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Abstract

The strong pathbreadth of a given graph G is the minimum p such that G
admits a Robertson and Seymour’s path decomposition where every bag is
the complete p-neighbourhood of some vertex in G. We prove that deciding
whether a given graph has strong pathbreadth at most one is NP-complete.
The latter answers negatively to a conjecture of [Leitert and Dragan, CO-
COA’16].
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1. Introduction

We refer to [4] for graph terminology. All graphs considered are finite and
simple (hence, with neither loops nor multiple edges). In this paper, we solve
for the first time the complexity of computing the strong pathbreadth of a
given graph — that is a pathlike invariant first introduced in [13]. Roughly, a
graph G = (V, F) has strong pathbreadth at most p if there exists a sequence
X of balls of radius ezactly p in G so that, for any vertex v € V (resp., for
any edge e = {u,v} € E), the balls in X that contain v (resp. that both
contain v and v) induce a nonempty consecutive subsequence. This concept
can be seen as a broad generalization of convex bipartite graphs: a well-
known class of graphs in algorithmic graph theory with strong pathbreadth
equal to one [11].

Related work.. Strong pathbreadth is part of the parameters expressible in
the rich framework of acyclic clustering [9]. We first survey the known
results about this framework. Formally, a Robertson and Seymour’s tree
decomposition (T, X) of G is a pair consisting of a tree 7" and of a family
X = (Xi)iev(r) of subsets of V indexed by the nodes of T' and satisfying:
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e for any edge e = {u,v} € E, there exists a t € V(T') such that u,v €
Xt;

o for any v € V, {t € V(T) | v € X;} induces a subtree, denoted by T,
of T.

The sets X; are called the bags of the decomposition [16]. Furthermore, the
length of (T, X) is the minimum D such that every bag X; € X has weak
diameter max distg(u,v) < D. The breadth of (T, X) is the minimum R

u,vEXt

such that every bag X; € X is included in the complete R-neighbourhood
NEw] = {v € V | distg(v,v:) < R} of some vertex v; € V (v; may not
be in the bag). An acyclic (R, D)-clustering of G is a tree decomposition
of G with respective length and breadth no more than D and R. Such
decompositions can be used in order to obtain compact routing schemes
and to solve approximately some distance related problems on graphs (e.g.,
see [1] and the papers cited therein). More recently, nontrivial relationships
between the existence of acyclic (R, D)-clustering and the treewidth of a
graph have been proved in [5]. The treewidth of a graph G is the minimum
w such that G admits a tree decomposition where all the bags have size at
most w + 1; many NP-hard problems on general graphs can be solved in
quasi linear-time on bounded-treewidth graphs [2].

The complexity of computing acyclic (R, D)-clusterings has been stud-
ied recently. In particular, the treelength of a graph G is the minimum D
such that it admits an acyclic (D, D)-clustering [6]. The treebreadth of G is
the minimum R such that it admits an acyclic (R, 2R)-clustering [7]. Simi-
larly, the pathlength and the pathbreadth of G are, respectively, the minimum
length and breadth of a path decomposition of G — with a path decompo-
sition being any tree decomposition (7', X) where T is prescribed to be a
path [8]. Computing any of these four above parameters is NP-hard [10, 15].
These negative results have motivated the study of a new optimization cri-
terion, hopefully easier to compute. Namely, a tree decomposition (7', X) of
G has strong breadth p if every bag X; € X is the complete p-neighbourhood
Xy = N = {u € V | distg(u,vy) < p} for some vertex vy € Xy. The
strong treebreadth of G (resp., the strong pathbreadth of G) is the minimum
p such that G admits a tree decomposition (resp., a path decomposition) of
strong breadth p. Computing the strong treebreadth of a given graph G is
still NP-hard [13]. However, it was conjectured by the authors in [13] that



the strong pathbreadth of a given graph can be computed in polynomial
time. In this note, we disprove their conjecture.

More precisely, our main result is that deciding whether a graph has
strong pathbreadth equal to one is NP-complete (Theorem 1). We do so by
reducing from a relative of the CHORDAL SANDWICH problem [12]. Similar
reductions have been used for proving the hardness of computing treelength,
treebreadth and their path counterparts. However, we use different gadgets
in our reduction than those presented in [10, 13, 15]. Furthermore, we
use some properties that are specific to strong pathbreadth for proving the
correctness of our reduction.

2. The reduction

Let spb(G) denote the strong pathbreadth of a given graph G. This
whole section is devoted to prove the following result.

Theorem 1. Deciding whether spb(G) = 1 for a given graph G is NP-
complete.

We need to introduce the following additional terminology and nota-
tions. First, we identify any path decomposition (T, X) of G, where T' =
(tl,tg, - ,tk) and X = (Xi)lgigk, with the sequence (Xl,Xg, RN Xk) A
clique-path is a path decomposition where all the bags are cliques (inducing
complete subgraphs), and a graph G is an interval graph if and only if it
has a clique-path [14]. In order to prove Theorem 1, we reduce from the
INTERVALIZING COLOURED GRAPH problem (ICG), defined as follows:

Problem 1 (INTERVALIZING COLOURED GRAPH (ICG)).
Input: A graph G = (V, E); a colouring ¢ : V — {1,...,k}.

Question: Is there an interval supergraph H of G which is properly
coloured by ¢ ¢

ICG is proved to be NP-complete already for k& = 4 (i.e., ¢ is 4-colouring) [3].
This constant upper-bound on the number of colours used will be a key el-
ement in our reduction.

Construction of the graph.. We now describe the reduction from ICG to
the recognition of graphs with unit strong pathbreadth. Let G = (V, FE)
be a graph and ¢ : V. — {1,...4} a proper 4-colouring of G. The graph
G’ = (V' E') is constructed from G as follows.



e Let P be the family of all vertex subsets W C V such that, for every
u,v € W, we have c(u) # c(v). Note that, since ¢ is a 4-colouring,
any such subset W has size [IW| < 4. Hence, we have |P| = O(n%).

Furthermore, let K be a set containing a vertex xy for every subset
WeP. Weset V=VUFEUK.

e We make of K a clique of G’. The other edges in E’ are:

1. the edges {v,e} for every v € V and for every e € E that is
incident to v;
2. the edges {v, zy } for every W € P and for every v € W;

3. finally, the edges {e,zw} for every W € P and for every e =
{u,v} € E such that u,v € W.

The resulting graph G’ can be constructed from G in O(n*)-time.

Correctness.. The correctness of our reduction follows from the two lemmas
that are presented next.

Lemma 2. For every G = (V,E) and ¢ : V. — {1,...,4} being a yes-
instance of ICG, the graph G' = (V', E') of the reduction satisfies spb(G’) =
1.

Proof. Let H be an interval supergraph of G which is properly coloured by ¢
(such a supergraph exists by the hypothesis). Furthermore, let (W7, Wa, ..., Wy)
be a clique-path of H. Observe that, since H is properly coloured by ¢, we
have that, for every 1 < i < ¢, W; € P. We claim that (Ng/[zw, ], No'[2ws], - - -, Nor[zw,])
is a path decomposition of G’. Since the vertices of K are contained in
all the neighbour sets Ng/[zw,|, 1 < i < t, we only need to verify that
(Ner[zw, ]\ K, Ner[zws,) \ K, ..., Nov[zw,] \ K) is a path decomposition of
G'\ K. For that, let us first observe that, for every 1 <1i <t, Ng/|zw,]NV =
W;. Since by the hypothesis (W7, Wa, ..., W;) is a path decomposition of
G, every vertex of V is contained in a nonempty consecutive subsequence of
bags. Furthermore, for every e = {u,v} € E, there is a nonempty consecu-
tive subsequence of bags that both contain u and v, which is by construction
the set of bags Ngs[zw,] containing vertex e. Then, we have that e and its
two neighbours v and v are contained in a common bag N¢[zw;,], for some

1 <4 < t. There are no other vertices and edges in G’ \ K. So, the claim is
proved. It directly implies spb(G’) = 1. O

Lemma 3. If, given G = (V,E) and c: V — {1,...,4}, the graph G’ of the
reduction satisfies spb(G’') = 1, then G and c is a yes-instance of ICG.



Proof. Let (X1, Xa,...,X};) be a path decomposition of G’ such that: every
bag X;, 1 <i < t, is the closed neighbourhood of some vertex of G’; and the
number of pairs u,v € V such that {u,v} € E and u and v are contained in
a common bag is maximized. We claim that (X; NV, XoNV,....X;NV)
is a path decomposition of G. In order to prove it, it suffices to prove
that, for every e = {u,v} € E, there is bag that contains both u and v. By
contradiction, let e = {u,v} € E be such that u and v are not contained in a
common bag. Since (X1, X, ..., X;) is a path decomposition of G’, vertex e
must be contained in a bag. Furthermore, we have Ng[e] = {u, v, e}U{zw €
K | u,v € W}. In particular, every vertex of Neg[e] \ {u,v} is adjacent to u
and v. Hence, since every bag containing e must be the closed neighbourhood
of some vertex in N¢r[e], there must be two consecutive bags X;, X;4+1 such
that {X;, Xi+1} = {Ngr[u], Nor[v]}. However, in this situation X; N X;11 =
{e}U{zw € K | u,v € W} = Ngrle]\ {u,v}. Thus, we could add a new bag
Y = Ngrle] between X; and X;;1, that would increase the number of pairs
u',v" € V such that {u/,v'} € E and v’ and v’ are contained in a common
bag. The latter contradicts the maximality of the path decomposition with
respect to this property, so, v and v must be contained in a common bag. It
proves, as claimed, that (X; NV, XoNV, ..., X;NV) is a path decomposition
of G. Furthermore, by construction we have that for every two vertices
u,v € V such that ¢(u) = ¢(v), there can be no common neighbour of « and
vin G'. As aresult, X; NV € P for every 1 <i < t.
¢

Finally, let H = (V, U{{u,v} | u,v € X;}). It follows from the above
i=1

that H is an interval supergraph of G and that c is a proper colouring of H.

Thus, G and c is a yes-instance of ICG. O

For every graph G = (V,E) and ¢: V — {1,...,4},let G' = (V' E’) the
graph obtained with our reduction. Combining Lemmas 2 and 3, we have
spb(G") = 1 if and only if G and c is a yes-instance of ICG. Since ICG is
NP-complete and that the graph G’ of the reduction can be constructed in
polynomial time, it proves Theorem 1.
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