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Abstract

Motivated by the construction of FPT graph algorithms parameterized
by clique-width or tree-width, we study graph classes for which tree-
width and clique-width are linearly related. This is the case for all graph
classes of bounded expansion, but in view of concrete applications, we
want to have "small" constants in the comparisons between these width
parameters.

We focus our attention on graphs that can be drawn in the plane with
limited edge crossings, for an example, at most p crossings for each edge.
These graphs are called p-planar. We consider a more general situation
where the graph of edge crossings must belong to a fixed class of graphs
D. For p-planar graphs, D is the class of graphs of degree at most p.
We prove that tree-width and clique-width are linearly related for graphs
drawable with a graph of crossings of bounded average degree.

We prove that the class of 1-planar graphs, although conceptually close
to that of planar graphs, is not characterized by a monadic second-order
sentence. We identify two subclasses that are.

Introduction

Most fixed-parameter tractable (FPT) algorithms parameterized by tree-width
or clique-width need a tree-decomposition of the input graph, or a clique-width

∗This work has been supported by the ANR project GraphEn started in October 2015.
It has benefitted of the author’s participation to the workshops Logic and Computational
Complexity in Shonan, Japan and GROW 2017 on Graph Classes, Optimization, and Width
Parameters organized by the Fields Institute in Toronto, Canada.
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term1 defining it. This observation concerns in particular the linear-time verifi-
cation of a graph property expressed in monadic second-order logic (an MS prop-
erty) [20, 21, 26] for graphs of tree-width or clique-width bounded by some fixed
value. This method, based on automata2 , is implemented in the running system
AUTOGRAPH3 . Unfortunately, tree-width and clique-width (and the corre-
sponding optimal decompositions and terms) are difficult to compute4 [3, 30].

Motivated by the construction of FPT graph algorithms parameterized by clique-
width or tree-width, and based on automata [18, 19], we study graph classes C
for which clique-width is linearly bounded in tree-width, and we obtain a usable
method to construct clique-width terms from tree-decompositions.

We recall that the clique-width of an undirected graphG, denoted by cwd(G),
is bounded by 3 · 2twd(G)−1 where twd(G) denotes its tree-width. We are inter-
ested in cases where cwd(G) ≤ a · twd(G) and a is a "small" constant making it
possible to use the algorithms developped in [18, 19], that are based on graph
decompositions witnessing "small" clique-width. There are good approxima-
tion algorithms for constructing tree-decompositions5 [7] but presently none
for approximating clique-width, without exponential jumps. The cubic-time ap-
proximation algorithm of [44] produces a clique-width term of width at most 8k

for given k and an input graph of clique-width at most k. Another similar one
is in [45].

A linear-time algorithm presented in [17] transforms a tree-decomposition
(T, f) of a graph G into a clique-width term (an algebraic term written with the
graph operations upon which clique-width is based) defining the same graph G.
If G is in one of the "good" classes we will consider, and the width of (T, f) is k,
then the produced clique-width term has width at most a · k. The construction
of automata for checking monadic second-order properties is actually easier for
clique-width terms than for those encoding tree-decompositions (cf. [16, 18, 20])
and having cwd(G) ≤ a · twd(G) makes such constructions and the algorithm
of [17] usable. For graph classes of bounded expansion [41], we have cwd(G) =
O(twd(G)) but the hidden constants arising from the proofs are frequently huge.

In this article, we focus our attention on graphs that can be drawn in the
plane with limited edge crossings, for an example, at most p crossings for
each edge : these graphs are called p-planar. We consider the more general

1Clique-width is defined from algebraic terms that are based on a tree-shaped decomposi-
tion of the considered graph.

2 called fly-automata, because they compute their transitions instead of storing them in
huge, unmanageable tables.

3AUTOGRAPH can even compute values associated with graphs [19], for an example,
the number of 3-colorings. It is written in Common Lisp by I. Durand. See http://dept-
info.labri.u-bordeaux.fr/~idurand/autograph. An online version, currently in development, is
in http://trag.labri.fr.

4 It is possible to decide in linear time if a graph G of tree-width k has clique-width at most
m, for fixed k and m [28], but the complicated algorithm does not highlight the structural
properties of G ensuring that cwd(G) ≤m.

5The recent algorithm of [6] is not practically usable. Efficient algorithms can be ob-
tained from the PACE challenge: see https://pacechallenge.wordpress.com/pace-2017/track-
a-treewidth/
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situation where the graph of edge crossings must belong to a fixed monotone6

class D. For p-planar graphs, D is the class of graphs of degree at most p. If D
is the class of graphs having clique number at most p− 1 (no p vertices induce
a clique), we get the notion of p-quasi-planar graph [1, 32, 33].

We will use the term quasi-planar in a wider sense, where this notion depends
on a fixed monotone class D that specifies the allowed types of crossings. We will
prove that tree-width and clique-width are linearly related for D-quasi-planar
graphs if the graphs in D have bounded average degree. This result does not
apply to p-quasi-planar graphs, that raise difficult open questions.

We also prove that the class of 1-planar graphs, although conceptually close
to that of planar graphs, is not characterized by a monadic second-order sen-
tence. However the classes of outer and optimal 1-planar graphs are. (Definitions
are in Section 3).

Summary : In Section 1 we review definitions and known results, in par-
ticular those concerning nowhere dense and bounded expansion graph classes.
In Section 2, we compare clique-width to tree-width for quasi-planar graphs.
In Section 3, we review some basic notions of monadic second-order logic (MS
logic), we prove that 1-planarity is not MS-expressible and we consider two par-
ticular classes of 1-planar graphs that are MS definable. We list some open
questions in the conclusion.

Acknowledgement : I thank I. Durand, B. Mohar, J. Nešetřil, P. Ossona de
Mendez, S. Oum, M. Philipczuk, A. Raspaud and Y. Suzuki for their useful
comments, and the organizers of the workshops in Shonan, Japan on Logic and
complexity, and GROW 2017, held at the Fields Institute, Toronto, Canada.

1 Definitions and basic facts

Most definitions are well-known, we review notation and a few results. We
denote by ⊎ the union of two disjoint sets, by [k] the set {1, ..., k}, by |X| the
cardinality of a set X and by P(X) its powerset.

Graphs
All graphs are nonempty and finite. We will compare tree-width and clique-

width for undirected simple graphs, i.e., that are loop-free and without parallel
edges. The extension of our results to directed graphs is easy, by modifying the
proofs of [17]. Undefined notions are as in [25].

A graph7 G has vertex set VG and edge set EG. An edge linking vertices u
and v is designated by uv or vu. We denote by G[X] the induced subgraph of

6As in [41], we call monotone a class of graphs closed under taking subgraphs and hereditary
a class closed under taking induced subgraphs.

7We review the representations of graphs by logical structures and monadc second-order
logic in Section 3.1.
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G with vertex set X ∩VG, where X need not be a subset of VG : this convention
allows to deal with cases where X ⊆ VH and G is a subgraph of H. Similarly, if
X and Y are disjoint sets, then G[X,Y ] is the bipartite graph with vertex set
VG ∩ (X ∪ Y ) and whose edges are those of G between X and Y .

If x ∈ VG and r ≥ 0, then Nr
G(x) denotes the set of neighbours at distance

at most r of x, where the distance between two vertices is the minimal number
of edges of a path connecting them. We write NG(x) for N

1
G(x) ; G has radius

at most r if VG ⊆ Nr
G(x) for some vertex x.

If X,Y are disjoint sets, we define ΩG(X,Y ) := {NG(x) ∩ Y | x ∈ X ∩
VG} ⊆ P(Y ∩ VG). As in [31], we denote by λG(k) the maximum cardinality of
ΩG(VG−Y, Y ) for Y of cardinality at most k. Hence λG(k) ≤ 2k. If, furthermore,
1 ≤ m ≤ k and |NG(x)| ≤ m for each x ∈ X, then λG(k) = O(km) for fixed m
(see [17]).

A class of graphs is monotone (resp. hereditary) if it is closed under taking
subgraphs (resp. induced subgraphs). By an s-coloring of a graph, we mean
a proper coloring of the vertices that uses colors in [s] ; "proper" means that
adjacent vertices have different colors. For other types of colorings, we will
specify the requirements.

The incidence graph of a graph G, denoted by Inc(G), is the bipartite graph
defined from G by inserting an additional vertex on each edge ; this vertex
represents the corresponding edge. (This is useful for expressing graph properties
with edge set quantifications, cf. Section 3).

We will use several times as counter-example the set SC of subdivided cliques,
defined as the set of graphs Inc(Kr), for r ≥ 3.

1.1 Sparse graphs

We recall that, unless otherwise specified, graphs are simple and undirected.
We review some definitions and facts related to sparseness.

Definition 1.1 Sparseness and degree bounds.
(a) A graph is p-degenerate if each of its subgraphs has a vertex of degree at

most p. We denote by Dq the class of p-degenerate graphs.
(b) A graphG is uniformly q-sparse if |EH | ≤ q. |VH | for each of its subgraphs

H. We denote by Uq the class of such graphs. In the terminology of [41], these
subgraphs H have edge density at most q and ∇0(G) denotes max{|EH | / |VH | |
H ⊆ G}. For a class of graphs C, ∇0(C) denotes sup{∇0(G) | G ∈ C}.

Every (simple) planar graph G is uniformly 3-sparse because |EG| ≤ 3 |VG|−
6. A graph is uniformly ⌈d/2⌉-sparse if its maximum degree is d.

These classes are related by the strict inclusions : Uq ⊂ D2q ⊂ U2q (cf. [41],
Section 3.2).

Proposition 1.2 : (1) A graph is in Dp if and only if it has an acyclic
orientation of indegree at most p. Every graph in Dp has a (p+ 1)-coloring.
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(2) A graph is in Uq if and only if it has an orientation of indegree at most
q. Every graph in Uq has a (2q + 1)-coloring.

Proof : (1) See [41], Proposition 3.2.
(2) See [34], Theorem 6.13 or Proposition 9.40 of [20]. �

We denote by Sr (resp. Nr) the class of graphs G that have no subgraph
isomorphic to the complete bipartite graphKr,r (resp. to the r-cliqueKr, hence,
whose clique number ω(G) is at most r − 1). Hence, Sr ⊆ N2r. We have Uq
⊂ S2q+1. For every r and q, there are graphs in Sr that are not uniformly q-
sparse (because there is a constant c such that, if r ≥ 3, there is a graph having
n vertices and at least c ·n2−2/(r+1) edges, a result by Erdős and Stone, see [25],
Section 7.1). If s ≥ 3, then Ns contains the graphs Kr,r, hence is not included
in any class Uq.

Definitions 1.3 : Shallow minors, bounded expansion and nowhere dense
classes.

We review notions developped by Nešetřil and Ossona de Mendez in [41] and
previous articles.

(a) A minor H of a graph G is obtained by choosing pairwise disjoint non-
empty sets of vertices V1, ..., Vp such that each graph G[Vi] is connected ; the
vertices of H are v1, ..., vp and there is an edge in H between vi and vj , where
i �= j, only if there is an edge in G between Vi and Vj .

Then, H is a d-shallow minor, if each graph G[Vi] has radius at most d. A
0-shallow minor is just a subgraph.

(b) For a class of graphs C, we denote by C∇d, the class of d-shallow minors
of its graphs, and by ∇d(C) the value ∇0(C∇d). Then, C has bounded expansion
if, for each d, ∇d(C) is finite, equivalently, if for each d, there is an integer q
such that every d-shallow minor of a graph in C is in Uq (is uniformly q-sparse).

(c) A class of graphs C is nowhere dense if, for each integer d, there is an
integer q such that every d-shallow minor of a graph in C is in Nq+1, hence, has
clique number at most q.

Examples 1.4 : By [41, 42] the following graph classes have bounded ex-
pansion : graphs of bounded degree, minor-closed classes, classes that exclude a
topological minor, and for each p, the classes of graphs whose crossing number
is at most p and of those that are p-planar,

Bounded expansion for a class C implies p-colorability for some p ≤ 1 +
2∇0(C) (by Proposition 1.2) but not vice-versa : the subdivided cliques (in SC)
are 2-colorable but do not have bounded expansion as each Kr is a 1-shallow
minor of Inc(Kr). For the same reason, SC is not nowhere dense.

Classes having locally bounded tree-width or locally bounded expansion
([41], Section 5.6) are nowhere dense. The class of graphs that have maxi-
mal degree no larger than their girth (the minimal size of an induced cycle) is
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nowhere dense but not uniformly q-sparse for any q, hence has not bounded
expansion (Example 5.18 in [41]).

Definition 1.5 : Neighbourhood complexity.
Let G be a graph, Y a set of vertices and r ≥ 1. We denote by µrG(Y )

the cardinality of the set {Nr
G(x) ∩ Y | x ∈ VG}. Clearly, λG(Y ) ≤ µ1G(Y )

(because in the definition of µ1G(Y ), we may have x ∈ Y ). We define νr(G) :=
max{µrG(Y )/ |Y | | ∅ �= Y ⊆ VG, }, and, for a class C, νr(C) := sup{νr(G) | G ∈
C}.

Theorem 1.6 : (1) A class of graphs C has bounded expansion if and only
if νr(C) is finite for each r.

(2) A class of graphs C is nowhere dense if and only if :

∀r ∈ N,∀ε ∈ R,∃c ∈ R,∀G ∈ C,∀Y ⊆ VG, µ
r
G(Y ) ≤ c |Y |1+ε .

Assertion (1) is proved in [47] and Assertion (2) in [27]. The proof of (1)
shows in particular that νr(C) ≤ f(r,∇r(C)) for some function f . For our com-
parison of tree-width and clique-width, we need only bound ν1(C). However, the
function f is so large that we cannot obtain any usable bound on clique-width.
Theorem 1.6 remains of great interest for studies in graph structure.

1.2 Tree-width and clique-width

Tree-decompositions and tree-width are well-known [5, 20, 25, 26], hence we
do not repeat the definitions. (We will not manipulate tree-decompositions.)
We denote by twd(G) the tree-width of a graph G. Similarly, for clique-width9 ,
denoted by cwd(G), we refer the reader to [13, 17, 20] (and [18, 19, 21] for the
associated FPT algorithms to check monadic second-order graph properties).

Here are a few facts ([20], Example 2.56 and Proposition 2.106) : if r ≥ 2,
we have twd(Kr) = r − 1, twd(Kr,r) = r and cwd(Kr) = cwd(Kr,r) = 2; if
Gr,s is the rectangular r × s-grid and r ≤ s, then twd(Gr,s) = r and r + 1 ≤
cwd(Gr,s) ≤ r + 2.

We recall that Sr is the class of graphs without subgraphs isomorphic to
Kr,r. The following results motivate our study.

Theorem 1.7 : (1) For every graph G, we have cwd(G) ≤ 3 · 2twd(G)−1.
8And the existence, for each p of graphs of maximal degree p, chromatic number larger that√
p/2 and of unbounded girth, see [40]. These graphs are not all in any class Uq by Proposition

1.2(2).
9Vertex labelled graphs are constructed with disjoint union, relabellings (a relabelling re-

places everywhere a label a by label b), edge addition operations (adda,b adds an edge between
each a-labelled vertex and each b-labelled vertex, unless there is already one, as it is intended
to build a simple graph). The basic graphs are isolated labelled vertices. Every graph is defined
by a term over these operations. Its clique-width is the minimum number of labels in a term
that defines it.
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(2) There is no constant c ≥ 1 such that cwd(G) ≤ O(twd(G)c) for all graphs
G.

(3) If G ∈ Sr, then twd(G) ≤ 3(r − 1)cwd(G)− 1.

Proof : Assertions (1) and (2) are proved in [13]. For proving (2), the au-
thors construct graphs of tree-width 2k and clique-width larger than 2k−1. Asser-
tion (3) is proved in [36] (also [20], Proposition 2.115). �

Our constructions will exploit the following result from [17] (Theorem 11).

Theorem 1.8 : For every graph G, we have cwd(G) ≤ λG(twd(G)+ 1)+1.

Corollary 1.9 : (1) If C is a class of graphs having bounded expansion,
then cwd(G) ≤ ν1(C) · (twd(G)+1)+1 for every graph G in C. Hence, for such
graphs, clique-width and tree-width are linearly related.

(2) If C is nowhere dense and ε > 0, we have cwd(G) = O(twd(G)1+ε) for
every graph G in C. Hence, for such graphs, clique-width and tree-width are
almost linearly related.

Proof : As in both cases, C excludes some Kr,r as a subgraph because Kr

is a 1-shallow minor of Kr,r, Theorem 1.7(3) is applicable. The first parts of the
two assertions follow from Theorem 1.8 and Theorem 1.6 with r = 1. �

Remarks 1.10

(1) For a comparison, we have cwd(G) = O(twd(G)q) if G is uniformly
q-sparse ([17], Theorem 19). No better bound is known10 , which shows a gap
between nowhere density and uniform sparseness. (However, ifG is the incidence
graph of a hypergraph of tree-width k whose edges have at most q vertices, then
cwd(G) = O(kq−1) for fixed q by Theorem 22 of [17]).

(2) The bounds on ν1(C) in terms of ∇1(C) derived from the existing proof
of Theorem 1.6(1) are extremely large. We are thus motivated to bound directly
the ratios cwd(G)/twd(G) for G in particular classes having bounded expansion.
That cwd(G) = O(twd(G)) for G in a class having bounded expansion follows
also from Theorem 18 of [31], see Table 2 in Section 2.4.

(3) Graph classes of bounded clique-width are studied in several articles
[9, 10, 11, 23, 24, 38]. It would be interesting to have classes of unbounded
clique-width for which cwd(G) = O(twd(G)α) where 0 < α < 1. However, we
have no tools for obtaining such results.

(4) The converse of Corollary 1.9 does not hold. Consider the class SC of sub-
divided cliques. For each r, we have twd(Inc(Kr)) ≥ r−1 and cwd(Inc(Kr)) ≤
r + 3 (see [8, 17]). Hence, cwd(Inc(Kr)) ≤ twd(Inc(Kr)) + 4. But SC has not
bounded expansion and is not nowhere dense as observed in Examples 1.4. �

10Looking for c such that cwd(G) = O(twd(G)c) may be formulated as bounding
log(cwd(G))/ log(twd(G)). This type of formulation is used in [41].
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We will be interested by graph classes that have no Kr,r as a subgraph, and
such that λG is linear with a "small" constant, so that twd(G) = O(cwd(G))
and the corresponding bounding is usable.

Remark 1.11 : About tree-decompositions and Theorem 1.8.
Its proof consists in an algorithm that transforms a tree-decomposition (T, f)

of a graph G into a clique-width term t that defines the same graph. If (T, f) has
width k, then t has width m (is built with m labels) where m ≤ λG(k+ 1) + 1.
Hence cwd(G) ≤ m. The computation time is linear in the number n of vertices
ofG for fixed k. More precisely, it isO(n·k(log(k)+m log(m))) by using standard
data structures. The values m and k are determined during the computation of
t. From λG we get an upperbound to the computation time, but the algorithm
can be used even if λG(k + 1) is not known or is bounded by a huge value.

The tree-decomposition (T, f) is given by a normal tree T for G, which
means that VG is the set of nodes of T , that T is rooted and any two adjacent
vertices11 of G are comparable for the ancestor relation of T , denoted by ≤T
(u <T v if and only if v is an ancestor of u, so that the root is the maximal
element). The "box" function f of the tree-decomposition is then defined by :

f(u) := {u} ∪ {v ∈ VG | u ≤T v and wv ∈ EG for some w ≤T u}.

Hence, (T, f) is encoded in a very compact way12 , just by the function that
specifies the father of any node that is not the root.

The notion of tree-depth is based on normal trees. The tree-depth of a con-
nected graph G, denoted by td(G), is the minimum height13 of a normal tree for
G. If G is not connected, its tree-depth is the maximum of those of its connected
components. For G with n vertices, we have ([41], Section 6.4) :

twd(G) + 1 ≤ td(G) ≤ (twd(G) + 1) log(n).

2 Quasi-planar graphs

We define and study different notions of quasi-planarity.

Definition 2.1 : The crossing graph of a drawing.
Let D be a drawing in the plane of a graph G. The curve segments repre-

senting edges — we will call them frequently edges — may cross but not touch.
No three edges can cross at a same point, and two edges intersect either at a
crossing point or at an end point of both edges. An edge does not cross itself.

11Adjacent nodes in T need not be adjacent in G.
12Assuming that the graph G is also given.
13The height of a rooted tree is the maximum number of nodes on a path between the root

and any node.
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(Touching points and self-crossings can easily be removed and they have no
use in drawings intended to minimize the number of intersections of edges). A
drawing is simple if any two edges cross at most once14 .

If H is a subgraph of G, then D[H] is the drawing of H, inherited from D,
obtained by removing the points and curve segments corresponding to vertices
and edges not in H.

We define the crossing graph of D, denoted by Ξ(D), as the graph whose
vertex set is EG and two vertices are adjacent if and only if the corresponding
edges cross. It is the intersection graph of the open curve segments representing
the edges.

Table 1 shows how some existing definitions can be expressed in terms of
crossing graphs. The column "Some crossing graph has" means : "there exists
a drawing whose crossing graph has" this property.

A graph is p-planar if it has a drawing D such that each edge is crossed by at
most p others (two edges can cross several times), hence, whose crossing graph
has maximum degree at most p. It is simply p-planar if the same holds for a
simple drawing. It is clear that a 1-planar drawing can be transformed into a
simple 1-planar drawing with no more crossings, but it is not clear whether a
similar property holds for p-planar drawings, p ≥ 2.

A graph is p-quasi-planar if it has a drawing whose crossing graph has no p-
clique. The 2-quasi-planar graphs are nothing but the planar graphs. References
for these definitions are [33, 39, 46, 48]. Every p-planar graph is (p+ 2)-quasi-
planar. Furthermore, if p ≥ 3, every simply p-planar graph is (p+1)-quasi-planar
([2], the proof is difficult).

Skewness at most pmeans that we obtain a planar graph by deleting p edges.
The crossing number is defined as the minimal number of crossings, and the

pairwise crossing number is the minimal number of pairs of edges that cross.
Whether it is always equal to the crossing number is an open question (see [49]
for detailed definitions and a survey of results).

All these classes, except for p-quasi planar graphs, are known to have bounded
expansion [41], Section 14.2.

Graph property Some crossing graph has:

Planarity No edge
Pairwise crossing number ≤ p At most p edges
Skewness ≤ p No edge after removing p vertices
p-planarity Degree at most p
p-quasi-planarity Clique number at most p− 1

Table 1

Definition 2.2 : Quasi planarity.

14Graphs are always simple, without loops and parallel edges, but their drawings may not
be simple.
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Let D be a monotone class of graphs (i.e., that is closed under taking sub-
graphs). We say a graph G is D-quasi-planar if it has a drawing whose crossing
graph is in D. We denote by QP (D) the class of D-quasi-planar graphs.

Let us review some results and open questions relevant to our concern.
The simply p-planar graphs are uniformly q-sparse where q =

�
4.108

√
p
�
by

[46]. They form a class of bounded expansion (Proposition 2.11). A 1-planar
graph has at most 4n−8 edges for n vertices, and 1-planarity is an NP-complete
property15 [12, 22].

The class of p-quasi-planar graphs, studied in [1, 32, 33], is QP (Np). The
number of edges of a p-quasi-planar graph with n vertices is conjectured to
be O(n) for each fixed p. It is bounded by 8n if p ≤ 4. Otherwise, it is
O(n(log(n))4p−16) by [1].

2.1 Bounds on clique-width.

We recall from [31] and [17] the proof of the following fact because its argument
will be used below in related cases.

Proposition 2.3 : Let k ≥ 3. If G is planar, then λG(k) ≤ 6k − 9.
Proof: We consider a planar graph G, a set Y of k vertices andX := VG−Y .

We will bound the number |ΩG(X,Y )|, i.e., the number of sets of the form
NG(x) ∩ Y for some x ∈ X. We will write for Ω for ΩG.

We can do that for G[X,Y ] instead of G because removing edges in G[X] or
in G[Y ] preserves planarity and does not modify Ω(X,Y ).

We denote by X1,X2 and X3 the sets of vertices of X having degree, respec-
tively, at most 1, exactly 2 and at least 3 inG[X,Y ]. We have |Ω(X1, Y )| ≤ k+1.
Next we consider Ω(X2, Y ). The bipartite graph G[X2, Y ] is planar. For each
vertex in X2, we link its two neighbours (they are both in Y ). We obtain a
planar graph H with vertex set Y of cardinality k. Each edge of H corresponds
to a set in Ω(X2, Y ). Hence, |Ω(X2, Y )| = |EH | ≤ 3k − 6.

We now consider the bipartite planar graph K := G[X3, Y ]. As each vertex
in X3 has degree at least 3 in K, we have 3 |X3| ≤ |EK | . As K is planar and
bipartite, |EK | ≤ 2 |VK |−4. Hence, 3 |X3| ≤ |EK | ≤ 2(|X3|+k)−4 which gives
|X3| ≤ 2k − 4, and so, |Ω(X3, Y )| ≤ |X3| ≤ 2k − 4.

Hence, |Ω(X,Y )| = |Ω(X1, Y )|+ |Ω(X2, Y )|+ |Ω(X3, Y )| ≤ k+1+3k− 6+
2k − 4 = 6k − 9. �

Corollary 2.4 : If G is planar with at least one edge, then cwd(G) ≤
6 twd(G)− 2.

Proof: If twd(G) ≥ 2, we get the result by Theorem 1.8 and Proposition
2.3, because 6(k + 1) − 9 + 1 = 6k − 2. Otherwise, twd(G) = 1, G is a forest
and cwd(G) ≤ 3. The inequality also holds. �

15Even if one adds a single edge to a planar graph.
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The class of graphs whose crossing number is at most p is contained in a
minor-closed class and has bounded expansion (see [41], Chapter 5).

Corollary 2.5 : If G has crossing number p, then cwd(G) ≤ 6 twd(G) −
2 + ⌈p/2⌉.

Proof : First an easy observation.
Claim : If G is obtained from a graph H by the addition of m edges (and

possibly of vertices as ends of these new edges), then, for each k, λG(k) ≤
λH(k) +m.

Proof : Because at mostm sets NG(x)∩Y , x ∈ VG, are not in ΩH(VH−Y, Y )
where Y is a set of k vertices of H. �

If G has crossing number p, it has a drawing D such that Ξ(D) has at most
p edges. By removing at most ⌈p/2⌉ vertices of Ξ(D) and their incident edges,
one can get a graph without edges. Hence, by removing at most ⌈p/2⌉ edges of
G, one can get a graph H whose drawing D[H] has no crossings. Hence, H is
planar, and by Proposition 2.3 and the claim, we have λG(k) ≤ 6 k− 9+ ⌈p/2⌉.
As in Corollary 2.4, we get cwd(G) ≤ 6 twd(G)− 2 + ⌈p/2⌉. �

Remark about the claim : The survey article [35] states that if one adds or
deletes an edge to a graph, one can increase or decrease its clique-width by at
most16 2 (Theorem 9). Hence, if one adds m edges to a graph, one can increase
its clique-width by at most 2m. However, Claim 2.5.1 shows that the bound to
clique-width expressed in terms of tree-width increases by at most m. There is
no contradiction because Theorem 1.8 and Corollary 2.4 yield upperbounds and
no exact values.

Let us digress a little, and examine unions of graphs.

Unions of graphs.
Let H and K be concrete graphs (not graphs up to isomorphism). Their

union H∪K is defined by VH∪K := VH ∪VK and EH∪K := EH ∪EK−F where
incidences as in H and K, and F is the set of edges of K that have the same
two ends as an edge of H (hence H ∪K is simple). For example, a rectangular
grid is the union of two trees.

Proposition 2.6 : For any two graphs H and K, and k ≥ 2, we have
λH∪K(k) ≤ λH(k) · λK(k). If H and K are disjoint, then λH∪K(k) ≤ λH(k) +
λK(k).

Proof : The first assertion follows from the fact :

ΩH∪K(X,Y ) = {(NH(x) ∩ Y ) ∪ (NK(x) ∩ Y ) | x ∈ X}.

If H and K are disjoint, we have :

16 It is an open question whether the number 2 can be replaced by 1.
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ΩH∪K(X,Y ) = {NH(x)∩Y | x ∈ X∩VH}∪{NK(x)∩Y | x ∈ X∩VK}

which yields the second assertion. �

However, we can get better upper bounds in some cases.

Example 2.7 : If G = H ∪K, where H and K are planar, then λG(k) ≤
9(2k − 3)2 by Propositions 2.3 and 2.6. However, by going back to the proof
of Proposition 2.3, we get λG(k) < 16k2. We sketch the proof, by using the
notation of that proposition. Without loss of generality, we assume that H and
K are edge disjoint. We have |ΩG(X1, Y )| ≤ k+1 and |ΩG(X2, Y )| ≤ k(k−1)/2.

We have X3 = XH ∪XK ∪X2,2 ∪X1,2 ∪X2,1 where :

XH is the set of vertices incident with at least 3 edges of H, and
similarly for XK ,

X2,2 is the set of vertices incident with 2 edges of H and two edges
of K,

X1,2 is set of vertices incident with one edge of H and 2 edges of K,

X2,1 is similar by exchanging H and K.

From the proof of Proposition 2.3, we have:

|XH | , |XK | ≤ 2k − 4,
|Ω(X2,2, Y )| ≤ (3k − 6)2 = 9(k − 2)2 and
|Ω(X1,2, Y )| , |Ω(X2,1, Y )| ≤ (3k − 6)(k − 2) = 3(k − 2)2.

Hence,

|Ω(X3, Y )| ≤ 4(k−2)+9(k−2)2+6(k−2)2 = 4(k−2)+15(k−2)2,
|Ω(X,Y )| ≤ k+1 +k(k−1)/2+4(k−2)+15(k−2)2 ≤ 16k2−55k+53,

for k ≥ 3. �

Remark : Answering a natural question, we observe that the class of graphs
H ∪K where H and K belong to classes having bounded expansion need not
have bounded expansion: each subdivided clique is the union of two trees, but
SC does not have bounded expansion as noted in Example 1.4.
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2.2 Sparse crossing graphs

We now consider the graphs in QP (Uq), i.e., those that are drawable with a
crossing graph that is uniformly q-sparse.

Lemma 2.8 : (1) Let H ∈ Uq. If s ≥ 2 and {V1, . . . , Vm} is a partition of VH
in independent17 sets of cardinality at most s, then H has a (2sq + 1)-coloring
such that the vertices of each set Vi have the same color.

(2) If H has maximum degree p, then the same holds with sp+ 1 colors.

Proof : (1) We will use facts recalled in Proposition 1.2. The graph H has
an orientation of indegree at most q. Let K be obtained from H by fusing, for
each i, the vertices of Vi into a single vertex. This graph has an orientation of
indegree at most sq hence, an (2sq + 1)-coloring. As there is no edge between
any two vertices of each Vi, we obtain a coloring of H as desired.

(2) Let now H have degree at most p. For each i = 1, ...,m, there is an
(sp+ 1)-coloring of H[V1 ∪ ... ∪ Vi] such that the vertices of each set Vj , j ≤ i,
have the same color. The proof is by induction on i. This gives the result. �

Remark : If H has maximum degree p, then it is in Uq where q := ⌈p/2⌉. If
p is even, then (2) gives the same result as (1). If p = 2r+ 1, then the coloring
of (1) uses at most 2sr + 2s + 1 colors whereas that of (2) uses only at most
2sr + s+ 1 colors.

Proposition 2.9 : (1) If G ∈ QP (Uq), then for k ≥ 3, we have λG(k) ≤
6k(4q + 1)− 48q − 9 and so, cwd(G) ≤ 6twd(G)(4q + 1)− 24q − 2.

(2) If G is p-planar, then for k ≥ 3, we have λG(k) ≤ 6k(2p + 1)− 18p − 9
and so, cwd(G) ≤ 6twd(G)(2p+ 1)− 6p− 2.

Proof : (1) Let k ≥ 3, q ≥ 0 and G ∈ QP (Uq). Let Y be a set of k vertices
of G and X := VG−Y . As in the proof of Proposition 2.3, we need only consider
G[X,Y ].

We partition X into X1 ⊎X2 ⊎X3 where X1 is the set of vertices having at
most one neighbour in Y , X2 is the set of those having exactly two neighbours
in Y , and X3 the set of those having at least 3 neighbours in Y .

We have |Ω(X1, Y )| ≤ k + 1.We now bound |Ω(X2, Y )|.
Let X2 be enumerated as {v1, . . . , vm}. The bipartite graph G[X2, Y ] has

a drawing whose graph of crossings H is in Uq. Let us partition the set VH ,
i.e. the set EG[X2,Y ] into V1, V2, ..., Vm where Vi is the set of two edges incident
with vi. Any such two edges do not cross, hence are not ajacent in H. By
Lemma 2.8, there is a (4q + 1)-coloring of H such that the two vertices of each
Vi have the same color, call it ci. Let then X2,j be the set of vertices vi of X2

such that ci = j. In other words, G[X2, Y ] has an edge coloring with colors in

17Also called stable : no two vertices are adjacent.
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[4q + 1] such that the two edges incident with a vertex in X2 have the same
color, and no two edges with same color cross.

The set Ω(X2, Y ) is the union of the sets Ω(X2,j , Y ). Each graph G[X2,j , Y ]
is planar. As in the proof of Proposition 2.3, we get |Ω(X2,j , Y )| ≤ 3k − 6 =
3(k − 2). Hence |Ω(X2, Y )| ≤ 3(4q + 1)(k − 2).

Next, we bound the cardinality of X3 that we enumerate as {v1, . . . , vr}.
We delete from the bipartite graph G[X3, Y ] some edges so that each vertex in
X3 has degree exactly 3 in the resulting graph, that we denote by G′. It has a
drawing D′ inherited from some drawing D of G whose graph of crossings H is
in Uq. Hence Ξ(D′) ∈ Uq. We get a partition of the set VΞ(D′) into V1 ⊎ ... ⊎ Vr
where Vi is the set of three edges incident with vi. They do not cross, hence they
are not ajacent in Ξ(D′). By Lemma 2.7, there is a proper coloring of Ξ(D′)
with colors in [6q + 1] such that the three vertices of each set Vi have the same
color, call it ci. Let then X3,j be the set of vertices vi of X3 such that ci = j.
Hence, G′[X3, Y ] has an edge coloring with at most 6q + 1 colors such that all
edges incident with a vertex in X3 have same color and no two edges with same
color cross. Each graph G[X3,j , Y ] is planar. As in the proof of Proposition
2.3, we get |X3,j | ≤ 2k − 4. Hence |Ω(X3, Y )| ≤ |X3| ≤ 2(6q + 1)(k − 2).

Finally, we get

|Ω(X,Y )| ≤ k + 1 + 3(4q + 1)(k − 2) + 2(6q + 1)(k − 2)
= 6k(4q + 1)− 48q − 9.

(2) Assume now that H has degree at most p. By Lemma 2.7, we can use
2p + 1 and 3p + 1 colors for, respectively, X2 and X3, instead of 4q + 1 and
6q + 1. This gives :

|Ω(X,Y )| ≤ k + 1 + 3(2p+ 1)(k − 2) + 2(3p+ 1)(k − 2)
= 6k(2p+ 1)− 18p− 9.

As observed after Lemma 2.8, this makes a difference with (1) for odd values
of p. �

The next two propositions show some properties of the classes QP (Uq).

Proposition 2.10 : For each q, QP (Uq) ⊆ U6q+3.
Proof : Let G ∈ QP (Uq) having n vertices. It has a drawing D whose

crossing graph Ξ(D) is in Uq.
The graph Ξ(D) has a (2q+1)-coloring. Hence G has a (2q+1)-edge coloring

such that no two edges having the same color cross inD. Each graph Gc, defined
as the subgraph of G whose edges have color c is planar, hence has at most 3n−6
edges. Hence G has at most (2q + 1)(3n− 6) edges. The same holds for all its
subgraphs as they are in QP (Uq). Hence, G ∈ U6q+3. �

Remark: To prove that p-planar graphs defined from drawings that may not
be simple (every edge is crossed by at most p edges) are uniformly 3(p + 1)-
sparse, we use in the previous proof a (p+1)-coloring of Ξ(D). The article [46]
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proves that simply p-planar graphs (defined from simple drawings) are uniformly
m-sparse where m =

�
4.108

√
p
�
.

We need a definition and a lemma. A path in a graph G is narrow if it
has length at least 2 and all its intermediate vertices have degree 2 in G. Two
narrow paths are disjoint if no vertex of one is an intermediate vertex of the
other. In a drawing, a self-crossing of a narrow path is a point where two edges
of this path cross.

Lemma 2.11 : Let P be a set of pairwise disjoint narrow paths in a graph
H. A drawing D of H can be transformed into a drawing D′ of the same graph
where no path of P has a self-crossing. The crossing graph Ξ(D′) is a subgraph
of Ξ(D′), with same set of vertices.

Proof: We show how to eliminate one self-crossing without introducing new
crossings. By repeating this step, one obtains a drawing as desired.

Let D be a drawing of H where a narrow path P from x to y has a self-
crossing at point z of the plane (this point is not a vertex). Assume that P is
the sequence of edges f1, ..., fp where f1 = xu1, fi = ui−1ui and fp = up−1y. Let
z be the crossing point of, say18 , f4 and f8. On the curve segment u3u4, let v
be the last crossing before z, and v := u3 if there is no crossing between u3 and
z. On the curve segment u7u8, let w be the first crossing after z, and w := u8
if there is no crossing between z and u8. On the curve segment S from v to
w that concatenates uz and zw, we can place u4, ..., u7 (they have degree 2),
and so, S is not crossed. In particular, no edge among f5,...,f7 is now crossed.
All crossings of D lying on the loop consisting of the curve segments zu4, u4u5,
...,u6u7, u7w have disappeared and no new crossing has been created. Hence,
Ξ(D′) is a subgraph of Ξ(D) having the same vertices. �

A graph Z is a d-shallow topological minor of a graph G if there is a subgraph
H of G that is obtained from Z by edge subdivisions, such that each edge e of
Z is replaced by a path Pe with at most 2d + 1 edges. (Z is then a d-shallow
minor.) The paths Pe of length at least 2 are pairwise disjoint narrow paths of
H. By Corollary 4.1 in [41], a class C has bounded expansion if and only if, for
each d, there is an integer q such that the d-shallow topological minors of the
graphs in C are in Uq

Proposition 2.12 : For each q, the class QP (Uq) has bounded expansion.
Proof : Let us fix integers q and d. Let G ∈ QP (Uq) and Z be a d-shallow

topological minor of G, defined from some subgraph H of G, that is thus also
in QP (Uq). It has a drawing D whose crossing graph is in Uq.

This drawing yields a potential drawing of Z as follows : for each edge e of
Z, the curve segments representing the edges of Pe, say f1, . . . , fp in this order,
are merged into a single curve segment to represent e. If fi and fj cross, then
this curve segment has a self-crossing. But self-crossings can be eliminated from

18The proof is the same if z is a crossing point of any fi and fj such that i < j.
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D by Lemma 2.11, giving a drawing D′ of H such that Ξ(D′) is a subgraph of
Ξ(D). Hence Ξ(D′) is in Uq, and we can choose for it an orientation of indegree
at most q.

We get a drawing D′′ of Z by merging into a single curve segment intended
to represent e all curve segments representing the edges of Pe. It may have pairs
of edges that cross several times.

Let us enumerate as (e, 1), ..., (e, p), where 1 ≤ p ≤ 2d+ 1, the edges of Pe
for an edge e of Z. If e is not subdivided, then (e, 1) denotes e, for the purpose
of uniform notation.

The graph Ξ(D′) has now vertices of the form (e, i) for e ∈ EH , and an edge
between (e, i) and (e′, j) if and only if (e, i) and (e′, j) cross. The graph Ξ(D′′)
is obtained from Ξ(D′) by fusing, for each e ∈ EZ , the vertices19 (e, 1), ..., (e, p)
into a single one, actually e. For each edge g in Ξ(D′′), say between e and f ,
we choose (e, i) and (f, j) that are adjacent in Ξ(D′) and we orient g : e → f
if and only if (e, i) → (f, j) in the chosen orientation of Ξ(D′). We obtain an
orientation of Ξ(D′′) of indegree at most q(2d+1). Hence Z ∈ QP (Uq(2d+1)) and
Z ∈ U6q(2d+1)+3 by Proposition 2.10. Hence, QP (Uq) has bounded expansion.
�

This proposition extends Theorem 14.4 of [41] establishing20 that the class
of simply p-planar graphs has bounded expansion.

Remark 2.13 : Another notion of crossing graph.
If D is a simple drawing of a graph G, then we define a graph Γ(D) whose

vertices are the (points of the plane representing the) crossings of edges and
two crossings are adjacent if they are consecutive on some edge. This graph is
planar of maximum degree 4. It has no edge if D is 1-planar. It can have cycles
if D is 2-planar. It is easy to prove that Γ(D) is a forest if and only if Ξ(D) is
a forest. This alternative notion gives a more visual approach of crossings. �

2.3 Rank-width

Rank-width [31, 43, 44, 45] is a graph complexity measure that is equivalent
to clique-width in the sense that the same graph classes have bounded rank-
width and bounded clique-width. It provides a polynomial-time approximation
algorithm for computing clique-width and clique-width terms [45]. It is related
to clique-width and tree-width as follows, where rwd(G) denotes the rank-width
of a graph :

rwd(G) ≤ cwd(G) ≤ 2rwd(G)+1 − 1 (1)

rwd(G) ≤ twd(G) + 1. (2)

19They form an independent set in Ξ(D′).
20This theorem is stated for drawings where each edge has at most p crossings. Its proof

is incorrect as it uses the result of [46] concerning simply p-planar graphs for drawings that
need not be simple.
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It is proved in [31] that for every graph G with at least one edge21 :

cwd(G) ≤ 2λG(rwd(G))− 1.

Hence, all our results that are based on bounding λG give bounds of the
same type (linear or quasi-linear) for clique-width in terms of rank-width, thus
improving inequality (1). In particular, by Proposition 2.9, we have cwd(G) <
12(rwd(G) + 1)(4p+ 1) if G is in QP (Up).

2.4 Summary of comparisons

Table 2 shows the main results.

Graph class Bound on clique-width Proof
for G of tree-width k

Sr O(kr) [31], Theorem 21
Uq O(kq) [17], Theorem 19
Nowhere dense O(k1+ε) for each ε > 0 Corollary 1.9
Bounded expansion
or just ∇1(G) ≤ b 22b+1(k + 1) [31], Theorem 18
No Kr minor O(k) [31], Theorem 10
QP (Uq) 6(k + 1)(4q + 1)− 24q − 2 Proposition 2.9
p-planar 6(k + 1)(2p+ 1)− 6p− 2 Proposition 2.9
planar (= 0-planar) 6k − 2 Corollary 2.4
degree ≤ d d(k + 1) + 2 Remark below

Table 2.

Remark : For a graph G of degree at most d and a set Y of k vertices, each
vertex of Y belongs to at most d sets NG(x)∩Y for x /∈ Y , because it has degree
at most d. Hence, λG(k) ≤ kd+ 1, and cwd(G) ≤ d(twd(G) + 1) + 2.

3 Descriptions in monadic second-order logic

The main objective is here to prove that 1-planarity is not monadic second-order
expressible22 (MS-expressible in short). Under the assumption that P �= NP ,
this follows from the fact that 1-planarity is NP-complete for graphs of bounded
tree-width [4], because otherwise, it would be decidable in linear-time23 [20, 26].

21From (2), one gets cwd(G) ≤ 2λG(twd(G) + 1)− 1, to be compared with Theorem 1.8.
22Monadic second-order logic is reviewed in the next subection.
23Since every MS definable graph property is decidable in linear time on any class of bounded

tree-width.
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However, we think interesting to give a proof that does not depend on the
P �= NP assumption. Furthermore, our construction shows that additional
conditions like considering graphs of bounded degree do not make 1-planarity
MS-expressible.

We will also consider particular classes of 1-planar graphs that are MS de-
finable. A 1-planar graph is optimal if it has the maximum number of edges,
that is 4n− 8, for n vertices. It is u-1-planar, which means uniquely 1-planarly
embeddable, if any two 1-planar drawings are homeomorphic, as embeddings in
the sphere. We denote by U1P the class of u-1-planar graphs. An optimal
1-planar graph is u-1-planar unless it is isomorphic to one of particular graphs
denoted by XW2k, cf. [48].

We first review a few definitions about monadic second-order logic (only
those needed). The reader knowing it (cf. [18, 19, 20, 21]) can skip the next
subsection.

3.1 MS formulas and transductions from words to graphs.

Logical expression of graph properties.
For representing a graph G, we use the logical structure �VG, edgG� where

edgG is the binary symmetric ajacency relation. We identify G and �VG, edgG�.

Monadic second-order logic (MS logic in short ; see [20] for a thorough study)
allows set quantifications (but no quantifications on relations, such as subrela-
tions of edgG). Set variables are capital letters ; they denote sets of vertices.
The following MS sentence24 ϕ :

∃X,Y.(X ∩ Y = ∅ ∧ ∀u, v.{edg(u, v) =⇒
[¬(u ∈ X ∧ v ∈ X) ∧ ¬(u ∈ Y ∧ v ∈ Y )∧

¬(u /∈ X ∪ Y ∧ v /∈ X ∪ Y )]})

expresses that G is 3-colorable (X,Y and VG − (X ∪ Y ) are the three color
classes). Formally, G is 3-colorable if and only if G |= ϕ. Hence, 3-colorability
is MS-expressible.

For expressing that G is a cycle with at least 3 vertices, we use :

3vertices ∧ degree2 ∧ connectivity.

Connectivity is expressed by :

¬∃X.(X �= ∅ ∧ (∃x.x /∈ X)∧
∀u, v.{edg(u, v) =⇒ (u ∈ X =⇒ v ∈ X)}).

24A sentence is a logical formula without free variables.
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The reader will easily write the sentences 3vertices expressing that the graph
has at least 3 vertices and degree2 expressing that all its vertices have degree
2.

Edge set quantifications.
We already defined25 Inc(G), the incidence graph of G = �VG, edgG�. Here,

we consider it as the bipartite graph �VG ∪ EG, incG� where EG is the set of
edges and incG is the incidence relation : incG(e, u) holds if and only if u is an
end of edge e.

An edge of G becomes a vertex in Inc(G); it is no longer defined as a pair
of vertices. The edges are the elements that occur as first components of pairs
in incG. Hence, an MS formula over a structure �W, inc� intended to be some
Inc(G) can distinguish the edges from the vertices of the potential graph G and
check that it is actually an incidence graph. An MS formula over �VG∪EG, incG�
can use edge set quantifications to express a property of G. An MS2 graph
property is a property that is expressed on incidence graphs by an MS sentence.
An example of an MS2 property that is not MS-expressible is the existence of a
Hamiltonian cycle. It is expressed in Inc(G) by :

"there exists a set X ⊆ EG such that the graph Inc(G)[X ∪ VG] is
a cycle"

However, for each q, the same properties of graphs in Uq are MS2 and MS-
expressible. Formally, every MS sentence ϕ written with inc can be translated
into an MS one ϕ[q], written with edg, such that, for every graph G in Uq we
have G |= ϕ[q] if and only if Inc(G) |= ϕ (Chapter 9 of [20]).

Properties of words.
Let A be a finite alphabet. A nonempty word26 w over A of length n is

represented by the logical structure S(w) := �[n],≤, (laba)a∈A� where each i ∈
[n] is a position, i.e., an occurrence of some letter. The binary relation ≤ is
the order of positions and the unary relations laba indicate where letters occur
: laba(u) is true if and only if a occurs at position u. Formulas of MS logic
use quantified variables denoting here sets of positions of the considered word
represented by S(w).

For an example, the formula

∃X∀u.(u ∈ X =⇒ (laba(u) ∨ ∃v.(v /∈ X ∧ u < v ∧ labb(u))))

says that there is a set X of positions that are either occurrences of a, or
are before a occurrences of b not in X. Note the use of u < v abreviating
u ≤ v ∧ ¬(u = v).

25 in a more concrete way.
26A+ denotes the set of nonempty words over A, and A∗ denotes A+ together with the

empty word.
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A well-known result [50] says that a language L ⊆ A+ is regular if and only
if it is MS definable, which means that there exists an MS sentence ϕ such that
w ∈ L if and only if S(w) |= ϕ.

Languages of the form L0 := {(ab)ncn | n ≥ 1} or L1 := {(ab)ncm | n ≥
3m+4}, to take two typical examples, are not MS definable because they are not
regular. The latter fact is proved as follows. For every language L and word u,
L/u := {v ∈ A∗ | uv ∈ L}. If L is regular, there are only finitely many distinct
languages L/u. But there are infinitely many languages L0/(ab)

nc = {cn−1} for
n ≥ 1, and similarly, L1/(ab)

nc. Hence, L0 and L1 are not regular.

Monadic second-order transductions.
Monadic second-order transductions are transformations of logical structures

specified by MS formulas. We only review the very particular ones that will be
used in the proof of Theorem 3.4. They transform words into graphs.

Let us fix A as above and two MS formulas α and η(x, y) written with ≤
and the unary relation symbols laba(u) (x, y are free first-order variables in η).

Let τ be the partial mapping from words in A+ to graphs, defined as follows
: τ(w) = G if and only if

S(w) = �V,≤, (laba)a∈A� |= α and, if this is true,

G := �V, edg� where the edge relation edg is defined by:

edg(x, y) :⇐⇒ S(w) |= η(x, y).

The positions in w are made into vertices of G. The formula η(x, y) must
be written so that the relation it defines is symmetric and irreflexive27 (as τ
defines undirected and loop-free graphs).

The main fact we will use about transductions is the following lemma, a
special case of the Backwards Translation Theorem, Theorem 7.10 of [20].

Lemma 3.0 : If τ is an MS transduction and ϕ is an MS sentence, then,
the set of words w such that τ(w) |= ϕ is MS definable and is thus a regular
language.

Proof sketch: We let ψ be obtained from ϕ by replacing each atomic formula
edg(u, v) by η(u, v). Then, the words w such that τ(w) |= ϕ are those such that
S(w) |= α ∧ ψ. �

To prove that a graph property P is not MS definable, it suffices to construct
τ such that the set of words w such that τ(w) satisfies P is not regular. We will
do that for proving Theorem 3.4.

27To ensure this, one can take η(x, y) of the form (η′(x, y) ∨ η′(y, x)) ∧ x �= y for some MS
formula η′(x, y).
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3.2 1-planarity is not MS definable

We need some definitions and notation.

Definitions 3.1.

(a) LetG be a graph. We denote by P (x1, x2, ..., xn) where n ≥ 2, a path from
x1 to xn, with vertices x1, x2, ..., xn in this order, and by C(x1, x2, ..., xn) where
n ≥ 3, a cycle with vertices x1, x2, ..., xn, such that we have P (x1, x2, ..., xn)
and an edge x1xn.

Consider a drawing D of G in the plane, with possible edge crossings. A cy-
cle C(x1, x2, ..., xn) without any self-crossing (no two of its edges cross) induces
two open regions of the plane: the bounded one is denoted by R(x1, x2, ..., xn)
and the unbounded one by R∞(x1, x2, ..., xn). The edges, i.e., the curve seg-
ments representing the edges of C(x1, x2, ..., xn), are not in R(x1, x2, ..., xn) ∪
R∞(x1, x2, ..., xn). If the cycle has self-crossings, it determines at least three
open regions of the plane. It separates two vertices u and v if these vertices
are (that is, the corresponding points are) in different regions, and then, any
path between u and v must cross some edge of the cycle or go through one of
x1, x2, ..., xn.

Two drawings are homeomorphic if they are so as embeddings in the sphere.

(b) For n ≥ 4, let Gn be the graph with vertices ai, bi, ci, di, ei, fi for i =
1, ..., n. Figure 1 shows G6. A cross in a quandrangular face indicates two edges
that cross, for instance a1b2 and a2b1.

The graph Gn has 6n vertices and 24n − 8 − (n − 3) = 23n − 5 edges.
It is 1-planar but not optimal because of the n − 3 missing edges dici+1 for
i = 2, ..., n− 2. It has 8 vertices of degree 6, 2n − 6 of degree 7 and all others
have degree 8.

We let Qn be the planar subgraph induced by the vertices ci and di for
i = 2, ..., n− 1.

Proposition 3.2 : Each graph Gn has a unique 1-planar drawing.
Proof: We will compare the (natural) 1-planar drawing D of Gn (Figure 1

shows D for G6, from which the general case is easily understood) to an arbi-
trary 1-planar drawing D. Without loss of generality (since we consider graph
embeddings in the sphere) we can assume that all vertices (except a1, a2, f1) are
in the bounded region R(a1, a2, f1) of D, as in Figure 1 for D. In this figure,
the edges of C(a1, a2, f1) are the thickest ones. Note that a2f1 is crossed by the
"thin" edge a1f2; hence the unbounded region R∞(a1, a2, f1) contains half of
the edge a1f2 and no vertex. We will prove that D it is homeomorphic to D. In
our discussion, points (vertices), edges, triangles (3-cycles), cycles, regions etc.
will refer to D.

First, observe that in any 1-planar drawing, a 4-cycle has at most one cross-
ing.

21



Figure 1: The graph G6.
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Claim 1 : Let C(x, y, z) be a triangle in Gn and u, v be distinct vertices not
in {x, y, z}. There are at least four edge-disjoint paths between u and v that
avoid the vertices x, y, z. The triangle C(x, y, z) does not separate u and v.

Proof : Let H := Gn − {x, y, z}. Removing any 3 edges of H keeps it con-
nected. Hence, by Menger’s Theorem ([25], Section 3.3), there are at least 4
edge-disjoint paths between u and v in H. These paths are in Gn and they
avoid x, y, z. Let us give an example:

u = d1, v = di, x = ci, y = ci+1, z = di+1, 2 ≤ i ≤ n− 1.

We have the four edge-disjoint paths:

P (d1, d2, ..., di), P (d1, e1, e2, ..., ei−1, di),

P (d1, b1, b2, ..., bn, en, en−1, ..., ei+1, di) and

P (d1, c1, b1, a1, a2, ..., an, fn, fn−1, ..., fi, ei, di).

Going back to the general case, if the triangle C(x, y, z) separates u and v,
then one of its edges must be crossed twice. This is not possible. �

Claim 2 : Let C(x, y, z) �= C(a1, a2, f1). Then R(x, y, z) does not contain
any vertex.

Proof: We have R(x, y, z) ⊂ R(a1, a2, f1). Assume a1 /∈ {x, y, z). If u ∈
R(x, y, z), then C(x, y, z) separates a1 and u which contradicts Claim 1. The
proof is the same with a2 or f instead of a1. �

Claim 3 : Let C(x, y, z) be as in Claim 2. If one edge of C(x, y, z), say xy,
is crossed by an edge uv, then u or v is z and the two edges, xz and yz are not
crossed.

Proof : By Claim 2, no end of uv is in R(x, y, z). Hence, u or v is z. If
another edge would cross xz, it should have an end equal to y, but it would
cross also uz (or vz). This contradicts 1-planarity. �

Claim 4 : Let C(x, y, z) and C(x, y, u) be triangles such that {x, y, z, u} ∩
{a1, a2, f1} = ∅. Either R(x, y, z) and R(x, y, u) are disjoint, and we may have
an edge zu crossing xy, or they overlap (i.e., R(x, y, z) − R(x, y, u) �= ∅ and
R(x, y, u) − R(x, y, z) �= ∅), xy is not crossed, and either xz crosses yu or yz
crosses xu. If C(x, y, v) is a third triangle such that v /∈ {a1, a2, f1} then xy is
not crossed.

Proof: In a planar drawing, either R(x, y, z) and R(x, y, u) are disjoint, or
one is included in the other, that is, either z ∈ R(x, y, u) or u ∈ R(x, y, z). As
D is 1-planar, we may have in the first case edge zu crossing xy. We cannot
have z ∈ R(x, y, u) or u ∈ R(x, y, z) by Claim 2, hence the second case cannot
happen. As D is 1-planar, we may also have xz crossing yu or yz crossing xu,
but not both. By Claim 3, xy is not crossed.

If we have three triangles sharing the edge xy, two of them overlap. Hence,
xy is not crossed. �

Claim 5 : Let C(x, y, z) and C(u, v, w) be such that {x, y, z, u, v, w} ∩
{a1, a2, f1} = ∅. If R(x, y, z) and R(u, v, w) overlap, then these two triangles
share an edge.
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Proof: By Claim 2, the two triangles share a vertex, say x = u. Assume for
a contradiction that {y, z} ∩ {v,w} = ∅. If xy and xz do not cross vw, then,
again by Claim 2, {y, z} ∩ R(u, v, w) = ∅, hence, R(x, y, z) ∩ R(u, v, w) = ∅
contradicting the hypothesis. Assume xy crosses vw, then xz does not (otherwise
vw has two crossings) and yz does not cross any edge of C(u, v, w). Hence, either
v or w is inR(x, y, z) which contradicts Claim 2. Hence, {y, z}∩{v,w} �= ∅ which
proves the statement. The two triangles are thus as in Claim 4. �

Next we consider D[Qn]. This drawing is a union of triangles that contain
no vertex. We will prove that it is planar. (The graph Qn is planar but this does
not imply that the 1-planar drawing D[Qn] is because c3c4 might cross d3d4.)
We consider a 4-cycle C(ci, di, di+1, ci+1) where 2 ≤ i ≤ n − 2. Its vertices are
denoted for simplicity and respectively by c, d, d′, c′. We will also use b denoting
bi and d′′ denoting di+2.

Claim 6 : The edge cc′ does not cross dd′ and the edge cd does not cross
c′d′.

Proof: Assume for getting a contradiction that cc′ crosses dd′, so that cd
does not cross c′d′.

Consider the triangle C(b, c, c′). The edge dd′ crosses cc′, and thus cannot
cross edge bc or bc′. Hence, C(b, c, c′) separates d and d′. This is impossible by
Claim 1 as there are 4 edge-disjoint paths between d and d′ that avoid b, c, c′

(one of them can be dd′).
Assume now similarly that cd crosses c′d′, so that cc′ does not cross dd′.The

vertex d′′ will play the role of b in the previous proof. The triangle C(c′, d′, d′′)
separates c and d, which contradicts Claim 1. �

Hence, the cycle C(c, d, d′, c′) is not self-crossing.

Claim 7 : No edge of Qn is crossed by any edge of Gn.
Proof : Each edge of the Hamiltonian cycle C(c2, c3, ..., cn−1, dn−1, ..., d3, d2)

of Qn is incident with three triangles, hence, is not crossed by Claim 4. An edge
crossing cidi+1 should link di and ci+1, and an edge crossing cidi should link
ci−1 and di. But the graph Gn has no such edges. �

As there are no crossings between edges of Qn, the drawing D[Qn] is planar.
Furthermore, by Claim 2, none of its triangles contains any vertex.

Hence, D[Qn] is as in Figure 1: the drawing is outerplanar with Hamiltonian
(external) cycle C(c2, c3, ..., cn−1, dn−1, ..., d3, d2). All other edges of Qn are in
R(c2, c3, ..., cn−1, dn−1, ..., d3, d2).

We now prove the main statement. We consider a 1-planar drawing D of Gn
and D as in Figure 1. For both of them, all vertices except a1, a2, f1 are in the
bounded region R(a1, a2, f1). Claims 1 to 7 hold for D and D.
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Let �Gn be obtained from Gn by adding the edges dici+1 for i = 2, ..., n−2. It
is an optimal 1-planar graph because it has a 1-planar drawing and its number
of edges is 23n− 5 + n− 3 = 4 · 6n− 8.

By Claim 7, we can transform D and D into 1-planar drawings of �Gn by
putting each additional edge dici+1 inside R(di, di+1, ci+1, ci) that contains al-

ready a single edge and no vertex. We obtain two 1-planar drawings of �Gn.
They are homeomorphic because �Gn is optimal and is not one of the special
graphs XW2k (cf. [48]). Hence D and D are also homeomorphic, by the same
homeomorphism. �

For proving Theorem 3.4, we define, for n ≥ 4 and m ≥ 0, the graph Hn,m

as Gn augmented with m new vertices g1, ..., gm and edges forming the path
P (d2, g1, g2, ..., gm, cn−1).

Lemma 3.3 : Hn,m is 1-planar if and only if m ≥ 2n − 8. It is u-1-planar
if and only if m = 2n− 8.

Proof: If m ≥ 2n− 8, we obtain a 1-planar drawing of Hn,m by putting :

g1 in R(c2, c3, d3), g2 in R(c3, d3, d4), g3 in R(c3, c4, d4),...,

g2n−9 in R(cn−3, cn−2, dn−2),

and the remaining vertices, g2n−8, ..., gm, in R(cn−2, dn−2, dn−1).

We now prove that, if m < 2n − 8, we cannot do any similar construction.
Let us fix n. Assume D is a 1-planar drawing of Hn,m where m < 2n − 8
and m is minimal with this property. It induces a drawing of Gn that must be
homeomorphic to that of Figure 1, by Proposition 3.2.

The path P := P (d2, g1, g2, ..., gm, cn−1) has no self-crossing, otherwise, we
can shorten it and obtain a 1-planar drawing of Hn,m′ where m′ < m.

No edge ofGn apart from cidi+1 for i = 2, ..., n−2, and cidi for i = 2, ..., n−2,
can be crossed. Hence P must be drawn inside R(c2, c3, ..., cn−1, dn−1, ..., d3, d2).
It must cross 2n−7 edges, hence have at least 2n− 8 intermediate vertices. We
cannot have m < 2n− 8.

If m > 2n− 8, these intermediate vertices can be placed in different ways.
If m = 2n− 8, the way described above is the unique one. �

We will use the transductions described in Section 3.1.

Theorem 3.4 : The class 1P of 1-planar graphs and the class U1P of
uniquely 1-planary embeddable graphs are not monadic second-order definable.

Proof: We define Hn,m from a word w of the form (abcdef)ngm over the
alphabet A := {a, b, c, d, e, f, g}. Each position in the word w is a vertex of
Hn,m. The i-th occurrence of letter a is ai, and similarly for bi, ci, di, ei, fi, gi.
The edges ofHn,m are described by a first-order formula relative to the structure
S(w) = �P,≤, (labx)x∈A� where P := [6n+m] is the set of positions of w. It says
that there is an edge between an occurrence of a and the next one, between an
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occurrence of a and the following occurrence of b, between the last occurrence
of a and the last occurrence of f , etc.

Hence, Hn,m is the image of S(w) under an MS-transduction τ . This trans-
duction maps the words of the regular language W := {(abcdef)ngm | n ≥
4,m ≥ 0} to the graphs Hn,m, in a bijective way.

If 1-planarity would be MS-expressible, then, by Lemma 3.0, the language
L :=W∩τ−1(1P) would be MS definable, hence regular. But L = {(abcdef)ngm
| n ≥ 4,m ≥ 2n− 8} and this language is not regular (we recalled in Subsection
3.1 how such a fact can be proved). If the class U1P would be MS definable,
then the language {(abcdef)ng2n−8 | n ≥ 4} would be regular, which is not the
case either, by a similar argument. �

It follows that 1-planar graphs are not characerized by finitely many forbid-
den configurations such as minors, subgraphs or induced subgraphs. This is not
surprizing because 1-planarity is an NP-complete property [12, 22]. They are
even not characterized by an infinite set of forbidden induced subgraphs that
would be MS definable, as are comparability graphs and interval graphs [15].

A natural question is then : What additional conditions might may 1-planarity
MS-expressible ?

Our proof yields a corollary for three classes of graphs. One of them is H,
the class of graphs having a Hamiltonian cycle and a 1-planar drawing where
any two edges of this cycle do not cross.

Next, we recall that a rotation system for a graph G describes the circular
ordering of the edges incident to each vertex u in some drawing in the plane,
either planar or not (see [14]). In the logical setting, this circular order is defined
as a ternary relation Next(u, x, y) that means : ux and uy are edges, and uy
follows ux in the circular order of edges, according to some fixed orientation of
the plane. We have Next(u, x, x) if ux is the unique edge incident with u. Each
drawing of the graph (with possible crossings) yields a rotation system, but this
drawing may not be reconstructible from the rotation system. A pair (G,Next)
of a graph and a rotation system is called a map (see [14]). A map (G,Next)
is 1-planar if G has a drawing whose associated rotation system is Next.

Corollary 3.5: The following classes of structures are not MS definable:
(1) for each d ≥ 8, the class of 1-planar graphs of degree at most d or of

path-width at most d,
(2) the class H,
(3) the class of 1-planar maps.
Proof : (1) This is immediate because the graphs Hn,m have maximal

degree 8 and path-width at most 8.
(2) Each graph Hn,m where n is odd (and at least 5) has a Hamiltonian

cycle. If m ≥ 2n− 8, then Hn,m has a 1-planar drawing where such a cycle has
no self-crossing. See Figure 2, where n = 7, from which the general case can
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Figure 2: A non-self-crossing Hamiltonian cycle in a graph H7,m (for any m).

be inferred. (The Hamiltonian cycle a1, ..., a5, b5, c5, b4, c4, ....., f1 is shown with
bolder edges. We do not show all edges for clarity).

We replace the language W of the proof of Theorem 3.4 by the regular
language

W ′ := {(abcdef)2p+1gm | p ≥ 2,m ≥ 0}.

If H would be MS definable, then the language

W ′ ∩ τ−1(H) = {(abcdef)2p+1gm | p ≥ 2,m ≥ 2(2p+ 1)− 8}

would be regular, which is not the case.

(3) Each graph Hn,m can be equipped with a rotation system Nextn,m such
that the map Mn,m := (Hn,m,Nextn,m) is 1-planar if and only if Hn,m is.
The relation Nextn,m is easily described by a first-order formula γ(u, x, y).This
formula will express that Nextn,m(u, x, y) holds if, to take only a few clauses as
examples :

u is an occurrence of letter c, x is the occurrence of c following u and y is
the occurrence of letter d that follows x, or,

u is an occurrence of c, y is the occurrence of d following u and x is the
occurrence of d that follows y, or,

y, u, x are three consecutive occurrences of letter g.
Hence, we have an MS transduction that construct Mn,m from a word. The

proof continues as in the other cases. �

Remark: An alternative construction.
Let us define Jn,m as G4 augmented with new vertices g1, ..., gm, h1, ..., hn,

a path P (d2, g1, ..., gm, c3) and n paths P (c2, hi, d3) for i = 1, ..., n. Then Jn,m
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is 1-planar if and only if n ≤ m. The proof of Theorem 3.4 is easily adapted.
However, cf. Corollary 3.5, the graphs Jn,m have unbounded degree, and no
Hamiltonian cycle for large n; nevertheless, they have path-width at most 8 and
a rotation system for Jn,m, as in the proof of Corollary 3.5 can be defined from
a word (abcdef)4gmhn that defines it.�

Edge-set quantifications do not help.
Theorem 3.4 deals with MS sentences that do not use edge-set quantifica-

tions. As 1-planar graphs are uniformly 4-sparse, MS2 sentences are no more
powerful than MS ones to express their properties (cf. Section 3.1). Hence, The-
orem 3.4 also shows that the classes 1P and U 1P are not MS2 definable.

Some positive monadic second-order expressibility results.
We denote by OpP the class of outer p-planar graphs28 , that is, that have

a Hamiltonian cycle and a simple p-planar drawing such that this cycle has no
self-crossing and all other edges are inside the bounded region it defines. The
class O1P is included in H considered in Corollary 3.5.

An outer 1-planar graph is actually planar : consider a corresponding draw-
ing; the edges not in the Hamiltonian cycle C can be put into two sets, say F
and F ′ each of them having no two crossed edges; then the edges of F ′ can be
redrawn outside of C, and we get a planar drawing. We prove in the appendix
that its tree-width is at most 3.

Proposition 3.6: The class of optimal 1-planar graphs and the class of
outer 1-planar graphs are MS definable.

Proof: We will use MS2 sentences to define these classes.
Optimal graphs. By Theorem 11 of [48], a graph G is optimal (as 1-planar

graph) if and only if it consists of a 3-connected quandragulated planar graph
H and edges added in the following way : for each 4-cycle C(x, y, z, u) of H,
one adds the (crossing) edges xz and yu.

An MS2 sentence for describing these graphs can be written of the form
∃F.ϕ(F ) where F is denotes a set of edges and ϕ(F ) expresses the following
conditions relative to a graph G :

(a) Every vertex is the end of an edge in F,
(b) the graph H := (VG, F ) is 3-connected and planar, it has no 3-cycle and

every p-cycle for p ≥ 5 has a chord,
(c) for every edge xz not in F , there is inH a 4-cycle of the form C(x, y, z, u),
(d) for every 4-cycle C(x, y, z, u) of H, the edges xz and yu are in EG −F.

Outer 1-planar graphs. They are described by an MS2 sentence of the form
∃F.ψ(F ) where F denotes a set of edges and ψ(F ) expresses the following con-
ditions relative to a graph G :

(a) F is the set of edges of a Hamiltonian cycle C,

28Not to be confused with that of p-outer planar graphs that have tree-width at most 3p−1
by [5].
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Figure 3: A 1-planar drawing of a planar graph H.

(b) there are no three edges e, e′ and f in EG−F such that f crosses e and
e′ in the drawing of G such that C bounds the external face. As soon as C is
fixed and drawn in the plane, the possible crossings of the edges in EG −F are
imposed by the graph structure : consider e = xy and f = uv, where x, y, u, v
are pairwise distinct vertices. Then e crosses f if and only if there exist two
disjoint paths P and P ′ between x and y that consist of edges from C and are
such that u is in P and v in P ′. These paths have only x and y in common and
C = P ∪ P ′. This condition about e and f is MS2-expressible. �

Let A be the class of 1-planar graphs G that are apex, which means that
removing one vertex makes G planar.

Open question: Is membership in A MS-expressible ?
A difficulty comes from the following fact : if D is a 1-planar drawing of

G ∈ A, it is not necessarly the case that D[G′] is planar for some subgraph
G′ of G obtained by removing one vertex. This means that we may have to
consider 1-planar drawings with crossings for planar graphs.

For an example, Figure 3 shows a 1-planar drawing of a planar graph H.
This graph is 3-connected and has thus a unique planar drawing. Let G be H
augmented with a vertex x and edges xa, xb, xc, xe, xh, xf : it is 1-planar and
apex. However, G has no 1-planar drawing D such that D[VG − {x}] is planar,
because it is not possible to insert x in the (unique) planar drawing of H so as
to get a 1-planar drawing of G. Furthermore, removing from G any other vertex
than x yields a graph that is not planar, because in each case, this graph has a
K5 minor.

Conjecture: For each p ≥ 2, the class of p-planar graphs is not MS defin-
able.
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The p-planar graphs are obviously more complicated than the 1-planar ones,
which motivates the conjecture. The graph Hn,m of the proof of Theorem 3.4
is 2-planar if n− 4 ≤ m. If the converse holds, which we think, we get a proof
of the conjecture for p = 2.

The same conjecture can be made for QP (Forest) and the class of p-quasi-
planar graphs.

4 Conclusion

We have exhibited graph classes for which clique-width and tree-width are lin-
early related. Apart from understanding graph structure, our motivation is
to use tree-decompositions as intermediate steps for constructing clique-width
terms, for graphs in classes of unbounded clique-width.

For some classes of bounded clique-width, "good" clique-terms can be con-
structed in polynomial time by using modular decomposition29 instead of tree-
decomposition as preliminary step, for example in [10].

More open questions

(1) Which planar graphs have no 1-planar drawing with crossings ? Likely,
regarding our proof of Proposition 3.2, the triangulated graphs of high edge-
connectivity are so.

(2) Which 1-planar graphs are u-1-planar ? In particular, which edges can
be removed from an optimal30 u-1-planar graph so that it remains u-1-planar ?

(3) Are the classes of p-quasi-planar graphs (for p > 2) nowhere dense ? Do
they have bounded expansion ?

Independently of quasi-planarity, we can also ask :
(4) Does there exist a real number α < q such that cwd(G) = O(twd(G)α)

for all G in Uq ?

5 Appendix: Outer 1-planar graphs

We recall that outerplanar graphs have tree-width at most 2, [5].
Proposition 5.1 : Outer 1-planar graphs have tree-width at most 3 and

clique-width at most 6.
Proof sketch : We use induction on the number of edges to prove that

every graph in O1P has tree-width at most 3. In this proof, we allow parallel
edges, which have no effect on tree-width.

The smallest nontrivial graph in O1P is K4.

29Modular decomposition can be computed in linear time, see [37].
30Not all optimal 1-planar graphs are u-1-planar, cf. [48].
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Consider G in O1P. If it has a vertex x of degree 2 with neighbours y and
z, we delete it and we add an edge between y and z. If there are two parallel
edges, we remove one. In both cases, we obtain G′ in O1P with one edge less
than G. It has tree-width at most 3 and so has G.

Otherwise, we assume that none of these transformations is applicable. Let
C(x1, ..., xn) be the Hamiltonian cycle. The internal edges are xixi+p, such that
1 ≤ i, 2 ≤ p, i+p ≤ n (except x1xn because we have eliminated parallel edges).

There exist pairs of internal edges xixi+p and xjxj+q that cross, which
means that i < j < i + p < j + q. Each of them is not crossed by any other
edge. Consider such a pair such that j + q − i is minimal. It is of the form
{xixi+2, xi+1xi+3}. We remove xi+2, xi+1 and the incident edges, and we add
the edge xixi+3 : we get a smaller graph G′ in O1P having a tree decomposition
(T, f) of width at most 3 by the induction hypothesis. Some box f(u) contains
xi and xi+3. By adding to T a box consisting of xi, xi+1,xi+2, xi+3 attached to
u, we get a tree decomposition of G of width 3.

From this proof, we can build a graph-grammar of type HR ([20], Chapter
4), and we can express its rules with clique-width operations using 6 labels.
Hence, the outer 1-planar graphs have clique-width at most 6. This proof shows
that outer planar graphs have clique-width at most31 5. �

We conjecture that outer p-planar graphs have bounded tree-width.
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