

n
. �


	Introduction
	Preliminaries
	Vector-valued RKHSs
	Vector-valued multi-view learning

	Multi-View Metric Learning
	Matrix-valued multi-view kernel
	Algorithm
	Illustration
	Rademacher complexity bound
	Block-sparsity and efficient implemen-tation via block-Nyström approximation

	Experiments
	Effect of Nyström approximation
	Classification results

	Conclusion
	Appendix
	MVML optimization
	Proof of Theorem 1


