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Role of spatial heterogeneity on the collective dynamics of cilia beating in a minimal

1D model

Supravat Dey,! * Gladys Massiera,"> and Estelle Pitard" ¥
LL2C, Univ Montpellier, CNRS, Montpellier, France.?

Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms
and in several tissues of most living organisms. In some tissues such as the airway tissues of the lung,
the coordinated beating of cilia induce a fluid flow of crucial importance as it allows the continuous
cleaning of our bronchia, known as mucociliary clearance. While most of the models addressing
the question of collective dynamics and metachronal wave consider homogeneous carpets of cilia,
experimental observations rather show that cilia clusters are heterogeneously distributed over the
tissue surface. The purpose of this paper is to investigate the role of spatial heterogeneity on the
coherent beating of cilia using a very simple one dimensional model for cilia known as the rower
model. We systematically study systems consisting of a few rowers to hundreds of rowers and we
investigate the conditions for the emergence of collective beating. When considering a small number
of rowers, a phase drift occurs, hence a bifurcation in beating frequency is observed as the distance
between rowers clusters is changed. In the case of many rowers, a distribution of frequencies is
observed. We found in particular the pattern of the patchy structure that shows the best robustness

in collective beating behavior, as the density of cilia is varied over a wide range.

PACS numbers: 87.16.Qp,05.45.Xt,47.63.-b

I. INTRODUCTION

Cilia are elastic hairlike protuberances of the cell mem-
brane found in various unicellular organisms and in sev-
eral tissues of most living organisms. As a propulsor,
a cilium is periodically beating in a succession of power
and recovery strokes, propelled by its internal molecular
motors [1]. Propulsion acts either on the microorgan-
ism itself such as for Paramecium or Volvox algae, or
to induce the flow of the surrounding fluid, as this the
case for airway, brain or oviduct tissues [2—4]. In the
airway tissues of the lung, this fluid flow induced by the
coordinated beating of cilia is of crucial importance as
it allows the biological function of cilia to help to expel
the mucus and the impurities out of the airways, known
as mucociliary clearance [4].

Cilia are often observed as scattered clumps and beat
in coordinated manner in the form of metachronal waves
keeping a constant phase difference with adjacent cilia
[5—7]. This type of large scale coordinated beating pat-
tern is of great importance for efficient propulsion [8-12].
It is now well established that hydrodynamic interactions
play a crucial role [7, 10, 13, 14] for the emergence of such
large scale metachronal waves.

While most of the models addressing the question of
collective dynamics and metachronal wave consider ho-
mogeneous carpets of cilia, in real samples, cilia form
patches. In cultured and in vivo airways epithelium tis-
sues, cilia patches are heterogeneously distributed over
the surface [15, 16]. For example, observations per-
formed on human bronchial epithelium cultures show
that cilia are distributed in clusters containing ~ 100 —
200 cilia [17], and that these clusters arc separated in
a random manner. The mucociliary dysfunction due to

impaired coordinated beating of cilia is poorly under-
stood and could be related to the spatial heterogeneity
of healthy cilia distribution. The main focus of this work
is to study the collective behavior of a system of many
hydrodynamically coupled beating cilia with heteroge-
neous spatial configurations.

Several theoretical models with various levels of com-
plexity investigate the relation between the hydrody-
namic coupling and the metachronal synchronization
[14, 18]. We will concentrate our study on a minimal
model, where the beating pattern is simple and is com-
posed of a few degrees of freedoms allowing us to un-
derstand the sole role of hydrodynamical coupling in the
beating synchronization of an array of cilia. There are
two classes of well studied minimal models. In one class
of models, a cilium is described as a rower: a spher-
ical bead oscillates between two distinct states where,
in each state, the bead moves in a specific driving po-
tential, mimicking the power and recovery strokes of a
real cilium [14, 19-25]. In another class models, cilia
(known as rotors) are considered as spherical beads or-
biting on rigid or flexible two dimensional trajectories
under a driving torque [13, 18, 26-28]. In more complex
models, cilia are modelled as actively driven semiflexible
filaments with more realistic beating pattern [10, 29, 30].
In such models, the hydrodynamic coupling between cilia
can lead to metachronal waves in systems of cilia in one-
and two-dimensional lattices. In this paper, to under-
stand the role of spatial heterogeneity, we consider the
framework of the rower model.

In this work, we will present new results on how het-
erogeneity of cilia position influences the stability and
robustness of coherent beating of cilia. We focus on one
of the simplest models for cilia beating, the rower model



[19] in one dimension. We carefully study the effect of
spatial heterogeneity in systems with few rowers as well
as in systems with a large number of rowers with various
kinds of heterogeneities. First, we study the 3-rowers
case in great detail as it is the minimal way to introduce
position irregularities. We find phase drifting and bifur-
cation of the frequencies of beating when the distance
between the second and third rower is varied, keeping the
distance between the first and second rowers fixed. The
phenomenon of phase drifting is also present in a system
with more than 3 rowers, and we study different spatial
configurations with a finite number of rowers. This al-
lows us to identify a crossover distance, above which the
separation between consecutive clusters is large enough
to decouple their dynamical behavior. In the case of a
large number of coupled rowers, we consider several types
of spatial heterogeneity. We find that when the cilia are
spatially distributed on randomly clustered configura-
tions, their dynamical behaviour is characterized by a
robust average common beating frequency, that depends
only weakly on the density of cilia. This seems to corre-
spond to preliminary results on human epithelial tissues
[31]. On the other hand, the collective behaviour ob-
served for other types of spatial heterogeneities is strik-
ingly different.

II. THE ROWER MODEL

The rower model for cilia, proposed by Cosentino et al.
in 2003 [19], experimentally realized by driven colloids
in viscous fluids [22], remains one of the basic model to
study hydrodynamic synchronization [14]. In this model,
the complex structure of a cilium is coarse-grained as a
spherical bead, and the periodic beating pattern is de-
scribed as an oscillating linear motion of a bead in a
viscous fluid. In order to create a sustained oscillat-
ing motion of the bead, two different driving potentials
are used, and a mechanism for geometrical switching
between these potentials is employed. In Fig. 1 (left),
we show a schematic diagram of the geometric switch
and the harmonic potentials. The bead motion under
each driving potential corresponds to a specific state of
the bead 0 = £1 (motion corresponding to +y direc-
tion). If the bead reaches a particular limiting ampli-
tude y = +s, it switches to the other driving potential
and consequently reverses the direction of its motion.
Hence, it successfully creates a sustained oscillating mo-
tion. These two states of the bead mimic the power and
recovery stroke of beating of cilia.

We consider an array of N rowers on a one dimen-
sional lattice of size L (see Fig. 1 (right)). The spacing
between two consecutive lattice sites is d = 1. If there
is no heterogeneity, all the lattice sites are occupied and
hence, L = N. In the case where rowers are placed het-

erogencously on the lattice, one allows for empty lattice
sites and L > N. Let us call the positions of the rowers
T1,T9, .., Tp,y .., TNy Where 1 < To, ..y < T,y .., < Tny. TWO
dynamical variables o,, (state) and y,, (displacement) de-
scribe the motion of the n*" rower.

A bead switches between the two states if the dis-
placement y reaches the maximum amplitude +s, i.e.
if yn(t) = £s then o,(t) = —0,(t) and o,(t) = o,(t)
otherwise. We choose the two driving potentials to be
harmonic V (y,.o0,) (Fig. 1 (left)). The external driving

force f,, for the nt" rower is given by:
aV y7L7 O-’”,
fon=-— (a ) :_(kyn_an)- (1)
Yn

In our study, the stiffness constant of the potential £ is
assumed to the same for all the rowers. This external
driving force on the bead is a simple approximation of
the complex internal active force of a real cilium.

Cilia motion corresponds to a low Reynolds number
regime and we are interested by the far-field hydrody-
namic regime: the size and displacements of the beads
arc small compared to the lattice spacing. In this limit,
the hydrodynamic coupling between the rowers is given
by Oseen tensor [32, 33]. The velocity at any instant
of time v,,, acting on the nt® rower induced by active
oscillation of rower m is given by:

The Oseen coupling between any two rowers m and n is
O(m,n) = 1/(8mdmn), where d,,, is the distance be-
tween the sites (dpm = |Tn — Tm]|), and 7 is the viscosity
of the fluid medium. Here, we note that as our focus
in this paper is on the coherence of cilia beating (not
on the flow of surrounding fluid) and therefore the driv-
ing forces for both states are chosen to be symmetric for
simplicity (as in [22, 24, 25]). However, one can make
the motion of the two states asymmetric by considering
different driving forces [34] or different drag coefficients
for both states [19].

Hence, in the overdamped limit, the dynamical equa-
tions for this system are given by,

1 N

m#n

1 Y
m
= —_— 3
6mna Fut mZ#n 8mNdmn 3)
Here, the factor 6mna is the viscous drag coefficient of
a spherical bead with radius a. For computation pur-
poses, we choose 67na = 1, hence 1/(87n) = 3a/4 = a.
Replacing a and 7, Eq. (3) can be rewritten as,

N
= fotad 5 (4)

men dmn



=S

FIG. 1. A schematic diagram of the model. Left The harmonic potentials correspond to the two different states (o = £1)
of a rower. The bead switches between the two potentials once it reaches y = +s. The driving potentials and the switching
mechanism form a simple description of real beating. Middle A schematic representation of simplified beating pattern of a
cilium. Right N rowers are placed on a regular one dimensional lattice. The positive y direction is ¢ = 1 and negative y
direction is ¢ = —1. We create heterogeneity in rowers’ position by keeping empty lattice sites in-between occupied sites.

These are shown in Fig. 11.

Note that in a realistic physical situation, the coupling
strength o is always a positive quantity. In the absence
of any hydrodynamic coupling, (i.e. a = 0), it is easy
to calculate the natural frequency of the rowers wg. It
depends on the force constant & and the value of limiting
displacement s; its analytical expression is given by [19,
22]:

2m wk
Wwp = — = ———. (5)
T [

As mentioned before, this model has been studied for
systems of several rowers on regular lattices in one and
two dimensions [19, 34]. The collective beating of the
rowers lead to metachronal waves as a result of anti-
phase synchronization of neighbours for & > 0. When
k <0 [34], or @ < 0 [19] (which is not realistic) the row-
ers show in-phase oscillations, not metachronal waves.
Cases considering a few rowers in special geometries were
also studied [24, 25, 35] and showed very different dy-
namical states depending on their spatial configuration
and orientation of beating. However, no previous study
have considered the spatial heterogeneity of the cilia po-
sition [35].

For our computation, we choose the values for the pa-
rameters «, k and s already used in the original paper
[19]. The force constant for the harmonic driving po-
tential is £ = 1.0. A single rower oscillates between —s
to +s with s = 0.8. The value of « is taken to be 0.1
unless otherwise mentioned. In order to integrate the
dynamical equations (Eq. (4)) for N rowers, we use the
Euler method with an integration step h between 1072
and 1073, depending on the situation. We consider here
the deterministic case, hence simulations are run with-
out thermal noise. The case of adding thermal noise will
be considered elsewhere [36].

In the following, we try to understand the role of spa-
tial heterogeneity on the collective behavior of cilia beat-
ing. First, we study a 3-rower system which is the min-
imal sets to study heterogeneity effect. We consider 3
rowers on a one dimensional lattice such that the two first
rowers occupy two consecutive lattice sites whereas the
position of the third rower increases (see Fig. 4). Then
we study the effect of heterogeneity in systems composed
of 4, 5, and 10 rowers, where we find that the resulting
dynamics obeys a general scenario (section IIT). Finally,
we study systems of a large number of rowers with three
types of heterogeneities (section IV)corresponding to dif-
ferent degrees of randomness — (i) the regular clustered
case, (ii) random case, and (iii) the random clustered
case.

How to characterize collective behavior?

A collection of oscillators can display different emerg-
ing features through coherence in phases and frequencies
[37, 38]. Most common phenomena of phase coherence
are synchronization and phase-locking. In order to char-
acterize the phase coherence, we define a phase variable
¢n, for n*" rower using the following prescription (given
by Stark et al. [34]):

d)’n, = 27Tm'n, + gany_na if Yn > 0 and On = 17
S
T Yn .
= 2mm,, + 50”— + 27, if yy <0 and o, =1,
S

s

=2wm,, + Eany—n +m, if o, = —1. (6)
S

The phase number m,, (€ N) is increased by 1 after

rower n completes a full cycle. The piecewise linear re-

lation between phase and displacement ensures that one
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FIG. 2. The periodic beating of a single rower is plotted

as function of time t. The red curve is the displacement y

of the rower, and the blue curve is its phase representation
according to Eq. (6).

full cycle in y is equivalent to a rotation of 27 in ¢. In
Fig. 2, we plot the time evolution of displacement y and
corresponding phase ¢ for a single rower. In the case of
perfect synchronization, all oscillators oscillate in phase;
it is defined as ¢; = ¢;41 for all j. For phase-locking
systems, neighbouring oscillators maintain a constant
nonzero phase difference 6, ¢; = ¢;4+1 + 6. A nonzero
0 leads to the formation of traveling wave in a system
of many oscillators. This wave is known as metachronal
wave in the literature [6]. The degree of phase coherence
can be measured by a complex order parameter Z, which
is defined as [34],

N—-1

1 i
D DR ™)

n=1

7 = Ae'® =

where A¢, = ¢p41 — ¢ and N is the total number
of oscillators. The system is maximally coherent when
A =1, and has no coherence for A = 0 (see Appendix
I). When A¢,, = ¢ for all n, A = 1. This is true for
any constant ¢ including zero i.e, for both phase locked
and in phase synchronization solutions. Therefore, for
both perfect metachronal wave and fully synchronized
states the value of the order parameter A is 1. In order
to distinguish the synchronized states from metachronal
waves, one should also measure @, which gives the aver-
age angle of phase difference. For a synchronized state
® = 0, and for a metachronal wave, ® = § # 0.

Beside phase coherence, another observed emerging
behavior in a system of coupled oscillators is frequency
locking. In this case, the phases of oscillators can be dif-
ferent but they oscillate with a common frequency which
is different from their natural frequency (the frequency
in the absence of coupling) [37, 38]. We define the aver-
age frequency w; of a rower ¢ in the following way [38],

®i(to +t) — ¢4(to)
; .

to+t .
w; = lim n /tU ¢; dt = th;élo (8)

t—o0

Here, tg is sufficiently large so that the system has
reached a dynamical steady state at that time. In gen-
eral, the frequencies of the oscillators are distributed over
a distribution P(w). For a perfectly frequency locked
system, the probability distribution of frequencies P(w)
is a d-function.

III. RESULTS FOR FINITE-SIZE SYSTEMS

In this section, we systematically study arrays con-
sisting of a few rowers (from N = 2) to many row-
ers (N = 100). We compute the order parameter A
(Eq. (7)), and the distribution of beating frequencies w;
(Eq. (8)) to characterize the collective behavior of the
beating. Our objective is to understand the role of the
spatial heterogeneity of cilia on the stability and robust-
ness of the synchronization. This heterogeneity is intro-
duced as soon as the number of rowers is 3.

1. 2-rowers case

The dynamical behavior of a system two rowers are
well understood. It is known that two rowers oscillate in
opposite phase [19, 22, 34], and the collective frequency
of the oscillation depends on the separation and hydro-
dynamic strength [22]. Here, we revisit the two-rower
case mainly to study collective frequency for different
separating distances di2. As we will see in the next sec-
tions, this study will be useful to understand a system
with more rowers.

In the inset of Fig. 3(a), the phase difference
Ap12(t) = ¢a2(t) — P1(¢) is plotted as a function of time
t for « = 0.1. At t = 0, we start the simulation with
an arbitrary phase difference. We observe that within a
small transient time the 2 rowers reach to a perfect anti-
phase synchronization state (A¢12(t) = 7). Let 73 be
the average time required to reach a perfect anti-phase
synchronized state. In our simulation, we compute 7,
by the time ¢ at which A¢i2(t) reaches the value 0.997
and then averaging the data over many random initial
configurations(~ 1000). We find that 74, linearly in-
creases with dio when « is constant (or with 1/« when
dy2 is constant) (see Fig. 3(a)). This is consistent with
the fact that the larger the interaction (a/d;2), the faster
the rowers reach the synchronization state.

What is the collective frequency of the anti-phase syn-
chronization for two rowers? One can derive the expres-
sion for the collective frequency wee,2(d12), by assuming
the anti-phase solution in the dynamical equation Eq. (4)
[22]. The collective frequency weoi,2(di2) is a function
of di2 and «, and is given by:

Weot,2(d12) = w12 = wo(1 — || /d12), 9)



where wyq is the natural frequency of the rower when the
interaction is absent (see Eq. (5)). This matches exactly
with the numerical findings, as shown in Fig. 3(b).
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FIG. 3. (a) The transient time (7¢.) to reach the anti-

synchronized state from an arbitrary initial condition is plot-
ted against separation di2. Tt increases linearly with di2. In-
set: The phase difference between the rowers, Ag12, is plotted
against time ¢. At ¢ = 0, the rowers start from an arbitrary
initial condition, and after 7¢., A¢12 converges to m, i.e. the
rowers beat in exact anti-phase synchronization. (b) Collec-
tive frequency weoir,2(d12) as a function of dio for different
kinds of initial conditions. The data with solid squares are
obtained when the two rowers start from a initial condition
which is different from an exact in-phase configuration while
the data with empty squares are obtained with in exact in-
phase initial condition. Their frequencies converge to wp for
large di2.

A special case arises for a specific initial condition,
which is specific to the deterministic (zero noise) system.
At ¢t = 0, if the rowers are in exact in-phase (y; = y2 and
01 = 02) there will not be any anti-phase synchroniza-
tion, and the rowers will continue to beat in phase for-
ever. The analytical expression for weez 2 of the beating
is given by:

Weott 2(d12) = w12 = wo(1 + |af/d12). (10)
In Fig. 3(b), we plot the frequency as a function of dys
when the rowers start from an exact in-phase initial con-
dition (empty squares): the data points exactly match
the analytical expression given by Eq. (10). However,
this solution is very unstable. If the simulation starts
with an initial condition which is slightly different from
those specific initial conditions, one reaches the usual
solution discussed above.

2. 3-rowers case

A 3-rowers system is the minimal setup to study the
spatial heterogencity of cilia. It shows an interesting phe-
nomenon called phase drifting in which the third rower
oscillates with a different phase than the first two rowers,
typical of a dynamical bifurcation. This phenomenon is

familiar in other coupled non-linear systems of oscilla-
tors when the coupling strength or the noise strength
is varied (Adler systems [37, 39-41]), and has also been
reported for rotors near a wall as the distance from the
wall is increased [42].

We consider the 3-rowers system in one dimension,
schematically shown in Fig. 4, where the first two rowers
occupy two consecutive lattice sites and the third rower
is placed on a site which is a distance ds3 apart from the
second rower. The lattice constant is d = dio = 1. We
consider different cases for different values of do3.

dz3

—~————t

1 2 3

FIG. 4. The minimal set up to study the spatial inhomo-
geneity of cilia position. The first two rowers occupy the two
consecutive lattice sites di2 = 1. The third is placed das
distance apart from the second rower.

For a given value of ds3, we solve the dynamical equa-
tions for 3 rowers numerically. We find that, in the dy-
namical steady state, the first two rowers always oscil-
late in anti-phase with each other and the behavior of
the third depends on the value of das. In Fig. 5(a), we
plot the phase difference Agoz = ¢35 — @2 as a function of
time ¢ for various doz. We see that, for dog < d. = 2, the
phase difference Agog is constant and for dog > d., A¢pas
grows and is modulated in time. The latter implies that
the phase locking between the second and third is lost
due to the appearance of phase drifting [37, 39, 40].

As a result, for dos < d. all 3 rowers oscillate with the
same frequency and for doz > d,., rower 1 and 2 oscillate
together with the same frequency but rower 3 oscillates
with a different frequency. In Fig. 5(b), we plot the
frequency of the 3 rowers w1, we, and ws as a function
do3. For dogz = 1, all the frequencies of all rowers are the
same and for doz > 2, w1 = woe # ws.

Hence, for the set of parameters used in our simula-
tion (k =1, s = 0.8 and o = 0.1), the value of the d. is
2. We simulated the 3-rowers system for several values
of hydrodynamical coupling o« = 0.1,0.05, and 0.01 with
the same value of the driving parameters k and s and
find d. = 2 in all cases. In this range of investigated
parameters, d. is independent of a. By studying several
cases with different sets of driving forces of the rowers
for a given a, we found that the value of d. depends on
the force constant k, and on the amplitude of the oscil-
lation s i.e. d. = d.(k,s) (see Appendix II). This result
is very interesting. It means that hydrodynamic inter-
action strength does not have any role on determining
d.. The value of d. is therefore completely determined
by the internal activity of the cilia and not by the fluid
viscosity. However, this result is weakened for N > 3.
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FIG. 5. (a) The phase difference between the rower 2 and 3,
Agpaz versus time t for different daz. A¢as remains constant
for dos < dc. At d., a bifurcation occurs and Agas grows in
time for das > d.. Here, the value of d. is 2. (b) Frequencies
of the three rowers as a function of dzs. Bifurcation occurs
at des = d. = 2. For very large daz, rower 3 becomes al-
most independent of the other rowers and oscillates with its
natural frequency wo while the first 2 rowers oscillate with
the collective frequency of a 2-rowers system weoi,2. The
data here is obtained from a single configuration. Indeed, we
checked that the steady state does not depend on the initial
configuration if the simulations does not start with a peculiar
condition (such as: all rowers are in phase or all are in anti
phase at t=0).
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FIG. 6. (a) The log-log plot of a7qyis —const for « = 0.1,0.05
and 0.01. (b) This scaling makes all the curves fall into a
single curve f(d23). The function f(d23) s well fitted by 1/d23.
To compute the power laws more accurately, we choose very
small step size for the Euler integration method, h = 10~°.

For N = 4, we observe d. depends on « as well as initial
configuration of rowers (see Appendix II).

The values of wi, wy, and w3 depends on daz. As
we have noted above, w; = wq for all doz, but w3 be-
haves differently for dog > d.. For very large dss, the
hydrodynamic coupling of the 3rd rower due to the first
two can be neglected, hence the frequencies of the row-
ers become independent of ds3. In this limit, the 3rd
rower beats with the natural frequency wy and the first
two rowers oscillate with the collective frequency of two
TOWeErs weoyr,2 (see section III.1). On the contrary, for
small doz, the dependence of the rower frequencies on
da3 is non-trivial. We use the following fits: wi(deg) =

wa(d23) =~ Weonna + a/daz, and ws(daz) ~ wo — a/d3;.
In Fig. 5(b), we plot these functions (solid for ws, and
dotted line for wy). The two lines match nicely with nu-
merical data (points). Note that ws saturates rapidly to
wo (w3 —wo =~ a/d33), while the decay of wy t0 weo 2 is
slow (w1 — Weeir,2 = «/das). The expression of wi(dag)
and ws(da3) can be understood by the following way.
Consider that the 3 rowers oscillate with the same fre-
quency, the first two being exact anti-phase, and third
one being exact anti-phase with the 2nd one. Although
this is obviously a very crude assumption, one can use
Eq. 4 and solve it for the 1st rower:

w1 :(JJQ(]. —a+ Oé/(dgg + 1)) = Weoll,2 + WQO//dgg.(l].)
Solving the equation for the 3rd rower leads to:
w3 :wo(l — a/d23 + (Jc/(dgg + 1)) >~ Wy — wo(l/d§3.(12)

The growth of Agsz is not uniform and follows a peri-
odic pattern in time (Fig. 5(a)). For da3 = 2, the phase
difference rather shows sharp 27 jumps followed by al-
most flat regimes. With the increase of ds3, the growth
rate of the phase difference becomes faster and steps dis-
appear. In order to characterize the nature of the phase
drift, we define the time scale Tayf (v, dag) as the time
needed for the phase difference Ago3 to increase by 27
(i.e. the time period of A¢qsz), and we compute it for
a given internal activity of rowers (i.e for fixed k& and
s). We find that a7arie (e, dog) = f(das) + const, where
the function f does not depend on «. In Fig. 6, we
plot atgs — const in log-log scale and we show that
the curves for different o collapse into a single curve.
The scaling function f(da3) decays algebraically to zero
as 1/deg. This collapse and the 1/ds3 decay can be ra-
tionalized using the following simple arguments and ap-
proximations. From the definition of the drift time, it is
casy to see that Tapiee(das) ~ 1/(ws(das) — wi(daz)) ~
1/(ada3) + const/a, using the fitting expressions for
W1 (dzg) and w3 (dzg).

3. 4-rowers case

The phenomena of phase drifting and bifurcation is
also observed for a system of 4 or more rowers. Here, we
study the case of 4 rowers. We divide the 4 rowers into
two subgroups in order to study different configurations.
For a given internal structure (i.e. for given k and s), one
obtains a variety of behavior, as the value of d. depends
on the number of rowers in each group

Case I — Asymmetric case: The first group of rowers
has 3 consecutive rowers with equal gap, di1s = dog = 1.
The second group consists only of the 4th rower and the
distance separating the two subgroups is dg4. In Fig. 7
(b), we plot the frequencies for rowers as a function of
dsy4. A bifurcation similar to the one obtained for three



rowers is observed for ds4 > d.. The critical distance for
this case is different from the 3-rowers system. Unlike for
N = 3, the value of d. depends a and initial configura-
tion of rowers (see Appendix II). For very large ds4, the
3-rowers group behaves independently of the 4th rower
which oscillates at wy, the natural single rower frequency.

Case II — Symmetric case: The first group has 2 con-
secutive rowers with gap, dis = 1. The second group
consists of the 3rd and 4th rower with gap dss=1. Here,
all rowers oscillate with the same frequency and as the
distance between two groups dog is very large the fre-
quency asymptotically saturates to the frequency of 2-
rowers system. Here the two clusters independently
beat with the same frequency characteristic of their size

(Fig. 7 (a)).
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FIG. 7. Angular frequencies of 4 rowers for different gaps
between clusters; o = 0.1 : (a) symmetric case 2-2, no bi-
furcation is observed, (b) asymmetric case 3-1, a bifurcation
observed.

4. 10-rowers case

We divide the 10 rowers set into two subgroups and
studied the 5 different following cases.

Symmetric case (5-5): each subgroup consists of 5 row-
ers equally spaced, but the distance dsg between the two
groups can vary. We observe no bifurcation in this sym-
metric case (see Fig. 8 (a)).

There are 4 asymmetric cases: 6-4, 7-3, 8-2 and 9-1
groups. In all these cases, a bifurcation occurs. In Fig. 8
(b), (c), (d), (e), results for the collective frequencies of
the 2 clusters are shown. The critical distances after
which bifurcation occurs are different in each case.

From the above study of finite size systems, we learn
two instructive features. (i) As expected from symme-
try, there is no bifurcation if the sizes of the 2 clusters
are equal, instead all rowers beat at the same frequency
whatever the distance between the 2 clusters. (ii) The
distance where the bifurcation occurs is maximal for non-
trivial cluster sizes and is minimal for strikingly different
sizes.
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FIG. 8.  From (a) to (e), the sizes of the 2 clusters are
respectively 5-5/ 6-4/ 7-3/ 8-2/ 9-1. When the size of the
two clusters is comparable (5-5 and 6-4) the solution of the
dynamical equations depends on initial conditions. The data
are then averaged over 1000 initial conditions.

5. Link between the order parameter A and the
rowers phases ¢

As seen before, local observables such as phase dif-
ferences between rowers Ag;; or individual frequencies
w; are necessary to describe in detail the good or poor
coherence state of an assembly of rowers. If one now
looks at the global observable A, how will A be related
to the dynamical state of the system? The relation be-
tween A¢;; between consecutive rowers and A is given
by Eq. (7). However, by looking only at the value of
A, it is not possible to infer the dynamical state of the
system (i.e A¢;;). The study of the 3+1-rowers case is
instructive in this respect and is reported here. As seen
in Fig. 7 (b), d. = 3 in this case. We show in Fig. 9 that
3 distinct dynamical phases can be identified by compar-
ing the time averaged value of A with the rowers phase



1 T T T 4
Apy, —
2 o A0 — ]
v Adyy
oL i
(b)
4 8 12 _4 L L L L L -
dsy 15 30 45 t 60 75
4 T T T T T 4 T T T T T
i
i
Adyy — Aoy, —
Adyy — Adyy —
or A¢§i T O A0y i
2+ 2k |
(© (d)
-4 b | | | = -4 B | | | =
15 30 45 t 60 75 15 30 45 t 60 75
FIG. 9. (a) The time averaged order parameter (A), av-

craged over a large time window after the system reaches
dynamical steady state for an arbitrary initial condition for
the 3+1-rowers case, is plotted against separation dss. The
time evolution of phase differences between consecutive row-
ers for d3s = 1, d34 = 2, and ds4 = 50 are plotted in (b), (c),
and (d) respectively.

differences. If d3q4 = 1, the group of rowers is compact
and oscillate in almost anti phase, hence (A) is maximal
and close to 1. If dg4 = 2, the system stands right before
the bifurcation (d. = 3), and the rowers state is dynam-
ically disordered as one can see on Fig. 9 (c). If daq is
much larger than d. (and this is illustrated by looking
at dz4 = 50, the two clusters of rowers oscillate indepen-
dently but the 3 rowers in the first group are coordinated
in almost anti phase, leading to A reaching a saturation
value after the dip at dgs = 2.

6. Collective beating frequency of rowers on a
regular array

For a regular array of N equally spaced rowers, we ob-
serve that all rowers oscillate at same frequency (except
a few rowers close to the boundaries for very large N,
where N is the number of total rowers) showing phase
coherence both for o« < 0 (in-phase synchronization) ,
or for @ > 0 (anti-phase metachronal waves) [19]. We
studied here how the collective frequency wey; depends
on N. We observe that for a < 0, weoy; strongly depends
on N (see Appendix IV). For o > 0, however w,; stabi-
lizes to a constant value. This confirms that metachronal
waves in mucociliary systems can be stable even in large
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FIG. 10. The collective frequency is plotted as a function of
total number of rowers N. The rowers are placed on a regular
lattice with lattice constant d = 1. The data are averaged
over 1000 initial configurations. It reaches a stable frequency
for N > N. (~ 15). This can be interpreted as the minimal
cluster size for the existence of a metachronal wave at the
frequency typical of large systems.

The value of the collective beating frequency weyy; of
the rowers oscillates for small N (total number of row-
ers), and it eventually converges to a constant value for
large N. We can understand this behavior from a very
simple picture. Consider the following dynamical steady
state for our oscillating rowers in which a rower beats in
perfect anti-phase with its nearest neighbours. This im-
plies y1(t) = —y2(t) = y3(t) = —ya(t) = .., = yn—1(t) =
—yn(t). In this particular case, we can easily solve the
dynamics (Eq. (4)) and calculate weoy. For N numbers
of total rowers, the collective frequency is given by,

11 N 1
ww”,N—wO[l — Ol(l - 5 + g —+ ..+ (*1) N — 1)](13)

The coefficient of « is the alternate harmonic (conver-
gent) series. In Fig. 10, we plot both the collective fre-
quency computed from theory (Eq. (13)), and the one
obtained from simulation. For N = 2, the values of
collective frequency computed from these two different
methods match exactly; the assumption of perfect anti-
phase synchronization is indeed true for N = 2 (seen
previously, Fig. 3(a)). However, for N > 2, this is not
exactly the case because the assumption of perfect anti-
phase synchronization is no more valid. We believe that
the influence of boundaries is indeed important even for
large N, as seen on Fig. 10.

We have simulated systems with small number of row-
ers for another value of a(= 0.2) and have observed that
the qualitative behavior of our results is independent of
coupling strength.



IV. COLLECTIVE BEHAVIOR OF MANY
SPATIALLY HETEROGENEOUS ROWERS

In the previous section, we have studied how spatial
heterogeneity of rowers affect the coherent beating when
the number of rowers is small. We observed that the
spatial arrangement of rowers can lead to phase drifting,
phase incoherence, and bifurcation in frequency when
the separation between two clusters is greater than a
critical distance. We now turn to asking the question
of how spatial heterogeneities in the position of rowers
affect the coherent beating in a system of hundreds of
rowers.

On the one dimensional lattice, we will consider three
types of heterogeneities — (i) regular clustered config-
urations, (ii) random configurations, and (iii) random
clustered configurations, which is an intermediate situa-
tion between (i) and (ii).

We generate these types of heterogeneities for different
values of the density of rowers p, and study the dynam-
ical properties of the corresponding systems.

(i) In the case of regular clustered heterogeneity, clus-
ters of fixed number of rowers are placed on a lattice,
separated by regular gaps. A typical lattice configura-
tion of rowers is shown in Fig. 11(1). We call en the
number of rowers in a cluster, and gl the gap length be-
tween two consecutive clusters. We refer to such clusters
as “cn-gl”. One way to generate configurations of differ-
ent densities for a given cluster length cn is to vary the
gap length gl between two clusters. The density is given
by,

cn
en+gl—1°

(i1) For random heterogeneity (see Fig. 11(ii)), N row-
ers are placed randomly on a one dimensional lattice of
size L. The density of rowers is given by p = N/L. For a
fixed N, we generate configurations with different values
of p.

(iii) In the case of random clustered heterogeneity,
we introduce randomness in the sizes of the clusters as
well as in the gap lengths between two clusters. Here,
cluster lengths cn are chosen randomly between cn,ip
and ¢Npq, using uniform random distribution. The gap
lengths gl are chosen randomly between gl and gl
using uniform random distribution. We refer to this type
of heterogeneity as [nmin, CMmaz] — [Glmins Glmaz)- A
typical lattice configuration is shown in Fig. 11(iii). In
order to generate configurations with different densities
keeping fixed cnain, Mmaz, and gloin, we vary glmnaqe-
The average density can be computed numerically, aver-
aged over a large number of realizations:

cn
en+gl—1 )

In our computation, we will use 2-gl and 3-gl regular

clustered heterogeneities. For random clustered configu-
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FIG. 11.  Different types of spatially heterogeneous row-
ers configurations (rowers are the arrows). (i) Regular clus-
tered: clusters of fixed number of rowers are placed on the
lattice regularly spaced. In this diagram, the number of row-
ers in a cluster is cn = 2, and the length of the gap be-
tween two clusters of rowers gl = 3. We refer to this lattice
as “2-3”. (ii) Random: rowers are randomly placed on the
lattice. (iii) Random clustered: the number of rowers in a
cluster is not fixed, and is chosen uniformly in the interval
[cnmm,cnmax]. The gap lengths between two consecutive
clusters are also randomly taken from [glmin, glmaz]. In this
diagram, the minimum and maximum length of clusters of
rowers are Cnmin = 2 and ¢nmez = 4. The minimum and
maximum length of a gap between two clusters are glmin = 2
and glyq: = 5. This structure is referred to as “[2,4]-[2,5]”.

rations, we will use the following heterogeneities: [2,4]-
[2,9lmaz] and [3,5]-[2,9lmaz]-

We measure the distribution of beating frequency
P(w) as a function of p in the different types of hetero-
geneities discussed above. We use N = 100 and o« = 0.1.
In order to compute P(w), we consider several spatial
structures and initial conditions of rowers. In the case
of random and regular clustered, we take 100 different
spatial configurations of rowers. For regular clustered
heterogeneity, as the spatial configuration of rowers on
a lattice is fixed, we consider 100 different initial config-
urations of the rowers.

1. Case (i): Regular clustered

We consider “2-gl” regular clustered configurations. In
Fig. 12, we plot the spatial profile of the average beat-
ing frequency. We observe that for a given p all rowers
oscillate with a single collective frequency. The value of
this collective frequency decreases as p is decreased (by
increasing gl). In the large gl limit, the inter clusters in-
teraction can be neglected. As a consequence, we see in
Fig. 12 that the frequency of the rowers for gl = 20 is the
same as the collective frequency of a cluster of two row-
ers separated by a distance d = 1, weon2 (section IV.1).
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FIG. 12. (i) Regular clustered case. Spatial profiles of the
rowers frequency for “2-gl” regular clustered heterogeneity
for different gap lengths gl = 1,2,5 and 20. The densities
corresponding to these gl values are given by p =1, 0.67, 0.33,
and 0.1 respectively. For a given gap length, all rowers in a
lattice oscillate approximately in a single collective frequency.
The value of the collective frequencies depend on the value
of gl. For gl = 20, the inter-clusters hydrodynamic coupling
can be neglected, and in this limit, rowers oscillate with the
collective frequency of a cluster of two rowers, weoii,2-

However, for “3-gl” regular clustered configurations, w
increases as p is decreased, and reaches weo,3 at small p
(see Fig. 15(a)).

2. Case (ii): Random

1.45 T T T T 80 F
(a)
14 M" f 60 1
3 \ § 40 }
1.35 | ‘\ &
, [ 20
13 "

0
0 20 40 60 80 100 1.25
rowers’ no o

FIG. 13. (ii) Random case. Frequency plots for randomly
positioned rowers with density p = 0.1,0.4,0.75, and for a
regular lattice with p = 1. (a) The frequency of the rowers,
w is plotted as a function of rower’s number. For p = 1,
all the rowers oscillates in a single collective frequency. For
p < 1, we see the whole system breaks into different parts,
and these different local groups (synchronized island) oscil-
late with different frequencies. The number of such groups
increases with decreasing p. (b) The probability distribu-
tions P(w) are plotted for the same values of p (as in (a)).
For p = 1, it is a d-function (data is scaled by a arbitrary
number for best visualization). As p is decreased, the width
of the distribution increases, while the average w increases.
For p = 0.1,0.4 multiple peaks are observed.

10

In Fig. 13 (a), we have plotted the steady state fre-
quency profile as a function of rowers’ number for dif-
ferent densities in the random case. For a given p, we
consider a configuration of randomly placed rowers on a
lattice and evolve this system with a random initial con-
dition of rowers. For p = 1 (perfect regular array), all the
rowers oscillates with the same frequency. This results
in a d-function for P(w) (Fig. 13 (b)). For p < 1, various
clusters of rowers start to oscillate at different frequen-
cies, leading to a finite width in P(w) plot (Fig. 13 (b).
Let us call synchronized island a group of consecutive
rowers (connected by next occupied lattice sites) beating
with the same frequency. We find that a synchronized is-
land consists of a few clusters (~ 2-3, see Appendix I1T).
The number of such synchronized islands increases with
decreasing p (except for very small density where most
rowers beat at their natural frequency) and so does the
width of the distribution P(w). From our study on fi-
nite numbers of rowers, we know that if the separation
between two groups is less than a critical distance they
oscillate with the same frequencies. The value of the fre-
quencies depends on the separation between two groups
and number of rowers in each group. This leads to a
non-trivial distribution of the beating frequencies.

For small densities, the frequency spectrum will be
dominated by small clusters characteristic frequencies.
Indeed, for p = 0.1, the position of the distant peak at
w =~ wy is due to isolated single rowers, while the other
peaks at small w are due to a collective effect of the
rowers. For larger densities, the frequency spectrum is
getting even more complex and broad.

3. Case (ii1): Random clustered

We consider [2,4]-[2,gl,nq.] random clustered hetero-
geneous configurations. The frequency profile and P(w)
are plotted for gly,q, =2, 4, 6, 8 and 24 in Fig. 14. Asin
the case of random heterogeneity, we observe that vari-
ous clusters of rowers oscillate with different frequencies
and the number of such clusters increases with gl,qz.
This leads to finite widths in P(w) (see Fig. 14 (b)). A
remarkable feature is that the mean of the distribution
is almost independent of the density p(glyqq). For [2,4]-
[2,9lmaz] configurations such that gly,ge >> 1, the av-
erage gap between two consecutive clusters is large and
the effect of hydrodynamic couplings between them will
be negligible in many cases. Indeed the peaks in P(w)
correspond to the collective frequencies of those clusters.
The study with [3,5]-[2,9lma.] configurations also leads
to the same qualitative results (Fig. 15). We also find
that a synchronized island consists of several numbers
of clusters. This number increases as a function of the
density of rowers, and for large densities, this number
is very high compared to the random heterogeneity case
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FIG. 14. (iii) Random clustered case. Frequency plots for
“12,4]-[2,9lmaz]” lattices for glmaez = 2,4, 8, and 24. The den-
sities corresponding to these glmas are given by p = 0.75, 0.6,
0.43, and 0.2 respectively. (a) The frequency of the rowers, w
is plotted as a function of rower’s number for a given spatial
structure of rowers’ position. The whole system breaks into
synchronized islands, which oscillate with different frequen-
cies. The number of such groups increases with increasing
glmaz (i.e. with decreasing p). (b) The probability distribu-
tions P(w) are plotted for the same values of glmq. as in (a).
Remarkably, the mean and the width do not strongly depend
on glmaa-

4. Comparing different structures with same density

In the last sections, we have considered each type of
heterogeneity separately and have investigated the na-
ture of P(w) for various densities. As experimental sam-
ples can present a variety of spatial heterogeneities, we
now compare the results for different heterogeneities for
a given density. Moreover, many studies only report ex-
perimental values of p and not the precise spatial distri-
bution of cilia. Hence comparing theoretically the dy-
namical behavior of different configurations of cilia with
fixed density will provide different types of scenarios that
we hope we can compare to experimental observations
and check whether this is consistent with the observed
spatial arrangement of cilia.

1. Frequency spectrum for different structures

We compare the mean frequency (w) and the coeffi-
cient of variation C, = /(w?) — (w)?/(w) of the distri-
butions P(w). In Fig. 15(a), we plot (w) as a function of
density for different spatial heterogeneities of rowers. For
random heterogeneity, (w) decays monotonically with
density p. In the limit of p — 1, all structures look like
regular lattices and consequently all reach the collective
frequency for many rowers. In the other limit p — 0, (w)
converge to specific values depending on structures. In
the case of random structures, (w(p — 0)) = wp. In the
case of regular clusters, (w(p — 0)) = weon,2 for “2-x”
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and (w(p — 0)) = weon,3 for “3-x". In the case of ran-
dom clusters, (w(p — 0)) lies between weoyr 2 and weoir 4
for “[2,4]-[2,x]” and between weoy,3 and weon,5 for “[3,5]-
[2,x]”. Note that (w) is almost independent of density in
the random clusters case, in contrast with the results for
other heterogeneity types. The standard deviation C,,
Fig. 15(b), shows that the frequency distribution is the
broader for random heterogeneity.

The average frequency w appears to be a robust quan-
tity for randomly clustered configurations of cilia, inde-
pendently of the surface coverage p. This most probably
corresponds to the type of surface coverage observed in
in vivo samples. Consequently, this robustness implies
that even at low densities (p ~ 0.1 seems to be a com-
monly observed value), the collective frequency of cilia
will be equal to the frequency one would observe at any
larger density. This sets a “universal” frequency for the
cilia whatever the state of the surface coverage, given
that it has the randomly clustered type of structure.
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FIG. 15. Mean frequency and its fluctuation as a function of
density p for « = 0.1 and N = 100. For random and random
clustered lattice, the data are averaged over 100 spatial con-
figurations. For regular clustered lattice, the data are aver-
aged over 100 initial configuration of rowers. For these plots
we consider “2-x” and “3-x” regular clustered lattice, and
“2,4]-[2,x]” and “[3,5]-[2,x]” random clustered lattice. (a) (w)
against p (with standard errors, errorbars are often smaller
than point sizes), and (b) normalized variance C, versus p.

2. Order parameter for different structures

The results in the previous sections show that hetero-
geneity in the rowers positions lead to partial loss of fre-
quency locking. Hence, all rowers do not oscillate with a
common global frequency. But, some rowers do oscillate
with a common frequency locally. This common local
frequency is different in the different parts of the lat-
tice and depends on the local environment of the rowers
in a non-trivial manner. The local frequency may also
depend on the initial condition of the rowers.

Hence, it is complementary to investigate whether
there is any phase coherence among the rowers even in
this partially frequency locked system. This might give



<A>

an idea about the local phase coherence of the rowers
that oscillate with the same frequency. In order to esti-
mate phase coherence, we measure the order parameter
A (defined in Eq. (7)) and compute its average value,
(A) for different values of p and different lattice struc-
tures, in the same spirit as what we did in the 3+1-rowers
case in Section I1.5. (A) is computed after steady state
time average and ensemble average (average over several
spatial configurations and/or several initial conditions of
rowers).

For p =1 the order parameter A ~ 0.9, which is close
but not equal to 1. The definition of A (Eq. (7)) shows
that its value depends on the distribution of phase differ-
ence of neighbours A¢; = ¢j+1 — ¢;. The phase locked
angle is not perfectly m, rather we see a finite width of
the distributions of A¢; which is (almost) independent
of system sizes. This leads a | value slightly less than 1
(see Appendix I).

Not surprisingly, the regular clustered configurations
conserve the phase coherence, except at very low den-
sities. However, it is remarkable that the random clus-
tered case is more coherent at all densities than the pure
random case. In this case, which is likely to be the ex-
perimentally relevant case, spatially separated clusters
arc internally coherent, and all rowers beat with almost
the same average frequency whatever its position and
the density of the sample.
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FIG. 16. Order parameter < A > as a function of density p
for different structures for N = 100. For random and random
clustered lattice, the data are averaged over 100 spatial con-
figurations. For regular clustered lattice, the data are aver-
aged over 100 initial configuration of rowers. For these plots
we consider “2-x” regular clustered lattice and “[2,4]-[2,x]”
random clustered lattice.

V. CONCLUSION

While ciliated epithelium are most often modeled as
large homogeneous carpets, they are observed experi-
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mentally to be inhomogenous and often rather sparse.
However, cilia on such surfaces show coordination to a
large extent, and thanks to this coordination fulfill their
biological role. We have addressed this issue here, in a
simplified model of a 1D heterogeneous array of rowers.

Hydrodynamic coupling is long-range and leads to col-
lective coordination of the rowers phases in the homoge-
neous array previously studied. When spatial hetero-
geneity is introduced, gaps where rowers are absent lead
to unperfected or lack of coordination. This is true in
the simplest case of a very small number of rowers: if the
gap length between two small clusters of rowers exceeds
a critical distance, phase drifting is observed and ulti-
mately leads to decoupling of rower clusters which are in-
ternally coordinated. Interestingly this critical distance
does not depend on the prefactor in the hydrodynamic
interaction, which is proportional to the viscosity; it only
depends on the internal parameters of the rower motility
(but is likely to depend on the range of the interactions).

Looking at the coordination of two clusters of rowers
as the spatial gap between them increases paves the way
to understanding more complex arrays of rowers. We
find that when the two clusters contain the same num-
ber of rowers, all the rowers beat at the same frequency
whatever the gap. If they do not contain the same num-
ber of rowers, each cluster bifurcates to its own intrinsic
characteristic frequency after the gap length exceeds a
certain value. The distance after which the clusters are
totally decorrelated (their frequency reach the one they
would have in the absence of the other cluster) varies in
a non trivial way with the size of the patches.

Hence the study of more complex arrays of rowers con-
taining a large number of clusters of various sizes reveals
a distribution of frequencies based on the physics de-
scribed above. Not surprisingly, a regular configuration
of clusters of similar size will show a delta distribution
of frequencies. In contrast, a totally random configu-
ration will produce a wider distribution of frequencies
if the density of rowers is small, while the average fre-
quency will decrease. In between those two cases, a ran-
domly clustered configuration (consistent with experi-
mental observations) has a distribution of frequencies
that depend barely on the density of rowers, while the
average beating frequency is close to a constant when the
density is varied. Consequently a realistic carpet of cilia
with density typically p = 0.1 will have the same average
frequency as a more dense carpet. Both the frequency
spectrum, and the order parameter A which quantifies
the coordination of phase differences between neighbor-
ing rowers (existence of a metachronal wave) are com-
plementary in providing a description of the dynamical
states of the rowers.

While an experimental situation is obviously subject
to thermal noise, our study and many others [19, 25, 34]
are deterministic. In this approximations, the model



presents a few complications as the dynamical states may
marginally depend on initial conditions, as discussed in
the text. This complication is removed as one would in-
clude noise, and we believe the results stay qualitatively
the same [24]. Besides the thermal noise, there is an ac-
tive source of noise which is intrinsic to the system. In
the case of the flagellar beating for Chlamydomonas and
sperm cells, it has been demonstrated that the later has
a dominating contribution in their synchronized beating
[43, 44]. It would be interesting to study the role of spa-
tial heterogeneity in the presence of such intrinsic noise
in future.

Moreover, other studies have considered a variation
of hydrodynamical coupling, by taking into account the
presence of a wall on which the rowers are attached (how-
ever without including noise [34, 42] ). This variation in-
troduces remarkable changes in the observed dynamical
states of the cilia, like the coexistence of phase-locked
and desynchronized clusters, known as chimera states.
This is likely to happen in homogeneous arrays as stud-
ied in the above cited papers, and is likely to happen
too in the heterogeneous case, though it has not been
studied so far.

Along the same line, it will be interesting to study
2D carpets of rowers, as well as a realistic experimental
spatially-resolved sample. In this case, we believe that
the orientation of beating of the rowers will also be re-
sponsible for the spatial correlations of the dynamical
states in 2D [36].
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Appendix I. The order parameter A.

As we have discussed in the main text, the degree of
synchronization in the system of phase oscillators can be
measured by the following complex order parameter,

N-1
Z=A"=1/(N-1)) e, (A1)
j=1

where A¢; = ¢j41 — ¢; are phase difference of nearest
neighbours and N is the number of the oscillators. The
magnitude A describes the phase-coherence, and polar
angle @ indicates average phase-difference of neighbours.
The system show a maximal coherence when A = 1, and
no coherence for A = 0. In the large N limit, we can
write the above summation by integration,
2m
Ael? = / d(A¢) P(Ag)el?, (A2)
0

where P(A¢) is the probability distribution of phase dif-
ference of nearest neighbours.

Let us discuss three cases in detail for different types of
phase coherence. Perfect phase locking : In this case,
the neighbouring pairs are phase locked to a constant
angle ¢ i.e, A¢; = . Therefore, P(A¢) = p(d — Ag).
From Eq. (A2) we get A = 1, and we also see that A is
independent of §. No synchronization : The proba-
bility distribution of A¢ is totally random. In this case,
P(A¢) = 1/(2m) which leads A = 0. Partial phase
locking : The width (standard deviation) of the distri-
bution of A¢ is neither zero (as in delta function) nor it
possess a maximal width (as in uniform distribution). It
rather has a finite width in between two extreme cases.
Let us assume such a distribution by a normal distribu-
tion with standard deviation o,

(A3)
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(k, s) a |d. for N =3 d. for N=4
(1.0, 0.8) |0.01 2 (3-5) 3.51 £ 0.02
0.05 2 (3-4) 3.51 + 0.01
0.1 2 (3-4) 3.51 + 0.01
(1.0, 0.95)]0.01 4 (11-12) 11.51 £ 0.01
0.05 4 (8-9) 8.50 + 0.01
0.1 4 (6-7) 6.44 + 0.01
(1.1, 0.75)|0.01 2 (4-5) 4.49 £ 0.01
0.05 2 (3-4) 3.51 + 0.01
0.1 2 (3-4) 3.51 + 0.01
(1.1, 0.8) [0.01 3 (5-7) 5.52 £ 0.02
0.05 3 (5-6) 5.49 + 0.01
0.1 3 (4-5) 4.50 + 0.01
(1.2, 0.7) 0.01 2 (4—5) 4.49 + 0.01
0.05 2 (4) 4
0.1 2 (3-4) 3.51 £0.01

TABLE Al. The critical distance d. for five different sets
of internal parameters of cilia (k,s) for N = 3 (column 3)
and 4 (asymmetric case, column 4). For each set of (k,s),
we consider three different values of hydrodynamic coupling
strength @ = 0.1, 0.05, and 0.01. For the computation of
each d., 1000 initial configurations are used. The integration
step h = 1073. As the value of the lattice constant in our
computation is 1, the value of d. is an integer. For N = 4, d.
is sensitive to initial configuration of rowers and its value lies
between (dmax — dmin), as shown in column 4. The average
values with error are also presented.

For the above distribution, we can derive the expression
for A using Eq. (A2). After calculating the Gaussian
integral we get,

A=c V2, (A4)
Please note that A — 1 when o0 — 0, and A — 0 as
o — 0.

Appendix II. Critical distance for various
parameters

In Table. A1, we present the value of critical distance
between two clusters at which phase drift behavior ap-
pears for five different sets of internal parameters of cilia
(k,s) for N = 3 and 4 (asymmetric case). For N = 3,
we observe that the value of d. is depends on k and s
but, independent of @ and initial conditions. However,
for N = 4 the value of d. is quite sensitive to a and
initial conditions.

Appendix III. Synchronized island

Let us recall the definition of a synchronized island: a
group of consecutive rowers (connected by next occupied
lattice sites) beating in a common frequency. We have
measured this quantity for random and random clustered



heterogeneity for the same data provided in Fig. 13 and
Fig. 14 in the main text. In Fig. 17, we plot the average
number synchronized islands ((Neyster)) and the ratio
of the average number of clusters to the average num-
ber synchronized islands ((Nejuster)/{Nisiand)). We ob-
serve that for all heterogeneity (N;qqnd) decreases with
increasing p and the value of (N;sanq) is large for ran-
dom heterogeneity compared to random clustered het-
erogeneity, suggesting that the synchronization is more
vulnerable to random heterogeneity. From Fig. 17 (b),
it is clear that a synchronized island consists of several
clusters. This number increases with decreasing p.
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FIG. 17. Plots of synchronized island for different het-
erogeneities.  (a) (Nouster) is plotted against p.  (b)
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Appendix IV. The attractive case o < 0.

In the main text, we have discussed the effect of spa-
tial heterogeneity in the case when two rowers oscil-
late in anti-phase, and many rowers oscillate collectively
as metachronal waves. Here, we discuss the effect of
spatial heterogeneity, in the case when rowers show in-
phase synchronization. While for a system of rowers,
the anti-phase solution can be achieved using a realistic

Adqo(t)

0 20 40 60 80 100
t

FIG. 18. In phase synchronization for a two rower system.
The phase difference Ag12 = @2 — @1 is plotted as a function
of time ¢t. At t = 0 the rowers start from an arbitrary initial
condition. The phase difference vanishes as ¢ increases.
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FIG. 19. (a) Angular frequencies of three rowers as a func-
tion of ds3 is plotted for @ = —0.02. Bifurcation occurs for
d23 > 4. For very large da23, rower 3 become almost inde-
pendent of others and oscillates with its natural frequency
wo while first two rowers oscillates with the collective fre-
quency of two rower system. (b) The log-log plot of Tarig
for « = —0.2,—0.02 and —0.002. We multiply the data with
respective |a|. This scaling makes all the curves fall into a
single curve g(da3). The function g(des) shows 1/d33 decay.
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FIG. 20. The collective frequency is plotted as a function of
total number of rowers N. The rowers are placed on a regular
lattice with lattice constant d = 1. The data are averaged
over 1000 initial configurations. It decays with system size

N.

hydrodynamic interaction (a > 0) (as discussed in the
main text), the in-phase synchronization can be realized
through a “non-realistic” hydrodynamic coupling with
negative o [A19] or using a negative force constant k of
harmonic driving force of rowers [A34]. We investigate
the case of in-phase synchronization using the same dy-
namical equation Eq. (4) but with negative «. Here, we
present the results for & = —0.02 and the same values
of the force constant k£ and amplitude s as mentioned in
the main text are used.

Few rowers

In Fig. 18 we show that two rowers, initially having
arbitrary phases, oscillate in the same phase after a tran-
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FIG. 21. Mean frequency and its fluctuation as a function of
density p for N = 100. For random and random clustered
heterogeneity, the data are averaged over 100 spatial configu-
rations. For regular clustered heterogeneity, the data are av-
eraged over 100 initial configuration of rowers. For these plots
we consider “2-x” and “3-x” regular clustered, and “[2,4]-
[2,x] and “[3,5]-[2,x]” random clustered heterogeneity. (a)
(w) against p, and (b) the coefficient of variation C, against
p.

sient period. For a three rower system, the phenomena
of phase drifting has seen as the distance between 2nd
and 3rd rowers dog is varied. In Fig. 19 (a), we plot the
frequency of all the 3 rowers. Note that a bifurcation
occurred for dog > do(= 4). In Fig. 19 (b), we show
the drift time 7q,p for different values of negative a.
As in the case of positive «, the similar scaling of 74y
holds for negative a: |a Tayigt (v, dog) = g(das) + const.
However, the decay of scaling function g(da3) is differ-
ent from the scaling function f(da3) for positive o (see
main text). Here, the scaling function g(da3) decays as
g(da3) ~ 1/d3, which is faster than the decay of f(da3).

Many rowers

We first consider N rowers on a regular lattice with
lattice constant d = 1. In this case, all the rowers oscil-
late with a single common frequency weoi,nv. The phase
of a rower and its adjacent neighbors are in-phase syn-
chronized. In Fig. 20, we plot collective frequency as
a function of system size N. We observe that weon,n
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decays with N.

Next, we present the results of three different types
of heterogeneous lattices (regular clustered, random and
random clustered) for « < 0. We find that the spatial
inhomogeneity in rowers’ position leads to fluctuation in
the beating frequency of the rowers and reduces the or-
der in phase coherence. In Fig. 21(a), we plot average
frequency of the rowers. We observe that (w) decreases
as a function of the density p for all the types of het-
erogeneous lattices. In Fig. 21(b) we plot the coefficient
of variation C, which is a normalize fluctuation of fre-
quency. We observe that for a fixed p, C, depends on
the type of heterogenecity. For regular clustered C, is

1 [
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v 085 random -
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0.75
0.7
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P

FIG. 22. Order parameters as a function of density p for
different structures for N = 100. For random and random
clustered lattice, the data are averaged over 100 spatial con-
figurations. For regular heterogeneity, the data are averaged
over 100 initial configuration of rowers. For these plots we
consider “2-x” regular lattice and “[2,4]-[2,x]” random clus-
tered lattice. For regular lattice, the phases of the rowers
coherent for all the density. For random clustered and ran-
dom lattice, the synchronization of phases gets destroyed at
lower densities.

less and for random heterogeneity C,, is high, while for
random clustered it is intermediate.

The phase coherence can be measured by the order
parameter A (defined in the main text). The order pa-
rameter A is plotted as function of density p in Fig. 22.
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