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On quasi-planar graphs : clique-width and logical description

Motivated by the construction of FPT graph algorithms parameterized by clique-width or tree-width, we study graph classes for which treewidth and clique-width are linearly related. This is the case for all graph classes of bounded expansion, but in view of concrete applications, we want to have "small" constants in the comparisons between these width parameters.

We focus our attention on graphs that can be drawn in the plane with limited edge crossings, for an example, at most p crossings for each edge. These graphs are called p-planar. We consider a more general situation where the graph of edge crossings must belong to a fixed class of graphs D. For p-planar graphs, D is the class of graphs of degree at most p. We prove that tree-width and clique-width are linearly related for graphs drawable with a graph of crossings of bounded average degree.

We prove that the class of 1-planar graphs, although conceptually close to that of planar graphs, is not characterized by a monadic second-order sentence. We identify two subclasses that are.

Introduction

Most fixed-parameter tractable (FPT) algorithms parameterized by tree-width or clique-width need a tree-decomposition of the input graph, or a clique-width term 1 defining it. This observation concerns in particular the linear-time verification of a graph property expressed in monadic second-order logic (an MS property) [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF][START_REF] Courcelle | Linear-time solvable optimization problems on graphs of bounded clique-width[END_REF][START_REF] Downey | Fundamentals of parameterized complexity[END_REF] for graphs of tree-width or clique-width bounded by some fixed value. This method, based on automata 2 , is implemented in the running system AUTOGRAPH 3 . Unfortunately, tree-width and clique-width (and the corresponding optimal decompositions and terms) are difficult to compute 4 [START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF][START_REF] Fellows | Clique-width is NPcomplete[END_REF].

Motivated by the construction of FPT graph algorithms parameterized by cliquewidth or tree-width, and based on automata [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF], we study graph classes C for which clique-width is linearly bounded in tree-width, and we obtain a usable method to construct clique-width terms from tree-decompositions.

We recall that the clique-width of an undirected graph G, denoted by cwd(G), is bounded by 3 • 2 twd(G)-1 where twd(G) denotes its tree-width. We are interested in cases where cwd(G) ≤ a • twd(G) and a is a "small" constant making it possible to use the algorithms developped in [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF], that are based on graph decompositions witnessing "small" clique-width. There are good approximation algorithms for constructing tree-decompositions5 [START_REF] Bodlaender | Treewidth computations I. Upper bounds[END_REF] but presently none for approximating clique-width, without exponential jumps. The cubic-time approximation algorithm of [START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF] produces a clique-width term of width at most 8 k for given k and an input graph of clique-width at most k. Another similar one is in [START_REF] Oum | Approximating clique-width and branch-width[END_REF].

A linear-time algorithm presented in [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF] transforms a tree-decomposition (T, f ) of a graph G into a clique-width term (an algebraic term written with the graph operations upon which clique-width is based) defining the same graph G. If G is in one of the "good" classes we will consider, and the width of (T, f) is k, then the produced clique-width term has width at most a • k. The construction of automata for checking monadic second-order properties is actually easier for clique-width terms than for those encoding tree-decompositions (cf. [START_REF] Courcelle | On the model-checking of monadic second-order formulas with edge set quantifications[END_REF][START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]) and having cwd(G) ≤ a • twd(G) makes such constructions and the algorithm of [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF] usable. For graph classes of bounded expansion [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], we have cwd(G) = O(twd(G)) but the hidden constants arising from the proofs are frequently huge.

In this article, we focus our attention on graphs that can be drawn in the plane with limited edge crossings, for an example, at most p crossings for each edge : these graphs are called p-planar. We consider the more general situation where the graph of edge crossings must belong to a fixed monotone 6class D. For p-planar graphs, D is the class of graphs of degree at most p. If D is the class of graphs having clique number at most p -1 (no p vertices induce a clique), we get the notion of p-quasi-planar graph [START_REF] Ackerman | On the maximum number of edges in topological graphs with no four pairwise crossing edges[END_REF][START_REF] Fox | Coloring K k -free intersection graphs of geometric objects in the plane[END_REF][START_REF] Fox | The number of edges in k-quasi-planar graphs[END_REF].

We will use the term quasi-planar in a wider sense, where this notion depends on a fixed monotone class D that specifies the allowed types of crossings. We will prove that tree-width and clique-width are linearly related for D-quasi-planar graphs if the graphs in D have bounded average degree. This result does not apply to p-quasi-planar graphs, that raise difficult open questions.

We also prove that the class of 1-planar graphs, although conceptually close to that of planar graphs, is not characterized by a monadic second-order sentence. However the classes of outer and optimal 1-planar graphs are. (Definitions are in Section 3).

Summary :

In Section 1 we review definitions and known results, in particular those concerning nowhere dense and bounded expansion graph classes. In Section 2, we compare clique-width to tree-width for quasi-planar graphs. In Section 3, we review some basic notions of monadic second-order logic (MS logic), we prove that 1-planarity is not MS-expressible and we consider two particular classes of 1-planar graphs that are MS definable. We list some open questions in the conclusion.
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Definitions and basic facts

Most definitions are well-known, we review notation and a few results. We denote by ⊎ the union of two disjoint sets, by [k] the set {1, ..., k}, by |X| the cardinality of a set X and by P(X) its powerset.

Graphs

All graphs are nonempty and finite. We will compare tree-width and cliquewidth for undirected simple graphs, i.e., that are loop-free and without parallel edges. The extension of our results to directed graphs is easy, by modifying the proofs of [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF]. Undefined notions are as in [START_REF] Diestel | Graph theory[END_REF].

A graph 7 G has vertex set V G and edge set E G . An edge linking vertices u and v is designated by uv or vu. We denote by G[X] the induced subgraph of G with vertex set X ∩ V G , where X need not be a subset of V G : this convention allows to deal with cases where X ⊆ V H and G is a subgraph of H. Similarly, if X and Y are disjoint sets, then G[X, Y ] is the bipartite graph with vertex set V G ∩ (X ∪ Y ) and whose edges are those of G between X and Y .

If x ∈ V G and r ≥ 0, then N r G (x) denotes the set of neighbours at distance at most r of x, where the distance between two vertices is the minimal number of edges of a path connecting them. We write

N G (x) for N 1 G (x) ; G has radius at most r if V G ⊆ N r G (x) for some vertex x. If X, Y are disjoint sets, we define Ω G (X, Y ) := {N G (x) ∩ Y | x ∈ X ∩ V G } ⊆ P(Y ∩ V G ).
As in [START_REF] Fomin | Rank-width and tree-width of H-minorfree graphs[END_REF], we denote by λ G (k) the maximum cardinality of [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF]).

Ω G (V G -Y, Y ) for Y of cardinality at most k. Hence λ G (k) ≤ 2 k . If, furthermore, 1 ≤ m ≤ k and |N G (x)| ≤ m for each x ∈ X, then λ G (k) = O(k m ) for fixed m (see
A class of graphs is monotone (resp. hereditary) if it is closed under taking subgraphs (resp. induced subgraphs). By an s-coloring of a graph, we mean a proper coloring of the vertices that uses colors in [s] ; "proper" means that adjacent vertices have different colors. For other types of colorings, we will specify the requirements.

The incidence graph of a graph G, denoted by Inc(G), is the bipartite graph defined from G by inserting an additional vertex on each edge ; this vertex represents the corresponding edge. (This is useful for expressing graph properties with edge set quantifications, cf. Section 3).

We will use several times as counter-example the set SC of subdivided cliques, defined as the set of graphs Inc(K r ), for r ≥ 3.

Sparse graphs

We recall that, unless otherwise specified, graphs are simple and undirected. We review some definitions and facts related to sparseness. Definition 1.1 Sparseness and degree bounds. (a) A graph is p-degenerate if each of its subgraphs has a vertex of degree at most p. We denote by D q the class of p-degenerate graphs.

(b) A graph G is uniformly q-sparse if |E H | ≤ q. |V H | for each of its subgraphs H. We denote by U q the class of such graphs. In the terminology of [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], these subgraphs H have edge density at most q and ∇ 0 (G)

denotes max{|E H | / |V H | | H ⊆ G}. For a class of graphs C, ∇ 0 (C) denotes sup{∇ 0 (G) | G ∈ C}. Every (simple) planar graph G is uniformly 3-sparse because |E G | ≤ 3 |V G |- 6. A graph is uniformly ⌈d/2⌉-sparse if its maximum degree is d.
These classes are related by the strict inclusions : U q ⊂ D 2q ⊂ U 2q (cf. [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], Section 3.2). Proposition 1.2 : (1) A graph is in D p if and only if it has an acyclic orientation of indegree at most p. Every graph in D p has a (p + 1)-coloring.

(2) A graph is in U q if and only if it has an orientation of indegree at most q. Every graph in U q has a (2q + 1)-coloring.

Proof : (1) See [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], Proposition 3.2.

(2) See [START_REF] Frank | Connectivity and networks[END_REF], Theorem 6.13 or Proposition 9.40 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF].

We denote by S r (resp. N r ) the class of graphs G that have no subgraph isomorphic to the complete bipartite graph K r,r (resp. to the r-clique K r , hence, whose clique number ω(G) is at most r -1). Hence, S r ⊆ N 2r . We have U q ⊂ S 2q+1 . For every r and q, there are graphs in S r that are not uniformly qsparse (because there is a constant c such that, if r ≥ 3, there is a graph having n vertices and at least c • n 2-2/(r+1) edges, a result by Erdős and Stone, see [START_REF] Diestel | Graph theory[END_REF], Section 7.1). If s ≥ 3, then N s contains the graphs K r,r , hence is not included in any class U q . Definitions 1.3 : Shallow minors, bounded expansion and nowhere dense classes.

We review notions developped by Nešetřil and Ossona de Mendez in [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF] and previous articles.

(a) A minor H of a graph G is obtained by choosing pairwise disjoint nonempty sets of vertices V 1 , ..., V p such that each graph G[V i ] is connected ; the vertices of H are v 1 , ..., v p and there is an edge in H between v i and v j , where i = j, only if there is an edge in G between V i and V j .

Then,

H is a d-shallow minor, if each graph G[V i ] has radius at most d. A 0-shallow minor is just a subgraph.
(b) For a class of graphs C, we denote by C∇d, the class of d-shallow minors of its graphs, and by ∇ d (C) the value ∇ 0 (C∇d). Then, C has bounded expansion if, for each d, ∇ d (C) is finite, equivalently, if for each d, there is an integer q such that every d-shallow minor of a graph in C is in U q (is uniformly q-sparse).

(c) A class of graphs C is nowhere dense if, for each integer d, there is an integer q such that every d-shallow minor of a graph in C is in N q+1 , hence, has clique number at most q.

Examples 1.4 : By [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF][START_REF] Nešetřil | Characterisations and examples of graph classes with bounded expansion[END_REF] the following graph classes have bounded expansion : graphs of bounded degree, minor-closed classes, classes that exclude a topological minor, and for each p, the classes of graphs whose crossing number is at most p and of those that are p-planar, Bounded expansion for a class C implies p-colorability for some p ≤ 1 + 2∇ 0 (C) (by Proposition 1.2) but not vice-versa : the subdivided cliques (in SC) are 2-colorable but do not have bounded expansion as each K r is a 1-shallow minor of Inc(K r ). For the same reason, SC is not nowhere dense.

Classes having locally bounded tree-width or locally bounded expansion ( [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], Section 5.6) are nowhere dense. The class of graphs that have maximal degree no larger than their girth (the minimal size of an induced cycle) is nowhere dense but not uniformly q-sparse for any q, hence has not bounded expansion (Example 5.1 8 in [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF]). Definition 1.5 : Neighbourhood complexity. Let G be a graph, Y a set of vertices and r ≥ 1. We denote by µ r G (Y ) the cardinality of the set (2) A class of graphs C is nowhere dense if and only if :

{N r G (x) ∩ Y | x ∈ V G }. Clearly, λ G (Y ) ≤ µ 1 G (Y ) (because in the definition of µ 1 G (Y ), we may have x ∈ Y ). We define ν r (G) := max{µ r G (Y )/ |Y | | ∅ = Y ⊆ V G , },
∀r ∈ N, ∀ε ∈ R, ∃c ∈ R, ∀G ∈ C, ∀Y ⊆ V G , µ r G (Y ) ≤ c |Y | 1+ε .
Assertion (1) is proved in [START_REF] Reidl | Characterising bounded expansion by neighbourhood complexity[END_REF] and Assertion (2) in [START_REF] Eickmeyer | Neighborhood complexity and kernelization for nowhere dense classes of graphs[END_REF]. The proof of (1) shows in particular that ν r (C) ≤ f(r, ∇ r (C)) for some function f . For our comparison of tree-width and clique-width, we need only bound ν 1 (C). However, the function f is so large that we cannot obtain any usable bound on clique-width. Theorem 1.6 remains of great interest for studies in graph structure.

Tree-width and clique-width

Tree-decompositions and tree-width are well-known [START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF][START_REF] Diestel | Graph theory[END_REF][START_REF] Downey | Fundamentals of parameterized complexity[END_REF], hence we do not repeat the definitions. (We will not manipulate tree-decompositions.) We denote by twd(G) the tree-width of a graph G. Similarly, for clique-width 9 , denoted by cwd(G), we refer the reader to [START_REF] Corneil | On the relationship between clique-width and tree-width[END_REF][START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] (and [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Linear-time solvable optimization problems on graphs of bounded clique-width[END_REF] for the associated FPT algorithms to check monadic second-order graph properties).

Here are a few facts ( [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Example 2.56 and Proposition 2.106) : if r ≥ 2, we have twd(K r ) = r -1, twd(K r,r ) = r and cwd(K r ) = cwd(K r,r ) = 2; if G r,s is the rectangular r × s-grid and r ≤ s, then twd(G r,s ) = r and r + 1 ≤ cwd(G r,s ) ≤ r + 2.

We recall that S r is the class of graphs without subgraphs isomorphic to K r,r . The following results motivate our study.

Theorem 1.7 : (1) For every graph G, we have cwd(G) ≤ 3 • 2 twd(G)-1 . 8 And the existence, for each p of graphs of maximal degree p, chromatic number larger that √ p/2 and of unbounded girth, see [START_REF] Nešetřil | A combinatorial classic -Sparse graphs with high chromatic number[END_REF]. These graphs are not all in any class Uq by Proposition 1.2(2). 9 Vertex labelled graphs are constructed with disjoint union, relabellings (a relabelling replaces everywhere a label a by label b), edge addition operations (add a,b adds an edge between each a-labelled vertex and each b-labelled vertex, unless there is already one, as it is intended to build a simple graph). The basic graphs are isolated labelled vertices. Every graph is defined by a term over these operations. Its clique-width is the minimum number of labels in a term that defines it.

(2) There is no constant c ≥ 1 such that cwd(G) ≤ O(twd(G) c ) for all graphs G.

(3) If G ∈ S r , then twd(G) ≤ 3(r -1)cwd(G) -1.

Proof : Assertions (1) and ( 2) are proved in [START_REF] Corneil | On the relationship between clique-width and tree-width[END_REF]. For proving (2), the authors construct graphs of tree-width 2k and clique-width larger than 2 k-1 . Assertion (3) is proved in [START_REF] Gurski | The tree-width of clique-width bounded graphs without K n[END_REF] (also [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Proposition 2.115).

Our constructions will exploit the following result from [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF] (Theorem 11).

Theorem 1.8 : For every graph G, we have cwd(G) ≤ λ G (twd(G) + 1) + 1.

Corollary 1.9 : (1) If C is a class of graphs having bounded expansion, then cwd(G) ≤ ν 1 (C) • (twd(G) + 1) + 1 for every graph G in C. Hence, for such graphs, clique-width and tree-width are linearly related.

(2) If C is nowhere dense and ε > 0, we have cwd(G) = O(twd(G) 1+ε ) for every graph G in C. Hence, for such graphs, clique-width and tree-width are almost linearly related.

Proof : As in both cases, C excludes some K r,r as a subgraph because K r is a 1-shallow minor of K r,r , Theorem 1.7(3) is applicable. The first parts of the two assertions follow from Theorem 1.8 and Theorem 1.6 with r = 1.

Remarks 1.10

(1) For a comparison, we have cwd(G) = O(twd(G) q ) if G is uniformly q-sparse ( [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF], Theorem 19). No better bound is known 10 , which shows a gap between nowhere density and uniform sparseness. (However, if G is the incidence graph of a hypergraph of tree-width k whose edges have at most q vertices, then cwd(G) = O(k q-1 ) for fixed q by Theorem 22 of [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF]).

(2) The bounds on ν 1 (C) in terms of ∇ 1 (C) derived from the existing proof of Theorem 1.6(1) are extremely large. We are thus motivated to bound directly the ratios cwd(G)/twd(G) for G in particular classes having bounded expansion. That cwd(G) = O(twd(G)) for G in a class having bounded expansion follows also from Theorem 18 of [START_REF] Fomin | Rank-width and tree-width of H-minorfree graphs[END_REF], see Table 2 in Section 2.4.

(3) Graph classes of bounded clique-width are studied in several articles [START_REF] Brandstädt | Bounding the clique-width of H-free chordal graphs[END_REF][START_REF] Brandstädt | New graph classes of bounded clique-width[END_REF][START_REF] Brandstädt | Clique-width for 4vertex forbidden subgraphs[END_REF][START_REF] Dabrowski | Classifying the clique-width of H-free bipartite graphs[END_REF][START_REF] Dabrowski | Clique-width of graph classes defined by two forbidden induced subgraphs[END_REF][START_REF] Kamiński | Recent developments on graphs of bounded clique-width[END_REF]. It would be interesting to have classes of unbounded clique-width for which cwd(G) = O(twd(G) α ) where 0 < α < 1. However, we have no tools for obtaining such results.

(4) The converse of Corollary 1.9 does not hold. Consider the class SC of subdivided cliques. For each r, we have twd(Inc(K r )) ≥ r -1 and cwd(Inc(K r )) ≤ r + 3 (see [START_REF] Bouvier | Graphes et décompositions[END_REF][START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF]). Hence, cwd(Inc(K r )) ≤ twd(Inc(K r )) + 4. But SC has not bounded expansion and is not nowhere dense as observed in Examples 1.4.

We will be interested by graph classes that have no K r,r as a subgraph, and such that λ G is linear with a "small" constant, so that twd(G) = O(cwd(G)) and the corresponding bounding is usable.

Remark 1.11 : About tree-decompositions and Theorem 1.8. Its proof consists in an algorithm that transforms a tree-decomposition (T, f ) of a graph G into a clique-width term t that defines the same graph. If (T, f ) has width k, then t has width m (is built with m labels) where m ≤ λ G (k + 1) + 1. Hence cwd(G) ≤ m. The computation time is linear in the number n of vertices of G for fixed k. More precisely, it is O(n•k(log(k)+m log(m))) by using standard data structures. The values m and k are determined during the computation of t. From λ G we get an upperbound to the computation time, but the algorithm can be used even if λ G (k + 1) is not known or is bounded by a huge value.

The tree-decomposition (T, f) is given by a normal tree T for G, which means that V G is the set of nodes of T , that T is rooted and any two adjacent vertices 11 of G are comparable for the ancestor relation of T , denoted by ≤ T (u < T v if and only if v is an ancestor of u, so that the root is the maximal element). The "box" function f of the tree-decomposition is then defined by :

f (u) := {u} ∪ {v ∈ V G | u ≤ T v and wv ∈ E G for some w ≤ T u}.
Hence, (T, f ) is encoded in a very compact way 12 , just by the function that specifies the father of any node that is not the root.

The notion of tree-depth is based on normal trees. The tree-depth of a connected graph G, denoted by td(G), is the minimum height 13 of a normal tree for G. If G is not connected, its tree-depth is the maximum of those of its connected components. For G with n vertices, we have ( [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], Section 6.4) :

twd(G) + 1 ≤ td(G) ≤ (twd(G) + 1) log(n).

Quasi-planar graphs

We define and study different notions of quasi-planarity.

Definition 2.1 : The crossing graph of a drawing.

Let D be a drawing in the plane of a graph G. The curve segments representing edges -we will call them frequently edges -may cross but not touch. No three edges can cross at a same point, and two edges intersect either at a crossing point or at an end point of both edges. An edge does not cross itself. 1 1 Adjacent nodes in T need not be adjacent in G. 1 2 Assuming that the graph G is also given. 1 3 The height of a rooted tree is the maximum number of nodes on a path between the root and any node.

(Touching points and self-crossings can easily be removed and they have no use in drawings intended to minimize the number of intersections of edges). A drawing is simple if any two edges cross at most once 14 .

If H is a subgraph of G, then D[H] is the drawing of H, inherited from D, obtained by removing the points and curve segments corresponding to vertices and edges not in H.

We define the crossing graph of D, denoted by Ξ(D), as the graph whose vertex set is E G and two vertices are adjacent if and only if the corresponding edges cross. It is the intersection graph of the open curve segments representing the edges.

Table 1 shows how some existing definitions can be expressed in terms of crossing graphs. The column "Some crossing graph has" means : "there exists a drawing whose crossing graph has" this property.

A graph is p-planar if it has a drawing D such that each edge is crossed by at most p others (two edges can cross several times), hence, whose crossing graph has maximum degree at most p. It is simply p-planar if the same holds for a simple drawing. It is clear that a 1-planar drawing can be transformed into a simple 1-planar drawing with no more crossings, but it is not clear whether a similar property holds for p-planar drawings, p ≥ 2.

A graph is p-quasi-planar if it has a drawing whose crossing graph has no pclique. The 2-quasi-planar graphs are nothing but the planar graphs. References for these definitions are [START_REF] Fox | The number of edges in k-quasi-planar graphs[END_REF][START_REF] Kobourov | An annotated bibliography on 1-planarity[END_REF][START_REF] Pach | Graphs drawn with few crossings per edge[END_REF][START_REF] Suzuki | Re-embeddings of maximum 1-planar graphs[END_REF]. Every p-planar graph is (p + 2)-quasiplanar. Furthermore, if p ≥ 3, every simply p-planar graph is (p+1)-quasi-planar ( [START_REF] Angelini | The relationship between k-planar and k-quasi planar graphs[END_REF], the proof is difficult).

Skewness at most p means that we obtain a planar graph by deleting p edges. The crossing number is defined as the minimal number of crossings, and the pairwise crossing number is the minimal number of pairs of edges that cross. Whether it is always equal to the crossing number is an open question (see [START_REF] Székely | A successful concept for measuring non-planarity of graphs: the crossing number[END_REF] for detailed definitions and a survey of results).

All these classes, except for p-quasi planar graphs, are known to have bounded expansion [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], Section 14.2.

Graph property

Some Let D be a monotone class of graphs (i.e., that is closed under taking subgraphs). We say a graph G is D-quasi-planar if it has a drawing whose crossing graph is in D. We denote by QP (D) the class of D-quasi-planar graphs.

Let us review some results and open questions relevant to our concern. The simply p-planar graphs are uniformly q-sparse where q = 4.108 √ p by [START_REF] Pach | Graphs drawn with few crossings per edge[END_REF]. They form a class of bounded expansion (Proposition 2.11). A 1-planar graph has at most 4n-8 edges for n vertices, and 1-planarity is an NP-complete property 15 [START_REF] Cabello | Adding one edge to planar graphs makes crossing number and 1-planarity hard[END_REF][START_REF] Czap | 1-planarity of complete multipartite graphs[END_REF].

The class of p-quasi-planar graphs, studied in [START_REF] Ackerman | On the maximum number of edges in topological graphs with no four pairwise crossing edges[END_REF][START_REF] Fox | Coloring K k -free intersection graphs of geometric objects in the plane[END_REF][START_REF] Fox | The number of edges in k-quasi-planar graphs[END_REF], is QP (N p ). The number of edges of a p-quasi-planar graph with n vertices is conjectured to be O(n) for each fixed p. It is bounded by 16) by [START_REF] Ackerman | On the maximum number of edges in topological graphs with no four pairwise crossing edges[END_REF].

8n if p ≤ 4. Otherwise, it is O(n(log(n)) 4p-

Bounds on clique-width.

We recall from [START_REF] Fomin | Rank-width and tree-width of H-minorfree graphs[END_REF] and [START_REF] Courcelle | From tree decompositions to clique-width terms[END_REF] the proof of the following fact because its argument will be used below in related cases.

Proposition 2.3 : Let k ≥ 3. If G is planar, then λ G (k) ≤ 6k -9.
Proof: We consider a planar graph G, a set Y of k vertices and X := V G -Y . We will bound the number |Ω G (X, Y )|, i.e., the number of sets of the form N G (x) ∩ Y for some x ∈ X. We will write for Ω for Ω G .

We can do that for G[X, Y ] instead of G because removing edges in G[X] or in G[Y ] preserves planarity and does not modify Ω(X, Y ).

We denote by X 1 , X 2 and X 3 the sets of vertices of X having degree, respectively, at most 1, exactly 2 and at least 3 in G[X, Y ]. We have |Ω(X 1 , Y )| ≤ k+1. Next we consider Ω(X 2 , Y ). The bipartite graph G[X 2 , Y ] is planar. For each vertex in X 2 , we link its two neighbours (they are both in Y ). We obtain a planar graph H with vertex set Y of cardinality k. Each edge of

H corresponds to a set in Ω(X 2 , Y ). Hence, |Ω(X 2 , Y )| = |E H | ≤ 3k -6.
We now consider the bipartite planar graph K

:= G[X 3 , Y ]. As each vertex in X 3 has degree at least 3 in K, we have 3 |X 3 | ≤ |E K | . As K is planar and bipartite, |E K | ≤ 2 |V K | -4. Hence, 3 |X 3 | ≤ |E K | ≤ 2(|X 3 | + k) -4 which gives |X 3 | ≤ 2k -4, and so, |Ω(X 3 , Y )| ≤ |X 3 | ≤ 2k -4. Hence, |Ω(X, Y )| = |Ω(X 1 , Y )| + |Ω(X 2 , Y )| + |Ω(X 3 , Y )| ≤ k + 1 + 3k -6 + 2k -4 = 6k -9. Corollary 2.4 : If G is planar with at least one edge, then cwd(G) ≤ 6 twd(G) -2.
Proof: If twd(G) ≥ 2, we get the result by Theorem 1.8 and Proposition 2.3, because 6(k + 1) -9 + 1 = 6k -2. Otherwise, twd(G) = 1, G is a forest and cwd(G) ≤ 3. The inequality also holds.

The class of graphs whose crossing number is at most p is contained in a minor-closed class and has bounded expansion (see [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], Chapter 5). Proof : First an easy observation.

Claim : If G is obtained from a graph H by the addition of m edges (and possibly of vertices as ends of these new edges), then, for each k, λ 

G (k) ≤ λ H (k) + m. Proof : Because at most m sets N G (x)∩Y , x ∈ V G , are not in Ω H (V H -Y, Y ) where Y is a set of k vertices of H. If G
(G) ≤ 6 twd(G) -2 + ⌈p/2⌉.
Remark about the claim : The survey article [START_REF] Gurski | The behavior of clique-width under graph operations and graph transformations[END_REF] states that if one adds or deletes an edge to a graph, one can increase or decrease its clique-width by at most 16 2 (Theorem 9). Hence, if one adds m edges to a graph, one can increase its clique-width by at most 2m. However, Claim 2.5.1 shows that the bound to clique-width expressed in terms of tree-width increases by at most m. There is no contradiction because Theorem 1.8 and Corollary 2.4 yield upperbounds and no exact values.

Let us digress a little, and examine unions of graphs.

Unions of graphs.

Let H and K be concrete graphs (not graphs up to isomorphism). Their union H ∪ K is defined by V H∪K := V H ∪ V K and E H∪K := E H ∪ E K -F where incidences as in H and K, and F is the set of edges of K that have the same two ends as an edge of H (hence H ∪ K is simple). For example, a rectangular grid is the union of two trees. Proposition 2.6 : For any two graphs H and K, and k ≥ 2, we have

λ H∪K (k) ≤ λ H (k) • λ K (k). If H and K are disjoint, then λ H∪K (k) ≤ λ H (k) + λ K (k).
Proof : The first assertion follows from the fact :

Ω H∪K (X, Y ) = {(N H (x) ∩ Y ) ∪ (N K (x) ∩ Y ) | x ∈ X}.
If H and K are disjoint, we have :

1 6
It is an open question whether the number 2 can be replaced by 1.

Ω H∪K (X, Y ) = {N H (x)∩Y | x ∈ X∩V H }∪{N K (x)∩Y | x ∈ X∩V K }
which yields the second assertion.

However, we can get better upper bounds in some cases.

Example 2.7 : If G = H ∪ K, where H and K are planar, then λ G (k) ≤ 9(2k -3) 2 by Propositions 2.3 and 2.6. However, by going back to the proof of Proposition 2.3, we get λ G (k) < 16k 2 . We sketch the proof, by using the notation of that proposition. Without loss of generality, we assume that H and K are edge disjoint. We have

|Ω G (X 1 , Y )| ≤ k+1 and |Ω G (X 2 , Y )| ≤ k(k-1)/2.
We have From the proof of Proposition 2.3, we have:

X 3 = X H ∪ X K ∪ X 2,2 ∪ X 1,2 ∪ X 2,
|X H | , |X K | ≤ 2k -4, |Ω(X 2,2 , Y )| ≤ (3k -6) 2 = 9(k -2) 2 and |Ω(X 1,2 , Y )| , |Ω(X 2,1 , Y )| ≤ (3k -6)(k -2) = 3(k -2) 2 .
Hence,

|Ω(X 3 , Y )| ≤ 4(k -2) + 9(k -2) 2 + 6(k -2) 2 = 4(k -2) + 15(k -2) 2 , |Ω(X, Y )| ≤ k+1 +k(k-1)/2+4(k-2)+15(k-2) 2 ≤ 16k 2 -55k+53, for k ≥ 3.
Remark : Answering a natural question, we observe that the class of graphs H ∪ K where H and K belong to classes having bounded expansion need not have bounded expansion: each subdivided clique is the union of two trees, but SC does not have bounded expansion as noted in Example 1.4.

Sparse crossing graphs

We now consider the graphs in QP (U q ), i.e., those that are drawable with a crossing graph that is uniformly q-sparse.

Lemma 2.8 : (1) Let H ∈ U q . If s ≥ 2 and {V 1 , . . . , V m } is a partition of V H in independent 17 sets of cardinality at most s, then H has a (2sq + 1)-coloring such that the vertices of each set V i have the same color.

(2) If H has maximum degree p, then the same holds with sp + 1 colors.

Proof : (1) We will use facts recalled in Proposition 1.2. The graph H has an orientation of indegree at most q. Let K be obtained from H by fusing, for each i, the vertices of V i into a single vertex. This graph has an orientation of indegree at most sq hence, an (2sq + 1)-coloring. As there is no edge between any two vertices of each V i , we obtain a coloring of H as desired.

(2) Let now H have degree at most p. For each i = 1, ..., m, there is an

(sp + 1)-coloring of H[V 1 ∪ ... ∪ V i ]
such that the vertices of each set V j , j ≤ i, have the same color. The proof is by induction on i. This gives the result.

Remark : If H has maximum degree p, then it is in U q where q := ⌈p/2⌉. If p is even, then (2) gives the same result as [START_REF] Ackerman | On the maximum number of edges in topological graphs with no four pairwise crossing edges[END_REF]. If p = 2r + 1, then the coloring of (1) uses at most 2sr + 2s + 1 colors whereas that of (2) uses only at most 2sr + s + 1 colors. Proposition 2.9 : (1) If G ∈ QP (U q ), then for k ≥ 3, we have λ G (k) ≤ 6k(4q + 1) -48q -9 and so, cwd(G) ≤ 6twd(G)(4q + 1) -24q -2.

(2) If G is p-planar, then for k ≥ 3, we have λ G (k) ≤ 6k(2p + 1) -18p -9 and so, cwd(G) ≤ 6twd(G)(2p + 1) -6p -2.

Proof : (1) Let k ≥ 3, q ≥ 0 and G ∈ QP (U q ). Let Y be a set of k vertices of G and X := V G -Y . As in the proof of Proposition 2.3, we need only consider G[X, Y ].

We partition X into X 1 ⊎ X 2 ⊎ X 3 where X 1 is the set of vertices having at most one neighbour in Y , X 2 is the set of those having exactly two neighbours in Y , and X 3 the set of those having at least 3 neighbours in Y .

We have

|Ω(X 1 , Y )| ≤ k + 1.We now bound |Ω(X 2 , Y )|. Let X 2 be enumerated as {v 1 , . . . , v m }. The bipartite graph G[X 2 , Y ] has a drawing whose graph of crossings H is in U q . Let us partition the set V H , i.e. the set E G[X 2 ,Y ] into V 1 , V 2 , ..., V m
where V i is the set of two edges incident with v i . Any such two edges do not cross, hence are not ajacent in H. By Lemma 2.8, there is a (4q + 1)-coloring of H such that the two vertices of each V i have the same color, call it c i . Let then X 2,j be the set of vertices v i of X 2 such that c i = j. In other words, G[X 2 , Y ] has an edge coloring with colors in [4q + 1] such that the two edges incident with a vertex in X 2 have the same color, and no two edges with same color cross.

The set Ω(X 2 , Y ) is the union of the sets Ω(X 2,j , Y ). Each graph G[X 2,j , Y ] is planar. As in the proof of Proposition 2.3, we get

|Ω(X 2,j , Y )| ≤ 3k -6 = 3(k -2). Hence |Ω(X 2 , Y )| ≤ 3(4q + 1)(k -2).
Next, we bound the cardinality of X 3 that we enumerate as {v 1 , . . . , v r }. We delete from the bipartite graph G[X 3 , Y ] some edges so that each vertex in X 3 has degree exactly 3 in the resulting graph, that we denote by G ′ . It has a drawing D ′ inherited from some drawing D of G whose graph of crossings H is in U q . Hence Ξ(D ′ ) ∈ U q . We get a partition of the set

V Ξ(D ′ ) into V 1 ⊎ ... ⊎ V r
where V i is the set of three edges incident with v i . They do not cross, hence they are not ajacent in Ξ(D ′ ). By Lemma 2.7, there is a proper coloring of Ξ(D ′ ) with colors in [6q + 1] such that the three vertices of each set V i have the same color, call it c i . Let then X 3,j be the set of vertices v i of X 3 such that c i = j. Hence, G ′ [X 3 , Y ] has an edge coloring with at most 6q + 1 colors such that all edges incident with a vertex in X 3 have same color and no two edges with same color cross. Each graph G[X 3,j , Y ] is planar. As in the proof of Proposition 2.3, we get

|X 3,j | ≤ 2k -4. Hence |Ω(X 3 , Y )| ≤ |X 3 | ≤ 2(6q + 1)(k -2).
Finally, we get

|Ω(X, Y )| ≤ k + 1 + 3(4q + 1)(k -2) + 2(6q + 1)(k -2) = 6k(4q + 1) -48q -9.
(2) Assume now that H has degree at most p. By Lemma 2.7, we can use 2p + 1 and 3p + 1 colors for, respectively, X 2 and X 3 , instead of 4q + 1 and 6q + 1. This gives :

|Ω(X, Y )| ≤ k + 1 + 3(2p + 1)(k -2) + 2(3p + 1)(k -2) = 6k(2p + 1) -18p -9.
As observed after Lemma 2.8, this makes a difference with (1) for odd values of p.

The next two propositions show some properties of the classes QP (U q ). Proposition 2.10 : For each q, QP (U q ) ⊆ U 6q+3 . Proof : Let G ∈ QP (U q ) having n vertices. It has a drawing D whose crossing graph Ξ(D) is in U q .

The graph Ξ(D) has a (2q +1)-coloring. Hence G has a (2q +1)-edge coloring such that no two edges having the same color cross in D. Each graph G c , defined as the subgraph of G whose edges have color c is planar, hence has at most 3n-6 edges. Hence G has at most (2q + 1)(3n -6) edges. The same holds for all its subgraphs as they are in QP (U q ). Hence, G ∈ U 6q+3 .

Remark: To prove that p-planar graphs defined from drawings that may not be simple (every edge is crossed by at most p edges) are uniformly 3(p + 1)sparse, we use in the previous proof a (p + 1)-coloring of Ξ(D). The article [START_REF] Pach | Graphs drawn with few crossings per edge[END_REF] proves that simply p-planar graphs (defined from simple drawings) are uniformly m-sparse where m = 4.108 √ p .

We need a definition and a lemma. A path in a graph G is narrow if it has length at least 2 and all its intermediate vertices have degree 2 in G. Two narrow paths are disjoint if no vertex of one is an intermediate vertex of the other. In a drawing, a self-crossing of a narrow path is a point where two edges of this path cross.

Lemma 2.11 : Let P be a set of pairwise disjoint narrow paths in a graph H. A drawing D of H can be transformed into a drawing D ′ of the same graph where no path of P has a self-crossing. The crossing graph Ξ(D ′ ) is a subgraph of Ξ(D ′ ), with same set of vertices.

Proof: We show how to eliminate one self-crossing without introducing new crossings. By repeating this step, one obtains a drawing as desired.

Let D be a drawing of H where a narrow path P from x to y has a selfcrossing at point z of the plane (this point is not a vertex). Assume that P is the sequence of edges f 1 , ..., f p where f 1 = xu 1 , f i = u i-1 u i and f p = u p-1 y. Let z be the crossing point of, say 18 , f 4 and f 8 . On the curve segment u 3 u 4 , let v be the last crossing before z, and v := u 3 if there is no crossing between u 3 and z. On the curve segment u 7 u 8 , let w be the first crossing after z, and w := u 8 if there is no crossing between z and u 8 . On the curve segment S from v to w that concatenates uz and zw, we can place u 4 , ..., u 7 (they have degree 2), and so, S is not crossed. In particular, no edge among f 5 ,...,f 7 is now crossed. All crossings of D lying on the loop consisting of the curve segments zu 4 , u 4 u 5 , ...,u 6 u 7 , u 7 w have disappeared and no new crossing has been created. Hence, Ξ(D ′ ) is a subgraph of Ξ(D) having the same vertices.

A graph Z is a d-shallow topological minor of a graph G if there is a subgraph H of G that is obtained from Z by edge subdivisions, such that each edge e of Z is replaced by a path P e with at most 2d + 1 edges. (Z is then a d-shallow minor.) The paths P e of length at least 2 are pairwise disjoint narrow paths of H. By Corollary 4.1 in [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], a class C has bounded expansion if and only if, for each d, there is an integer q such that the d-shallow topological minors of the graphs in C are in U q Proposition 2.12 : For each q, the class QP (U q ) has bounded expansion. Proof : Let us fix integers q and d. Let G ∈ QP (U q ) and Z be a d-shallow topological minor of G, defined from some subgraph H of G, that is thus also in QP (U q ). It has a drawing D whose crossing graph is in U q .

This drawing yields a potential drawing of Z as follows : for each edge e of Z, the curve segments representing the edges of P e , say f 1 , . . . , f p in this order, are merged into a single curve segment to represent e. If f i and f j cross, then this curve segment has a self-crossing. But self-crossings can be eliminated from D by Lemma 2.11, giving a drawing D ′ of H such that Ξ(D ′ ) is a subgraph of Ξ(D). Hence Ξ(D ′ ) is in U q , and we can choose for it an orientation of indegree at most q.

We get a drawing D ′′ of Z by merging into a single curve segment intended to represent e all curve segments representing the edges of P e . It may have pairs of edges that cross several times.

Let us enumerate as (e, 1), ..., (e, p), where 1 ≤ p ≤ 2d + 1, the edges of P e for an edge e of Z. If e is not subdivided, then (e, 1) denotes e, for the purpose of uniform notation.

The graph Ξ(D ′ ) has now vertices of the form (e, i) for e ∈ E H , and an edge between (e, i) and (e ′ , j) if and only if (e, i) and (e ′ , j) cross. The graph Ξ(D ′′ ) is obtained from Ξ(D ′ ) by fusing, for each e ∈ E Z , the vertices 19 (e, 1), ..., (e, p) into a single one, actually e. For each edge g in Ξ(D ′′ ), say between e and f , we choose (e, i) and (f, j) that are adjacent in Ξ(D ′ ) and we orient g : e → f if and only if (e, i) → (f, j) in the chosen orientation of Ξ(D ′ ). We obtain an orientation of Ξ(D ′′ ) of indegree at most q(2d+1). Hence Z ∈ QP (U q(2d+1) ) and Z ∈ U 6q(2d+1)+3 by Proposition 2.10. Hence, QP (U q ) has bounded expansion. This proposition extends Theorem 14.4 of [START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF] establishing 20 that the class of simply p-planar graphs has bounded expansion.

Remark 2.13 : Another notion of crossing graph.

If D is a simple drawing of a graph G, then we define a graph Γ(D) whose vertices are the (points of the plane representing the) crossings of edges and two crossings are adjacent if they are consecutive on some edge. This graph is planar of maximum degree 4. It has no edge if D is 1-planar. It can have cycles if D is 2-planar. It is easy to prove that Γ(D) is a forest if and only if Ξ(D) is a forest. This alternative notion gives a more visual approach of crossings.

Rank-width

Rank-width [START_REF] Fomin | Rank-width and tree-width of H-minorfree graphs[END_REF][START_REF] Oum | Rank-width is less than or equal to branch-width[END_REF][START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF][START_REF] Oum | Approximating clique-width and branch-width[END_REF] is a graph complexity measure that is equivalent to clique-width in the sense that the same graph classes have bounded rankwidth and bounded clique-width. It provides a polynomial-time approximation algorithm for computing clique-width and clique-width terms [START_REF] Oum | Approximating clique-width and branch-width[END_REF]. It is related to clique-width and tree-width as follows, where rwd(G) denotes the rank-width of a graph :

rwd(G) ≤ cwd(G) ≤ 2 rwd(G)+1 -1 (1) rwd(G) ≤ twd(G) + 1. ( 2 
)
It is proved in [START_REF] Fomin | Rank-width and tree-width of H-minorfree graphs[END_REF] that for every graph G with at least one edge 21 :

cwd(G) ≤ 2λ G (rwd(G)) -1.
Hence, all our results that are based on bounding λ G give bounds of the same type (linear or quasi-linear) for clique-width in terms of rank-width, thus improving inequality [START_REF] Ackerman | On the maximum number of edges in topological graphs with no four pairwise crossing edges[END_REF]. In particular, by Proposition 2.9, we have cwd(G) < 12(rwd(G) + 1)(4p + 1) if G is in QP (U p ). 

Summary of comparisons

Descriptions in monadic second-order logic

The main objective is here to prove that 1-planarity is not monadic second-order expressible 22 (MS-expressible in short). Under the assumption that P = N P , this follows from the fact that 1-planarity is NP-complete for graphs of bounded tree-width [START_REF] Bannister | Parameterized complexity of 1planarity[END_REF], because otherwise, it would be decidable in linear-time 23 [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF][START_REF] Downey | Fundamentals of parameterized complexity[END_REF].

However, we think interesting to give a proof that does not depend on the P = N P assumption. Furthermore, our construction shows that additional conditions like considering graphs of bounded degree do not make 1-planarity MS-expressible.

We will also consider particular classes of 1-planar graphs that are MS definable. A 1-planar graph is optimal if it has the maximum number of edges, that is 4n -8, for n vertices. It is u-1-planar, which means uniquely 1-planarly embeddable, if any two 1-planar drawings are homeomorphic, as embeddings in the sphere. We denote by U1P the class of u-1-planar graphs. An optimal 1-planar graph is u-1-planar unless it is isomorphic to one of particular graphs denoted by XW 2k , cf. [START_REF] Suzuki | Re-embeddings of maximum 1-planar graphs[END_REF].

We first review a few definitions about monadic second-order logic (only those needed). The reader knowing it (cf. [START_REF] Courcelle | Automata for the verification of monadic second-order graph properties[END_REF][START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF][START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF][START_REF] Courcelle | Linear-time solvable optimization problems on graphs of bounded clique-width[END_REF]) can skip the next subsection.

MS formulas and transductions from words to graphs.

Logical expression of graph properties.

For representing a graph G, we use the logical structure V G , edg G where edg G is the binary symmetric ajacency relation. We identify G and V G , edg G .

Monadic second-order logic (MS logic in short ; see [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF] for a thorough study) allows set quantifications (but no quantifications on relations, such as subrelations of edg G ). Set variables are capital letters ; they denote sets of vertices. The following MS sentence 24 

ϕ : ∃X, Y.(X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒ [¬(u ∈ X ∧ v ∈ X) ∧ ¬(u ∈ Y ∧ v ∈ Y )∧ ¬(u / ∈ X ∪ Y ∧ v / ∈ X ∪ Y )]}) expresses that G is 3-colorable (X, Y and V G -(X ∪ Y ) are the three color classes). Formally, G is 3-colorable if and only if G |= ϕ. Hence, 3-colorability is MS-expressible.
For expressing that G is a cycle with at least 3 vertices, we use :

3vertices ∧ degree2 ∧ connectivity.
Connectivity is expressed by :

¬∃X.(X = ∅ ∧ (∃x.x / ∈ X)∧ ∀u, v.{edg(u, v) =⇒ (u ∈ X =⇒ v ∈ X)}).
2 4 A sentence is a logical formula without free variables.

The reader will easily write the sentences 3vertices expressing that the graph has at least 3 vertices and degree2 expressing that all its vertices have degree 2.

Edge set quantifications.

We already defined 25 Inc(G), the incidence graph of G = V G , edg G . Here, we consider it as the bipartite graph V G ∪ E G , inc G where E G is the set of edges and inc G is the incidence relation : inc G (e, u) holds if and only if u is an end of edge e.

An edge of G becomes a vertex in Inc(G); it is no longer defined as a pair of vertices. The edges are the elements that occur as first components of pairs in inc G . Hence, an MS formula over a structure W, inc intended to be some Inc(G) can distinguish the edges from the vertices of the potential graph G and check that it is actually an incidence graph. An MS formula over V G ∪E G , inc G can use edge set quantifications to express a property of G. An MS 2 graph property is a property that is expressed on incidence graphs by an MS sentence. An example of an MS 2 property that is not MS-expressible is the existence of a Hamiltonian cycle. It is expressed in Inc(G) by : "there exists a set X ⊆ E G such that the graph Inc(G)[X ∪ V G ] is a cycle" However, for each q, the same properties of graphs in U q are MS 2 and MSexpressible. Formally, every MS sentence ϕ written with inc can be translated into an MS one ϕ [q] , written with edg, such that, for every graph G in U q we have G |= ϕ [q] if and only if Inc(G) |= ϕ (Chapter 9 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]).

Properties of words.

Let A be a finite alphabet. A nonempty word 26 w over A of length n is represented by the logical structure S(w) := [n], ≤, (lab a ) a∈A where each i ∈ [n] is a position, i.e., an occurrence of some letter. The binary relation ≤ is the order of positions and the unary relations lab a indicate where letters occur : lab a (u) is true if and only if a occurs at position u. Formulas of MS logic use quantified variables denoting here sets of positions of the considered word represented by S(w).

For an example, the formula

∃X∀u.(u ∈ X =⇒ (lab a (u) ∨ ∃v.(v / ∈ X ∧ u < v ∧ lab b (u))))
says that there is a set X of positions that are either occurrences of a, or are before a occurrences of b not in X. Note the use of

u < v abreviating u ≤ v ∧ ¬(u = v).
A well-known result [START_REF] Thomas | Languages, automata, and logic[END_REF] says that a language L ⊆ A + is regular if and only if it is MS definable, which means that there exists an MS sentence ϕ such that w ∈ L if and only if S(w) |= ϕ.

Languages of the form

L 0 := {(ab) n c n | n ≥ 1} or L 1 := {(ab) n c m | n ≥ 3m+4}
, to take two typical examples, are not MS definable because they are not regular. The latter fact is proved as follows. For every language L and word u, L/u := {v ∈ A * | uv ∈ L}. If L is regular, there are only finitely many distinct languages L/u. But there are infinitely many languages L 0 /(ab) n c = {c n-1 } for n ≥ 1, and similarly, L 1 /(ab) n c. Hence, L 0 and L 1 are not regular.

Monadic second-order transductions.

Monadic second-order transductions are transformations of logical structures specified by MS formulas. We only review the very particular ones that will be used in the proof of Theorem 3.4. They transform words into graphs.

Let us fix A as above and two MS formulas α and η(x, y) written with ≤ and the unary relation symbols lab a (u) (x, y are free first-order variables in η).

Let τ be the partial mapping from words in A + to graphs, defined as follows : τ(w) = G if and only if S(w) = V, ≤, (lab a ) a∈A |= α and, if this is true, G := V, edg where the edge relation edg is defined by: edg(x, y) :⇐⇒ S(w) |= η(x, y).

The positions in w are made into vertices of G. The formula η(x, y) must be written so that the relation it defines is symmetric and irreflexive 27 (as τ defines undirected and loop-free graphs).

The main fact we will use about transductions is the following lemma, a special case of the Backwards Translation Theorem, Theorem 7.10 of [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF]. Lemma 3.0 : If τ is an MS transduction and ϕ is an MS sentence, then, the set of words w such that τ (w) |= ϕ is MS definable and is thus a regular language.

Proof sketch: We let ψ be obtained from ϕ by replacing each atomic formula edg(u, v) by η(u, v). Then, the words w such that τ (w) |= ϕ are those such that S(w) |= α ∧ ψ.

To prove that a graph property P is not MS definable, it suffices to construct τ such that the set of words w such that τ (w) satisfies P is not regular. We will do that for proving Theorem 3.4.

1-planarity is not MS definable

We need some definitions and notation. Definitions 3.1. (a) Let G be a graph. We denote by P (x 1 , x 2 , ..., x n ) where n ≥ 2, a path from x 1 to x n , with vertices x 1 , x 2 , ..., x n in this order, and by C(x 1 , x 2 , ..., x n ) where n ≥ 3, a cycle with vertices x 1 , x 2 , ..., x n , such that we have P (x 1 , x 2 , ..., x n ) and an edge x 1 x n .

Consider a drawing D of G in the plane, with possible edge crossings. A cycle C(x 1 , x 2 , ..., x n ) without any self-crossing (no two of its edges cross) induces two open regions of the plane: the bounded one is denoted by R(x 1 , x 2 , ..., x n ) and the unbounded one by R ∞ (x 1 , x 2 , ..., x n ). The edges, i.e., the curve segments representing the edges of

C(x 1 , x 2 , ..., x n ), are not in R(x 1 , x 2 , ..., x n ) ∪ R ∞ (x 1 , x 2 , ..., x n ).
If the cycle has self-crossings, it determines at least three open regions of the plane. It separates two vertices u and v if these vertices are (that is, the corresponding points are) in different regions, and then, any path between u and v must cross some edge of the cycle or go through one of x 1 , x 2 , ..., x n .

Two drawings are homeomorphic if they are so as embeddings in the sphere.

(b) For n ≥ 4, let G n be the graph with vertices a i , b i , c i , d i , e i , f i for i = 1, ..., n. Figure 1 shows G 6 . A cross in a quandrangular face indicates two edges that cross, for instance a 1 b 2 and a 2 b 1 .

The graph G n has 6n vertices and 24n -8 -(n -3) = 23n -5 edges. It is 1-planar but not optimal because of the n -3 missing edges d i c i+1 for i = 2, ..., n -2. It has 8 vertices of degree 6, 2n -6 of degree 7 and all others have degree 8.

We let Q n be the planar subgraph induced by the vertices c i and d i for i = 2, ..., n -1. Proposition 3.2 : Each graph G n has a unique 1-planar drawing. Proof: We will compare the (natural) 1-planar drawing D of G n (Figure 1 shows D for G 6 , from which the general case is easily understood) to an arbitrary 1-planar drawing D. Without loss of generality (since we consider graph embeddings in the sphere) we can assume that all vertices (except a 1 , a 2 , f 1 ) are in the bounded region R(a 1 , a 2 , f 1 ) of D, as in Figure 1 for D. In this figure, the edges of C(a 1 , a 2 , f 1 ) are the thickest ones. Note that a 2 f 1 is crossed by the "thin" edge a 1 f 2 ; hence the unbounded region R ∞ (a 1 , a 2 , f 1 ) contains half of the edge a 1 f 2 and no vertex. We will prove that D it is homeomorphic to D. In our discussion, points (vertices), edges, triangles (3-cycles), cycles, regions etc. will refer to D.

First, observe that in any 1-planar drawing, a 4-cycle has at most one crossing. Claim 1 : Let C(x, y, z) be a triangle in G n and u, v be distinct vertices not in {x, y, z}. There are at least four edge-disjoint paths between u and v that avoid the vertices x, y, z. The triangle C(x, y, z) does not separate u and v.

Proof : Let H := G n -{x, y, z}. Removing any 3 edges of H keeps it connected. Hence, by Menger's Theorem ( [START_REF] Diestel | Graph theory[END_REF], Section 3.3), there are at least 4 edge-disjoint paths between u and v in H. These paths are in G n and they avoid x, y, z. Let us give an example:

u = d 1 , v = d i , x = c i , y = c i+1 , z = d i+1 , 2 ≤ i ≤ n -1.
We have the four edge-disjoint paths: 

P (d 1 ,
P (d 1 , c 1 , b 1 , a 1 , a 2 , ..., a n , f n , f n-1 , ..., f i , e i , d i ).
Going back to the general case, if the triangle C(x, y, z) separates u and v, then one of its edges must be crossed twice. This is not possible.

Claim 2 : Let C(x, y, z) = C(a 1 , a 2 , f 1 ). Then R(x, y, z) does not contain any vertex.

Proof: We have R(x, y, z) ⊂ R(a 1 , a 2 , f 1 ). Assume a 1 / ∈ {x, y, z). If u ∈ R(x, y, z), then C(x, y, z) separates a 1 and u which contradicts Claim 1. The proof is the same with a 2 or f instead of a 1 .

Claim 3 : Let C(x, y, z) be as in Claim 2. If one edge of C(x, y, z), say xy, is crossed by an edge uv, then u or v is z and the two edges, xz and yz are not crossed.

Proof : By Claim 2, no end of uv is in R(x, y, z). Hence, u or v is z. If another edge would cross xz, it should have an end equal to y, but it would cross also uz (or vz). This contradicts 1-planarity.

Claim 4 : Let C(x, y, z) and C(x, y, u) be triangles such that {x, y, z, u} ∩ {a 1 , a 2 , f 1 } = ∅. Either R(x, y, z) and R(x, y, u) are disjoint, and we may have an edge zu crossing xy, or they overlap (i.e., R(x, y, z) -R(x, y, u) = ∅ and R(x, y, u) -R(x, y, z) = ∅), xy is not crossed, and either xz crosses yu or yz crosses xu. If C(x, y, v) is a third triangle such that v / ∈ {a 1 , a 2 , f 1 } then xy is not crossed.

Proof: In a planar drawing, either R(x, y, z) and R(x, y, u) are disjoint, or one is included in the other, that is, either z ∈ R(x, y, u) or u ∈ R(x, y, z). As D is 1-planar, we may have in the first case edge zu crossing xy. We cannot have z ∈ R(x, y, u) or u ∈ R(x, y, z) by Claim 2, hence the second case cannot happen. As D is 1-planar, we may also have xz crossing yu or yz crossing xu, but not both. By Claim 3, xy is not crossed.

If we have three triangles sharing the edge xy, two of them overlap. Hence, xy is not crossed. Proof: Assume for getting a contradiction that cc ′ crosses dd ′ , so that cd does not cross c ′ d ′ .

Consider the triangle C(b, c, c ′ ). The edge dd ′ crosses cc ′ , and thus cannot cross edge bc or bc ′ . Hence, C(b, c, c ′ ) separates d and d ′ . This is impossible by Claim 1 as there are 4 edge-disjoint paths between d and d ′ that avoid b, c, c ′ (one of them can be dd ′ ).

Assume now similarly that cd crosses c ′ d ′ , so that cc ′ does not cross dd We now prove the main statement. We consider a 1-planar drawing D of G n and D as in Figure 1. For both of them, all vertices except a 1 , a 2 , f 1 are in the bounded region R(a 1 , a 2 , f 1 ). Claims 1 to 7 hold for D and D.

occurrence of a and the following occurrence of b, between the last occurrence of a and the last occurrence of f , etc.

Hence, H n,m is the image of S(w) under an MS-transduction τ. This transduction maps the words of the regular language W := {(abcdef) n g m | n ≥ 4, m ≥ 0} to the graphs H n,m , in a bijective way.

If 1-planarity would be MS-expressible, then, by Lemma 3.0, the language L := W ∩τ -1 (1P) would be MS definable, hence regular. But L = {(abcdef ) n g m | n ≥ 4, m ≥ 2n -8} and this language is not regular (we recalled in Subsection 3.1 how such a fact can be proved). If the class U1P would be MS definable, then the language {(abcdef ) n g 2n-8 | n ≥ 4} would be regular, which is not the case either, by a similar argument.

It follows that 1-planar graphs are not characerized by finitely many forbidden configurations such as minors, subgraphs or induced subgraphs. This is not surprizing because 1-planarity is an NP-complete property [START_REF] Cabello | Adding one edge to planar graphs makes crossing number and 1-planarity hard[END_REF][START_REF] Czap | 1-planarity of complete multipartite graphs[END_REF]. They are even not characterized by an infinite set of forbidden induced subgraphs that would be MS definable, as are comparability graphs and interval graphs [START_REF] Courcelle | The monadic second-order logic of graphs XV: On a conjecture by D. Seese[END_REF].

A natural question is then : What additional conditions might may 1-planarity MS-expressible ?

Our proof yields a corollary for three classes of graphs. One of them is H, the class of graphs having a Hamiltonian cycle and a 1-planar drawing where any two edges of this cycle do not cross.

Next, we recall that a rotation system for a graph G describes the circular ordering of the edges incident to each vertex u in some drawing in the plane, either planar or not (see [START_REF] Courcelle | The monadic second-order logic of graphs XIII: Graph drawings with edge crossings[END_REF]). In the logical setting, this circular order is defined as a ternary relation N ext(u, x, y) that means : ux and uy are edges, and uy follows ux in the circular order of edges, according to some fixed orientation of the plane. We have Next(u, x, x) if ux is the unique edge incident with u. Each drawing of the graph (with possible crossings) yields a rotation system, but this drawing may not be reconstructible from the rotation system. A pair (G, N ext) of a graph and a rotation system is called a map (see [START_REF] Courcelle | The monadic second-order logic of graphs XIII: Graph drawings with edge crossings[END_REF]). A map (G, N ext) is 1-planar if G has a drawing whose associated rotation system is Next. (2) Each graph H n,m where n is odd (and at least 5) has a Hamiltonian cycle. If m ≥ 2n -8, then H n,m has a 1-planar drawing where such a cycle has no self-crossing. See Figure 2, where n = 7, from which the general case can We replace the language W of the proof of Theorem 3.4 by the regular language

W ′ := {(abcdef ) 2p+1 g m | p ≥ 2, m ≥ 0}.
If H would be MS definable, then the language

W ′ ∩ τ -1 (H) = {(abcdef) 2p+1 g m | p ≥ 2, m ≥ 2(2p + 1) -8}
would be regular, which is not the case.

(3) Each graph H n,m can be equipped with a rotation system Next n,m such that the map M n,m := (H n,m , N ext n,m ) is 1-planar if and only if H n,m is. The relation N ext n,m is easily described by a first-order formula γ(u, x, y).This formula will express that Next n,m (u, x, y) holds if, to take only a few clauses as examples :

u is an occurrence of letter c, x is the occurrence of c following u and y is the occurrence of letter d that follows x, or, u is an occurrence of c, y is the occurrence of d following u and x is the occurrence of d that follows y, or, y, u, x are three consecutive occurrences of letter g. Hence, we have an MS transduction that construct M n,m from a word. The proof continues as in the other cases.

Remark: An alternative construction.

Let us define J n,m as G 4 augmented with new vertices g 1 , ..., g m , h 1 , ..., h n , a path P (d 2 , g 1 , ..., g m , c 3 ) and n paths P (c 2 , h i , d 3 ) for i = 1, ..., n. Then J n,m is 1-planar if and only if n ≤ m. The proof of Theorem 3.4 is easily adapted. However, cf. Corollary 3.5, the graphs J n,m have unbounded degree, and no Hamiltonian cycle for large n; nevertheless, they have path-width at most 8 and a rotation system for J n,m , as in the proof of Corollary 3.5 can be defined from a word (abcdef ) 4 g m h n that defines it.

Edge-set quantifications do not help. Theorem 3.4 deals with MS sentences that do not use edge-set quantifications. As 1-planar graphs are uniformly 4-sparse, MS 2 sentences are no more powerful than MS ones to express their properties (cf. Section 3.1). Hence, Theorem 3.4 also shows that the classes 1P and U 1P are not MS 2 definable. Some positive monadic second-order expressibility results. We denote by OpP the class of outer p-planar graphs 28 , that is, that have a Hamiltonian cycle and a simple p-planar drawing such that this cycle has no self-crossing and all other edges are inside the bounded region it defines. The class O1P is included in H considered in Corollary 3.5.

An outer 1-planar graph is actually planar : consider a corresponding drawing; the edges not in the Hamiltonian cycle C can be put into two sets, say F and F ′ each of them having no two crossed edges; then the edges of F ′ can be redrawn outside of C, and we get a planar drawing. We prove in the appendix that its tree-width is at most 3.

Proposition 3.6: The class of optimal 1-planar graphs and the class of outer 1-planar graphs are MS definable.

Proof: We will use MS 2 sentences to define these classes. Optimal graphs. By Theorem 11 of [START_REF] Suzuki | Re-embeddings of maximum 1-planar graphs[END_REF], a graph G is optimal (as 1-planar graph) if and only if it consists of a 3-connected quandragulated planar graph H and edges added in the following way : for each 4-cycle C(x, y, z, u) of H, one adds the (crossing) edges xz and yu.

An MS 2 sentence for describing these graphs can be written of the form ∃F.ϕ(F ) where F is denotes a set of edges and ϕ(F ) expresses the following conditions relative to a graph G :

(a) Every vertex is the end of an edge in F, (b) the graph H := (V G , F ) is 3-connected and planar, it has no 3-cycle and every p-cycle for p ≥ 5 has a chord, (c) for every edge xz not in F , there is in H a 4-cycle of the form C(x, y, z, u), (d) for every 4-cycle C(x, y, z, u) of H, the edges xz and yu are in E G -F.

Outer 1-planar graphs. They are described by an MS 2 sentence of the form ∃F.ψ(F ) where F denotes a set of edges and ψ(F ) expresses the following conditions relative to a graph G :

(a) F is the set of edges of a Hamiltonian cycle C, Let A be the class of 1-planar graphs G that are apex, which means that removing one vertex makes G planar.

Open question: Is membership in A MS-expressible ? A difficulty comes from the following fact : if D is a 1-planar drawing of G ∈ A, it is not necessarly the case that D[G ′ ] is planar for some subgraph G ′ of G obtained by removing one vertex. This means that we may have to consider 1-planar drawings with crossings for planar graphs.

For an example, Figure 3 shows a 1-planar drawing of a planar graph H. This graph is 3-connected and has thus a unique planar drawing. Let G be H augmented with a vertex x and edges xa, xb, xc, xe, xh, xf : it is 1-planar and apex. However, G has no 1-planar drawing D such that D[V G -{x}] is planar, because it is not possible to insert x in the (unique) planar drawing of H so as to get a 1-planar drawing of G. Furthermore, removing from G any other vertex than x yields a graph that is not planar, because in each case, this graph has a K 5 minor.

Conjecture: For each p ≥ 2, the class of p-planar graphs is not MS definable.

The p-planar graphs are obviously more complicated than the 1-planar ones, which motivates the conjecture. The graph H n,m of the proof of Theorem 3.4 is 2-planar if n -4 ≤ m. If the converse holds, which we think, we get a proof of the conjecture for p = 2.

The same conjecture can be made for QP (F orest) and the class of p-quasiplanar graphs.

Conclusion

We have exhibited graph classes for which clique-width and tree-width are linearly related. Apart from understanding graph structure, our motivation is to use tree-decompositions as intermediate steps for constructing clique-width terms, for graphs in classes of unbounded clique-width.

For some classes of bounded clique-width, "good" clique-terms can be constructed in polynomial time by using modular decomposition 29 instead of treedecomposition as preliminary step, for example in [START_REF] Brandstädt | New graph classes of bounded clique-width[END_REF].

More open questions

(1) Which planar graphs have no 1-planar drawing with crossings ? Likely, regarding our proof of Proposition 3.2, the triangulated graphs of high edgeconnectivity are so.

(2) Which 1-planar graphs are u-1-planar ? In particular, which edges can be removed from an optimal 30 u-1-planar graph so that it remains u-1-planar ?

(3) Are the classes of p-quasi-planar graphs (for p > 2) nowhere dense ? Do they have bounded expansion ? Independently of quasi-planarity, we can also ask : (4) Does there exist a real number α < q such that cwd(G) = O(twd(G) α ) for all G in U q ?

5 Appendix: Outer 1-planar graphs We recall that outerplanar graphs have tree-width at most 2, [START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF].

Proposition 5.1 : Outer 1-planar graphs have tree-width at most 3 and clique-width at most 6.

Proof sketch : We use induction on the number of edges to prove that every graph in O1P has tree-width at most 3. In this proof, we allow parallel edges, which have no effect on tree-width.

The smallest nontrivial graph in O1P is K 4 .

  and, for a class C, ν r (C) := sup{ν r (G) | G ∈ C}. Theorem 1.6 : (1) A class of graphs C has bounded expansion if and only if ν r (C) is finite for each r.

Corollary 2 . 5 :

 25 If G has crossing number p, then cwd(G) ≤ 6 twd(G) -2 + ⌈p/2⌉.

Figure 1 :

 1 Figure 1: The graph G 6 .

  d 2 , ..., d i ), P (d 1 , e 1 , e 2 , ..., e i-1 , d i ), P (d 1 , b 1 , b 2 , ..., b n , e n , e n-1 , ..., e i+1 , d i ) and

Claim 5 :

 5 Let C(x, y, z) and C(u, v, w) be such that {x, y, z, u, v, w} ∩ {a 1 , a 2 , f 1 } = ∅. If R(x, y, z) and R(u, v, w) overlap, then these two triangles share an edge.Proof: By Claim 2, the two triangles share a vertex, say x = u. Assume for a contradiction that {y, z} ∩ {v, w} = ∅. If xy and xz do not cross vw, then, again by Claim 2, {y, z} ∩ R(u, v, w) = ∅, hence, R(x, y, z) ∩ R(u, v, w) = ∅ contradicting the hypothesis. Assume xy crosses vw, then xz does not (otherwise vw has two crossings) and yz does not cross any edge of C(u, v, w). Hence, either v or w is in R(x, y, z) which contradicts Claim 2. Hence, {y, z}∩{v, w} = ∅ which proves the statement. The two triangles are thus as in Claim 4.Next we consider D[Q n ]. This drawing is a union of triangles that contain no vertex. We will prove that it is planar. (The graph Q n is planar but this does not imply that the 1-planar drawingD[Q n ] is because c 3 c 4 might cross d 3 d 4 .) We consider a 4-cycle C(c i , d i , d i+1 , c i+1 ) where 2 ≤ i ≤ n -2.Its vertices are denoted for simplicity and respectively by c, d, d ′ , c ′ . We will also use b denoting b i and d ′′ denoting d i+2 .Claim 6 : The edge cc ′ does not cross dd ′ and the edge cd does not cross c ′ d ′ .

  ′ .The vertex d ′′ will play the role of b in the previous proof. The triangle C(c ′ , d ′ , d ′′ ) separates c and d, which contradicts Claim 1. Hence, the cycle C(c, d, d ′ , c ′ ) is not self-crossing. Claim 7 : No edge of Q n is crossed by any edge of G n . Proof : Each edge of the Hamiltonian cycle C(c 2 , c 3 , ..., c n-1 , d n-1 , ..., d 3 , d 2 ) of Q n is incident with three triangles, hence, is not crossed by Claim 4. An edge crossing c i d i+1 should link d i and c i+1 , and an edge crossing c i d i should link c i-1 and d i . But the graph G n has no such edges. As there are no crossings between edges of Q n , the drawing D[Q n ] is planar. Furthermore, by Claim 2, none of its triangles contains any vertex. Hence, D[Q n ] is as in Figure 1: the drawing is outerplanar with Hamiltonian (external) cycle C(c 2 , c 3 , ..., c n-1 , d n-1 , ..., d 3 , d 2 ). All other edges of Q n are in R(c 2 , c 3 , ..., c n-1 , d n-1 , ..., d 3 , d 2 ).

Corollary 3 . 5 :

 35 The following classes of structures are not MS definable: (1) for each d ≥ 8, the class of 1-planar graphs of degree at most d or of path-width at most d,(2) the class H, (3) the class of 1-planar maps.Proof : (1) This is immediate because the graphs H n,m have maximal degree 8 and path-width at most 8.

Figure 2 :

 2 Figure 2: A non-self-crossing Hamiltonian cycle in a graph H 7,m (for any m).

Figure 3 :

 3 Figure 3: A 1-planar drawing of a planar graph H.
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crossing graph has: Planarity No edge Pairwise crossing number ≤ p At most p edges Skewness ≤ p No edge after removing p vertices p-planarity Degree at most p p-quasi-planarity Clique number at most p -1 .2 : Quasi planarity.

  has crossing number p, it has a drawing D such that Ξ(D) has at most p edges. By removing at most ⌈p/2⌉ vertices of Ξ(D) and their incident edges, one can get a graph without edges. Hence, by removing at most ⌈p/2⌉ edges of G, one can get a graph H whose drawing D[H] has no crossings. Hence, H is planar, and by Proposition 2.3 and the claim, we have λ G (k) ≤ 6 k -9 + ⌈p/2⌉. As in Corollary 2.4, we get cwd

  [START_REF] Ackerman | On the maximum number of edges in topological graphs with no four pairwise crossing edges[END_REF] where : X H is the set of vertices incident with at least 3 edges of H, and similarly for X

K , X 2,2 is the set of vertices incident with 2 edges of H and two edges of K, X 1,2 is set of vertices incident with one edge of H and 2 edges of K, X 2,1 is similar by exchanging H and K.

Table 2

 2 shows the main results.

	Graph class	Bound on clique-width	Proof
		for G of tree-width k	
	S r U q Nowhere dense	O(k r ) O(k q ) O(k 1+ε ) for each ε > 0	[31], Theorem 21 [17], Theorem 19 Corollary 1.9
	Bounded expansion		
	or just ∇ 1 (G) ≤ b No K r minor	2 2b+1 (k + 1) O(k)	[31], Theorem 18 [31], Theorem 10
	QP (U q ) p-planar planar (= 0-planar) 6k -2 6(k + 1)(4q + 1) -24q -2 6(k + 1)(2p + 1) -6p -2 degree ≤ d d(k + 1) + 2	Proposition 2.9 Proposition 2.9 Corollary 2.4 Remark below

Table 2 .

 2 

Remark : For a graph G of degree at most d and a set Y of k vertices, each vertex of Y belongs to at most d sets N G (x)∩Y for x / ∈ Y , because it has degree at most d. Hence, λ G (k) ≤ kd + 1, and cwd(G) ≤ d(twd(G) + 1) + 2.

Clique-width is defined from algebraic terms that are based on a tree-shaped decomposition of the considered graph.

2 called fly-automata, because they compute their transitions instead of storing them in huge, unmanageable

tables.[START_REF] Arnborg | Complexity of finding embeddings in a k-tree[END_REF] AUTOGRAPH can even compute values associated with graphs[START_REF] Courcelle | Computations by fly-automata beyond monadic second-order logic[END_REF], for an example, the number of 3-colorings. It is written in Common Lisp by I. Durand. See http://deptinfo.labri.u-bordeaux.fr/~idurand/autograph. An online version, currently in development, is in http://

trag.labri.fr.[START_REF] Bannister | Parameterized complexity of 1planarity[END_REF] It is possible to decide in linear time if a graph G of tree-width k has clique-width at most m, for fixed k and m[START_REF] Espelage | Deciding clique-width for graphs of bounded tree-width[END_REF], but the complicated algorithm does not highlight the structural properties of G ensuring

that cwd(G) ≤ m.[START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF] The recent algorithm of[START_REF] Bodlaender | A c k n 5-approximation algorithm for treewidth[END_REF] is not practically usable. Efficient algorithms can be obtained from the PACE challenge: see https://pacechallenge.wordpress.com/pace-2017/tracka-treewidth/

As in[START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF], we call monotone a class of graphs closed under taking subgraphs and hereditary a class closed under taking induced subgraphs.

We review the representations of graphs by logical structures and monadc second-order logic in Section 3.1.

0 Looking for c such that cwd(G) = O(twd(G) c ) may be formulated as bounding log(cwd(G))/ log(twd(G)). This type of formulation is used in[START_REF] Nešetřil | Sparsity, Graphs, structures and algorithms[END_REF].

[START_REF] Bannister | Parameterized complexity of 1planarity[END_REF] Graphs are always simple, without loops and parallel edges, but their drawings may not be simple.

[START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF] Even if one adds a single edge to a planar graph.

[START_REF] Bodlaender | Treewidth computations I. Upper bounds[END_REF] Also called stable : no two vertices are adjacent.

[START_REF] Bouvier | Graphes et décompositions[END_REF] The proof is the same if z is a crossing point of any f i and f j such that i < j.

[START_REF] Brandstädt | Bounding the clique-width of H-free chordal graphs[END_REF] They form an independent set in Ξ(D ′ ).

0 This theorem is stated for drawings where each edge has at most p crossings. Its proof is incorrect as it uses the result of[START_REF] Pach | Graphs drawn with few crossings per edge[END_REF] concerning simply p-planar graphs for drawings that need not be simple.

1 From (2), one gets cwd(G) ≤ 2λ G (twd(G) + 1) -1, to be compared with Theorem 1.8. 2 2 Monadic second-order logic is reviewed in the next subection. 2

Since every MS definable graph property is decidable in linear time on any class of bounded tree-width.

[START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF] in a more concrete way. 2 6 A + denotes the set of nonempty words over A, and A * denotes A + together with the empty word.

[START_REF] Bodlaender | Treewidth computations I. Upper bounds[END_REF] To ensure this, one can take η(x, y) of the form (η ′ (x, y) ∨ η ′ (y, x)) ∧ x = y for some MS formula η ′ (x, y).

[START_REF] Bouvier | Graphes et décompositions[END_REF] Not to be confused with that of p-outer planar graphs that have tree-width at most

3p -1 by[START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF].

[START_REF] Brandstädt | Bounding the clique-width of H-free chordal graphs[END_REF] Modular decomposition can be computed in linear time, see[START_REF] Habib | A survey of the algorithmic aspects of modular decomposition[END_REF].

0 Not all optimal 1-planar graphs are u-1-planar, cf.[START_REF] Suzuki | Re-embeddings of maximum 1-planar graphs[END_REF].

This work has been supported by the ANR project GraphEn started in October 2015.

Let G n be obtained from G n by adding the edges d i c i+1 for i = 2, ..., n-2. It is an optimal 1-planar graph because it has a 1-planar drawing and its number of edges is 23n -5 + n -3 = 4 • 6n -8.

By Claim 7, we can transform D and D into 1-planar drawings of G n by putting each additional edge d i c i+1 inside R(d i , d i+1 , c i+1 , c i ) that contains already a single edge and no vertex. We obtain two 1-planar drawings of G n . They are homeomorphic because G n is optimal and is not one of the special graphs XW 2k (cf. [START_REF] Suzuki | Re-embeddings of maximum 1-planar graphs[END_REF]). Hence D and D are also homeomorphic, by the same homeomorphism.

For proving Theorem 3.4, we define, for n ≥ 4 and m ≥ 0, the graph H n,m as G n augmented with m new vertices g 1 , ..., g m and edges forming the path P (d 2 , g 1 , g 2 , ..., g m , c n-1 ).

Proof: If m ≥ 2n -8, we obtain a 1-planar drawing of H n,m by putting :

and the remaining vertices,

We now prove that, if m < 2n -8, we cannot do any similar construction. Let us fix n. Assume D is a 1-planar drawing of H n,m where m < 2n -8 and m is minimal with this property. It induces a drawing of G n that must be homeomorphic to that of Figure 1, by Proposition 3.2.

The path P := P (d 2 , g 1 , g 2 , ..., g m , c n-1 ) has no self-crossing, otherwise, we can shorten it and obtain a 1-planar drawing of H n,m ′ where m ′ < m.

No edge of G n apart from c i d i+1 for i = 2, ..., n-2, and c i d i for i = 2, ..., n-2, can be crossed. Hence P must be drawn inside R(c 2 , c 3 , ..., c n-1 , d n-1 , ..., d 3 , d 2 ). It must cross 2n -7 edges, hence have at least 2n -8 intermediate vertices. We cannot have m < 2n -8.

If m > 2n -8, these intermediate vertices can be placed in different ways.

If m = 2n -8, the way described above is the unique one.

We will use the transductions described in Section 3.1.

Theorem 3.4 : The class 1P of 1-planar graphs and the class U1P of uniquely 1-planary embeddable graphs are not monadic second-order definable.

Proof: We define H n,m from a word w of the form (abcdef ) n g m over the alphabet A := {a, b, c, d, e, f, g}. Each position in the word w is a vertex of H n,m . The i-th occurrence of letter a is a i , and similarly for b i , c i , d i , e i , f i , g i . The edges of H n,m are described by a first-order formula relative to the structure S(w) = P, ≤, (lab x ) x∈A where P := [6n+m] is the set of positions of w. It says that there is an edge between an occurrence of a and the next one, between an Consider G in O1P. If it has a vertex x of degree 2 with neighbours y and z, we delete it and we add an edge between y and z. If there are two parallel edges, we remove one. In both cases, we obtain G ′ in O1P with one edge less than G. It has tree-width at most 3 and so has G.

Otherwise, we assume that none of these transformations is applicable. Let C(x 1 , ..., x n ) be the Hamiltonian cycle. The internal edges are x i x i+p , such that 1 ≤ i, 2 ≤ p, i + p ≤ n (except x 1 x n because we have eliminated parallel edges).

There exist pairs of internal edges x i x i+p and x j x j+q that cross, which means that i < j < i + p < j + q. Each of them is not crossed by any other edge. Consider such a pair such that j + qi is minimal. It is of the form {x i x i+2 , x i+1 x i+3 }. We remove x i+2 , x i+1 and the incident edges, and we add the edge x i x i+3 : we get a smaller graph G ′ in O1P having a tree decomposition (T, f ) of width at most 3 by the induction hypothesis. Some box f(u) contains x i and x i+3 . By adding to T a box consisting of x i , x i+1 ,x i+2 , x i+3 attached to u, we get a tree decomposition of G of width 3.

From this proof, we can build a graph-grammar of type HR ( [START_REF] Courcelle | Graph structure and monadic second-order logic, a language theoretic approach[END_REF], Chapter 4), and we can express its rules with clique-width operations using 6 labels. Hence, the outer 1-planar graphs have clique-width at most 6. This proof shows that outer planar graphs have clique-width at most 31 [START_REF] Bodlaender | A partial k -arboretum of graphs with bounded treewidth[END_REF].

We conjecture that outer p-planar graphs have bounded tree-width.