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Water Residence Time Estimation by 1D Deconvolution in
the Form of a l2-Regularized Inverse Problem With
Smoothness, Positivity and Causality Constraints

Alina G. Meresescu1,2, Matthieu Kowalski2, Frederic Schmidt1, Francois Landais1

Abstract

The Water Residence Time distribution is the equivalent of the impulse response of a

linear system allowing the propagation of water through a medium, e.g. the propaga-

tion of rain water from the top of the mountain towards the aquifers. We consider the

output aquifer levels as the convolution between the input rain levels and the Water

Residence Time, starting with an initial aquifer base level. The estimation of Water

Residence Time is important for a better understanding of hydro-bio-geochemical pro-

cesses and mixing properties of wetlands used as filters in ecological applications, as

well as protecting fresh water sources for wells from pollutants. Common methods

of estimating the Water Residence Time focus on cross-correlation, parameter fitting

and non-parametric deconvolution methods. Here we propose a 1D full-deconvolution,

regularized, non-parametric inverse problem algorithm that enforces smoothness and

uses constraints of causality and positivity to estimate the Water Residence Time curve.

Compared to Bayesian non-parametric deconvolution approaches, it has a fast runtime
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per test case; compared to the popular and fast cross-correlation method, it produces

a more precise Water Residence Time curve even in the case of noisy measurements.

The algorithm needs only one regularization parameter to balance between smoothness

of the Water Residence Time and accuracy of the reconstruction. We propose an ap-

proach on how to automatically find a suitable value of the regularization parameter

from the input data only. Tests on real data illustrate the potential of this method to

analyze hydrological datasets.

Keywords: Hydrology, Water Residence Time, 1D deconvolution, transit time,

catchment

1. Introduction

The hydrological Water Residence Time distribution (named in this article

simply as residence time) is a measure allowing the analysis of the transit of water

through a given medium. Its estimation is necessary when using wetlands as a natural

treatment plant for pollutants that are already in the water Werner & Kadlec (2000), to5

better manage and protect drinking water sources from pollution Cirpka et al. (2007), to

study the water transport of dissolved nutrients Gooseff et al. (2011). For a more com-

prehensive application range, including deciphering hydro-bio-geochemical processes

or river monitoring, the review done in McGuire & McDonnell (2006) is a useful start-

ing point. We call here the residence time the linear response of the aquifer system.10

In this context it refers to wave propagation of the water dynamics, not to the actual

molecular travel time Botter et al. (2011).
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To obtain the residence time, one can distinguish two families of methods:

active and passive. The active methods are carried out by releasing tracers at the en-

trance of the system at a given time, like artificial dyes, and then by tracing the curve15

while measuring the tracer levels at the exit of the system Dzikowski & Delay (1992);

Werner & Kadlec (2000); Payn et al. (2008); Robinson et al. (2010). Although robust,

this methodology involves high effort and high operational costs. It could also perturb

the water channel and this may lead to biased results. The passive methodology con-

sists of recording data at the inlet and outlet of the water channel by specific water iso-20

topes McGuire & McDonnell (2006), water electrical conductivity Cirpka et al. (2007)

or by simply recording the rainfall levels at high altitude grounds and the aquifer levels

at the base Delbart et al. (2014). In the passive case, the residence time is not measured

directly but must be retrieved by deconvolution. Some authors also use deconvolution

in the active methodology when the release of tracer cannot be considered as instan-25

taneous McGuire & McDonnell (2006); Cirpka et al. (2007); Payn et al. (2008). The

residence time can then be approximated as the impulse response of the system and this

in turn can be estimated by deconvolution Neuman et al. (1982); Skaggs et al. (1998);

Fienen et al. (2006). The method can also be used for enhancing geophysical models,

although not targeted explicitly for Water Residence Time estimation Zuo & Hu (2012).30

Deconvolution methods can be parametric Neuman & De Marsily (1976); Long & De-

rickson (1999); Etcheverry & Perrochet (2000); Werner & Kadlec (2000); Luo et al.

(2006); McGuire & McDonnell (2006) or non-parametric Neuman et al. (1982); Di-

etrich & Chapman (1993); Skaggs et al. (1998); Michalak & Kitanidis (2003); Cirpka

et al. (2007); Fienen et al. (2008); Gooseff et al. (2011); Delbart et al. (2014).35
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Parametric methodology has the advantage of always providing a result with

expected properties such as correct shape and positiveness but with the caveat of being

insensitive to unexpected results for real data (for instance a second peak in the res-

idence time). The non-parametric deconvolution has the advantage of being ”blind”,

meaning that no strong a priori are being set on the estimated curve, but in the ab-40

sence of adapted mathematical constraints, the results may not reflect the physics of

the residence time curve (these are sometimes negative or non-causal).

Our method is non-parametric and takes into account limitations of previous

methods from the same category: variable-sized rainfall time series as input compared

to Neuman et al. (1982), a more compact direct model formulation than in Neuman45

et al. (1982); Cirpka et al. (2007), less computational effort and less time consuming

than for a Bayesian Monte-Carlo inverse problem methodology Fienen et al. (2006,

2008), strictly using a passive method with respect to mixed methods like the ones

in Gooseff et al. (2011). In contrast to the cross-correlation Vogt et al. (2010); Delbart

et al. (2014) we avoid the unrealistic hypothesis that the rain signal can be considered as50

white noise. In fact, rainfall datasets have long range memory properties and therefore

we simulate the input rainfall for synthetic tests as a multifractal signal Tessier et al.

(1996). One important difference from other non-parametric deconvolution methods is

that we enforce causality explicitly through projection. We also discuss the importance

of this aspect to avoid a sub-optimal solution when using a Fourier Domain based55

convolution McCormick (1969). In Neuman et al. (1982); Dietrich & Chapman (1993);

Delbart et al. (2014) the causality constraint was not mentioned. In Skaggs et al. (1998);

Cirpka et al. (2007); Payn et al. (2008); Gooseff et al. (2011), causality is taken into
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account through a carefully constructed Toeplitz matrix for the convolution operation.

We propose a new algorithm to estimate the residence time with the following60

properties:

• passive: only input rainfall and output aquifer levels are required;

• flexible: in the sense that it handles even unexpected solutions (double peaks or

unexpected shapes of the residence time). It can handle Dirac-like rain events

as inputs but also clustered rain events over a longer time period (for instance a65

whole season);

• constrained: by physical and mathematical aspects of the residence time (posi-

tivity, smoothness and causality);

• automatic: providing a simple and accurate way of choosing the best hyper-

parameter that governs the smoothness of the residence time curve, without hu-70

man operation;

• efficient/accurate: a fast algorithm that provides a good signal-to-noise ratio

(SNR), avoiding noise amplification.

This last property is important in order to deal with non-linearity and non-stationarity of

the water channel, a known difficulty in residence time estimation Neuman & De Marsily75

(1976); Massei et al. (2006); McGuire & McDonnell (2006); Payn et al. (2008)

The rest of this article is organized as follows: Section 2 presents the direct

problem and the inverse problem formulation, Section 3 depicts the algorithm used to
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solve this inverse problem formulation. Some important implementation details are

discussed in Section 4. We also discuss differences between our solution and previous80

non-parametric 1D deconvolution methods used as benchmarks in Section 5. In Sec-

tion 6 we present results obtained from synthetic data and we discuss the choice of the

hyper-parameter that controls the smoothness of the residence time. Finally, we present

results obtained from real data in Section 7, while Section 8 concludes the paper.

2. Model85

2.1. Direct Problem

The direct model for water propagation through a channel can be written as

a linear system Neuman et al. (1982):

y = 1c+x∗k+n , (1)

with:

• y∈R+
T ,y=(y0, ...,yT ) output of the linear system: aquifer basin level (known),

real, positive signal, of length T ,

• 1 vector of all ones of length T ,90

• c≥ 0 initial aquifer basin level (to estimate), real, positive, constant

• x ∈R+
T ,x = (x0, ...,xT ) input of the linear system: rainfall level (known), real,

positive signal, of length T
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• ∗ convolution

• k ∈R+
K ,k = (k−K

2
, ...k0,k1, ...k K

2
) impulse response to be estimated, real, posi-95

tive signal, of length K

• n ∈RT white gaussian noise, real, signal of length T .

The impulse response of the system – k – as well as the mean level of the

aquifer – c – must be estimated. It is required that k be positive, causal, and smooth.

If positivity is obvious for the residence time, causality refers to the delayed, unidirec-100

tional flow of water from the point of entry to the aquifer, thus the idea that k must

progress only in the positive time domain (negative time domain elements of k are

zero). Smoothness regularization is used in order to avoid noise amplification in the

deconvolution.

2.2. Inverse Problem105

To estimate k, we propose to solve the following constrained optimization

problem:

k̂, ĉ = argmin
k∈RK

+,c

1
2
‖y−x∗k− c1‖2

2 +λ‖∇k‖2
2 (2)

s.t. causality is enforced: ∀i ∈ {−K/2, . . . ,−1} ki = 0

This function classically introduces a ”fidelity term” (attachment to the data)

corresponding to the white Gaussian noise, as well as a `2 ”regularization term” on

the gradient of k in order to favor ”smooth” solutions. The smoothness degree of
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the estimate is controlled by the hyper-parameter λ . A bigger λ will stress more the

smoothness of the solution, while a smaller λ will better fit the solution to the data. A

main goal of this work is also to find the optimal λ range that consistently gives accu-

rate estimates while taking into account both good data representation and smoothness

a priori. In the following, we rewrite the functional (2) using matrix operators:

J(k,c) =
1
2
‖y−Xk− c1‖2

2 +λ‖Dk‖2
2 (3)

s.t. ∀i ∈ {−K/2, . . . ,−1} ki = 0 and ∀i ki ≥ 0

where X is the Toeplitz matrix corresponding to the convolution by the signal

x, while D is the finite-difference matrix corresponding to the gradient used for apply-

ing smoothness on the estimated signal. The minimization of J(k,c) can be interpreted

as a Maximum A Posteriori (MAP) estimation in a Bayesian context with a Gaussian

prior on the noise and an exponential family on the smoothness.110

Since the problem is convex, we estimate k and c by an Alternating Mini-

mization algorithm (shortened throughout as AM), that ensures a global minimization

for the two items to be estimated. A historical overview is available from OSullivan

(1998). With a fixed c, the problem is a simple quadratic optimization with constraints

that is solved using the Projected Newton Method Bertsekas (1982), chosen for com-115

putational speed. With a fixed k, the estimate of c is given by an analytic formula.

The AM algorithm will evaluate k to convergence while applying an orthog-

onal projection P on the positivity and causality constraints in each iteration. The

analytic solution for k is computed and used as an initial step for the iterative AM
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algorithm.120

3. Alternating Minimization for 1D Deconvolution

After replacing the convolution operator with the equivalent Toeplitz matrix

X, we introduce the functional J(k,c) to minimize:

J(k,c) = P
(

1
2
||y−X ·k− c1||22 +λ ||Dk||22

)
, (4)

where P(k) is the orthogonal projection over the constraints, ∀t kt = 0 if kt < 0 or if t <

0.

Considering that both k and c must be estimated, we propose an AM algo-

rithm where in a first step kest is estimated, then in the second step cest is updated.125

3.1. Estimation of kest with the Projected Newton Method

The update of kest by the Projected Newton Method with c fixed is given by:

kt+1 = P
(
kt +αt · (−∇

2J(k,c)−1 ·∇J(k,c))
)

= P
(
(1−αt)kt +αt · (XT X+λDT D)−1 ·XT (y− c1)

)
, (5)

where αt > 0 is the descent step size. For k =
{

k−K/2, . . . ,k0,kK/2
}

, we have P(k) ={
0, . . . ,0,(k0)

+, . . . ,(kK/2)
+
}

, where (x)+ = max(0,x).

By replacing the Hessian and the Jacobian of (3) in (5), we see that only

the step size αt can evolve at each iteration, while kt is changed by a constant called
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Newton’s step.

kt+1 = (1−αt)kt +αt · (XT X+λDT D)−1 ·XT ỹ

kt+1 = (1−αt)kt +αt · Mt
n ,

(6)

where αt is the variable step size, Mt
n= (XT X+λDT D)−1 ·XT ỹ is Newton’s step.

3.2. Estimation of c130

Taking the derivative of (3) with respect to c1 leads to:

∇J(k,c) =−y+1T Xk+ c1 !
= 0 (7)

With k fixed, the estimation of c is given by:

c1= y−1T Xk , (8)

where m̄ is the empirical mean of vector m.

The AM algorithm for estimating k and c is summarized in Alg. 1.
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Algorithm 1 Alternating Minimization
Input: x,y,λ ,D,αmin,k errmin,y errmin,smax, tmax

Output: kest ,cest ,yrec

1: cest = y, ŷ = y− cest

2: Mt
n= (XT X+λDT D)−1 ·XT ŷ, kest =Mt

n

3: k errrel = 1,y errrel = 1,s = 0, t = 0, Jre f =
1
2
||ŷ||2, yrec = 1

4: while s != smax and y errrel > y errmin do

5: α = 1, s = s+1

6: kest old = kest , yrec old = yrec, ŷ = y− cest

7: while t != tmax and k errrel > k errmin and α > αmin do

8: t = t +1

9: kest = P((1−α)kest old +α Mt
n)

10: J(k)t+1 =
1
2
||ŷ−x∗kest ||22 +λ ||Dkest ||22

11: if (J(k)t+1 > Jre f ) then

12: kest old = kest , α = 0.9 ·α

13: else

14: Jre f = J(k)t+1, t = 0

15: break;

16: end if

17: k errrel =
||kest −kest old ||22
||kest ||22

18: end while

19: ỹrec = x∗kest

20: cest = y− ỹrec

21: yrec = ỹrec + cest , y errrel =
||yrec−yrec old ||22
||yrec||22

22: end while

23: return kest , yrec, cest
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4. Implementation Details

We provide a distribution package in Matlab for our algorithm and the down-

load link can be found at the end of this article. Although in the previous sections135

the model and the solution are written in matrix form, the Matlab implementation of

the convolution for our AM algorithm is done through dot product multiplication in

the Fourier Domain with appropriate zero padding, meaning that no Toeplitz matrix is

explicitly defined here for the convolution. It is also possible to carefully implement a

causal convolution by designing a proper Toeplitz matrix. However, the convolution in140

the Fourier Domain appears to be more efficient in general.

This implementation also allows for the estimation of a k residence time

longer than the inputs x and y, although this would be under-determined. Once that

non-circularity is enforced through this particular implementation of the convolution,

another aspect that is dealt with is the causality constraint.145

In Figure 1, we present the convolution of two rainfall Diracs with a residence

time curve. We convolve the rainfall time series once with a residence time curve found

in the negative time domain (causality is not respected) and once when this curve is in

the positive time domain (causality is respected). The resulting breakthrough curve

appears before the rain events in the first case which is wrong. In the second case the150

breakthrough curve appears after these rainfall events as expected for real applications.

In the non-causal case lobes can appear in the negative time domain also, incorporating

energy that should be present in the residence time curve thus reducing its amplitude
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and distorting its shape.
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Figure 1: Enforcing causality while doing the convolution in the Fourier Domain needs to include the nega-

tive time domain interval of the residence time.

In Figure 2 we estimate with the AM algorithm all the possible residence time155

curves: with no positivity and no causality constraints applied, only the positivity con-

straint applied, only the causality constraint applied, and both positivity and causality

constraints applied. In all cases, the convolution between the rainfall and these resi-
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dence time curves give a reconstructed breakthrough curve that is similar in general

shape with the real one. The best residence time estimation and breakthrough curve160

reconstruction are nonetheless the ones where both positivity and causality constraints

are applied in the algorithm.
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Figure 2: Different results for the kest for different constraints applied during the AM algorithm. All give a

similar yrec but the best yrec and kest are those where both positivity and causality constraints are applied.
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Furthermore, not applying the causality constraint all along the AM algo-

rithm, and setting the negative time domain of kest to zero only at the end, would lead to

a suboptimal solution caused by the way in which the AM algorithm navigates through165

the optimality map attached to the given functional: any change in the estimated vector

kest at the end of the algorithm moves the value of the functional away from the optimal

point that was estimated in the last iteration McCormick (1969); Bertsekas (1982).

5. Discussion on Related Work

Non-parametric deconvolution techniques with/without positivity constraints170

exist from the 1980s. How is our method different from those and why benchmarking

it against the cross-correlation?

5.1. Comparison to Previous Works

As a first example, let’s take Neuman et al. (1982) which does a regularized

non-parametric deconvolution and uses a bi-criterion curve; it navigates the optimal-175

ity map to find the optimal estimation of the residence time by using a lag-one auto-

correlation coefficient between the two error criteria. We consider this to be similar

to our approach but our functional has a simpler, unified formulation from the direct

model’s point of view and a different method to navigate the optimality map through

the Projected Newton method in the AM algorithm. Also in the cited article there is no180

discussion about positivity, smoothness and causality of the estimated residence time.
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In the case of the Skaggs et al. (1998) article, the direct model is similar to

ours with some differences in its formulation:

( f̂ , α̂) = argmin
f∈RK

+,α

=
1
2
‖c−A · f‖2

2 +α
2‖∇2 f‖2

2

with f ≥ 0 , a′ f = 1 ,

(9)

where

• c is the output of the system, known;

• a is the input of the system, known;

• A is the Toeplitz matrix of the input of the system;185

• f is the impulse response of the system, to estimate;

• α is the hyper-parameter to estimate with Fischer’s Statistic method;

• ∇2 f denotes the Hessian of f

The hyper-parameter α is here squared and determined with Fischer’s Statis-

tic method (F), while smoothness is implemented by a second derivative applied on f .190

There is a constraint for positivity and the condition that the integral of the obtained

curve sums up to 1. The solutions are evaluated with Provencher (1982) Fischer’s

Statistic method and visual inspection. Another aspect here is the multiple peak prob-

lem, where Provencher (1982) argues to investigate separately for certain values of F .

Also, to avoid computational difficulties in the test runs, a basis function representa-195

tion of f was introduced to ensure linearity between the probability density function

(pdf) representation and the transport model. A causality constraint is not discussed
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here. In contrast, we estimate the α hyper-parameter (λ in our case) by using the SNR

values between the reconstructed breakthrough curve and the original one. A bigger

SNR means a better reconstruction and also a better estimation of k through the con-200

straints, and this is realized through the λ hyper-parameter possible choice strategies

(α equivalent). A hydrologist can then estimate the same curve with a range of values

for λ , for multiple time series and time series lengths, and then see what λ value best

fits for that particular tested site. We do smoothness regularization with a first-order

derivative since testing with a second-order derivative does not show any improvement205

on the estimate, thus our direct model is slightly simpler. Our algorithm does not make

an a priori assumption about the shape of the estimated residence time, therefore mul-

tiple lobes can appear without having to set any fixed number of these beforehand. The

estimation of f (k in our case) is also free of being modeled with basis functions. The

sole observation here is that the channel needs to be short enough so that it can be210

considered linear.

In the case of Fienen et al. (2006) the presented method is a Bayesian Monte-

Carlo non-parametric deconvolution method that gives as result the full shape of the

residence time distribution curve containing all possible residence time curves for that

channel with zones of interest curves and the average curve. The method can yield215

multiple peaks in the transfer function with some computational cost – ”Using the

MCMC Gibbs sampler with reflected Brownian motion requires some computational

effort (CPU time up to several days on a typical desktop computer)” Fienen et al.

(2006). There is a constraint for positivity and for causality through Michalak & Ki-

tanidis (2003). Expectation Maximization is used to estimate the parameters. The220
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algorithm is tested on uni-modal and bi-modal cases. In comparison, our method pro-

vides faster estimates of the residence time curve for a Dirac-like rainfall event or for a

clustered rainfall event. The computational cost per tested hyper-parameter λ is small.

There is no constraint on the shape of the residence time curve other than smoothness

(controlled by λ ), and positivity and causality which we implement throughout the al-225

gorithm. On the downside, our algorithm does not estimate the uncertainties attached

to the residence time like in a Bayesian approach.

Another example is Dietrich & Chapman (1993) with an algorithm based

on ridge regression, where the direct model is similar to ours but has two hyper-

parameters to be set. Michalak & Kitanidis (2003) is another article where Bayesian230

Monte-Carlo deconvolution is done through an inverse problem setup. Here positiv-

ity and causality are implicitly enforced by the method of images applied to reflected

Brownian motion that gives ”a prior pdf that is non-zero only in the non-negative pa-

rameter range” Michalak & Kitanidis (2003). The MCMC is here implemented with

the Gibbs sampling algorithm. Similar to Fienen et al. (2006) the result is also a pdf235

with zones of interest for the residence time curve. Even if the computational time for

Bayesian MCMC deconvolution methods is deemed ”manageable” Michalak & Kitani-

dis (2003), probably even more so with current hardware, the need for a fast method

seems necessary for the community, and we expand on this in the next paragraph.
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5.2. Comparison to the Cross-Correlation Method240

We use the cross-correlation method as a benchmark to compare the perfor-

mance of our algorithm. The cross-correlation measures the similarity between two

signals, the second one being a shifted version of itself.

The AM algorithm also estimates the basin measurements constant level, cest ,

and the estimated residence time amplitude depends on this constant level. It is nec-

essary to obtain this same amplitude for the cross-correlation method, for comparison

purposes, and this is done through the following:

yrec = x∗Rxy

kest = Rxy ·
σy

σyrec

(10)

We call the cross-correlation method XCORR in our plots.

The cross-correlation implicitly assumes that the input rainfall is white noise.245

In this case, the auto-correlation of each rain fall time series would be a Dirac at the

center. Since real rainfall time series have actually long-tailed statistics, the cross-

correlation method is inexact. Here we use multifractals to simulate realistic rain-

fall Tessier et al. (1996). Therefore, we expect the cross-correlation method to have a

limited performance in real life tests.250

The decision to benchmark against the cross-correlation is due to the fact

that it is the preferred method for hydrologists in numerous recent articles: for deter-

mining transport of biological constituents in Sheets et al. (2002), or studying river-

groundwater interaction with different types of measurements being cross-correlated
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like in Hoehn & Cirpka (2006). Cross-correlation is also used by Vogt et al. (2010)255

for estimating mixing ratios and mean residence times, by Delbart et al. (2014) for

estimating the pure residence time curve. Therefore, the hydrology community is in-

terested in a simple and fast method with minimal implementation time that gives a

residence time curve estimation from different time series measurements. In the case

of the cross-correlation method, one focuses on analyzing the position of the maximal260

amplitude and general shape of the curve. From this curve hydrologists extract the

characteristics of interest for that particular channel (mean residence time, mixing ra-

tios, etc.). In contrast to the cross-correlation method we offer positivity, smoothness

and causality constraints that give a more precise curve and a similar computing time.

5.3. Comparison to Cirpka et al. (2007)265

Another benchmark method for the AM is the one presented in is Cirpka et al.

(2007) that uses measurements in fluctuations of electrical-conductivity as inputs, with

a direct model similar to (1). The algorithm in Cirpka et al. (2007) is the same as the

one used in Vogt et al. (2010) and both articles compare their results with those of the

cross-correlation method. In Cirpka et al. (2007) the deconvolution algorithm is also270

an Alternating Minimization algorithm, but this time between estimating the residence

time in the first step using a Bayesian Maximum A Posteriori method, and estimating

the variance of the noise and the slope parameters in the second step. One can notice

that Equation (3) is similar to (Cirpka et al., 2007, Eq.(8)). One main advantage of

the Cirpka et al. (2007) approach is that it delivers the uncertainty curves of the full275

Bayesian method while not being a full Bayesian deconvolution method, thus having a

21



fast computation time. One drawback is that the two parameters, variance of noise and

slope, need to have well chosen initial values. In a full Bayesian based deconvolution

these parameters would also need to be estimated and this would be done by Markov

Chain Monte Carlo methods which are computationally intensive. With regularization280

based deconvolution we try to avoid high computational costs and having multiple

parameters that need carefully chosen initial values. The optimal value for our hyper-

parameter λ can be automatically obtained from the inputs.

6. Synthetic Data

6.1. General Discussion and λ Choice Strategies285

In the context of a realistic synthetic validation we generate the rain signals

x with a multifractal simulation based on Tessier et al. (1996). We use the multifrac-

tal parameters H = −0.1,C1 = 0.4,α = 0.7. Furthermore we simulate k with a Beta

distribution B(x,α = 2,β = 6). We choose arbitrarily c = 100. To evaluate the com-

puted estimates we use the SNR definition, where we replace the noise term with the

estimated kest signal or the yrec signal respectively.

SNR = 20log10
‖m‖2

2

‖m−mest‖2
2
[dB] , (11)

where m is the true signal k or y and mest is the estimated kest or reconstructed yrec

signal respectively.

Examples of results obtained from synthetic data are shown in Figure 3 and

Figure 4. The positivity and causality constraints are well respected. In addition, our
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method always provides a better estimation of the residence time kest in comparison290

with the standard cross-correlation method. The cross-correlation method manages to

preserve the position of the maximum intensity of the residence time distribution but

does not match either the shape or the amplitude of the true k. It can be observed

that for a high noise level of y, the λ hyper-parameter must be greater in order to

obtain better estimates kest and yrec. The greater the λ , the greater the importance of295

the regularization term in comparison to the fidelity term therefore smoothing is more

important, which improves results when entries are noisy. Therefore, an analysis of

the deconvolution results is also necessary in order to find the right adaptation of the λ

hyper-parameter for a particular noise level.

We propose four strategies to automatically tune the λ hyper-parameter.300

1. λoracle: choosing the λ corresponding to the best estimation of kest by maxi-

mizing the kest SNR output (or minimizing the distance between kest and k).

This strategy only works if the solution is known and represents the maximum

achievable value.

2. λdiscrepancy: choosing the λ giving the residual variance between y and yrec clos-305

est to that of the noise. This method is known as ”Morozov’s discrepancy prin-

ciple” Pereverzev & Schock (2009).

3. λ f idelity: choosing the λ corresponding to the best reconstruction of yrec by maxi-

mizing the yrec SNR output (or minimizing the distance between yrec and y). This

is the value of the reconstruction optimum. This completely heuristic method au-310

tomatically selects the hyper-parameter with a performance close to the selection

by ”discrepancy principle” as will be seen next, in a completely blind way (with-
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out a priori knowledge of the variance of the noise).

4. λcorrCoe f f : choosing the λ corresponding to the best reconstruction of yrec by

maximizing the correlation coefficient value between yrec and y.315
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Figure 3: Two examples of the residence time estimation kest and reconstructed aquifer levels yrec from syn-

thetic data for a y input SNR of 5 dB (noisy measurements). The input rain is generated with realistic multi-

fractal time series. AM stands for the Alternating Minimization, XCORR for the standard cross-correlation,

true for the true solution.
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Figure 4: Same as in Figure 3 for a y input SNR of 25 dB.

The four λ strategies give different estimates of kest , whose SNR value is

compared to the y input SNR (measurements noise level), the goal being to obtain the
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best possible kest SNR for each given y input SNR level. The algorithm is tested for

different input SNR values from 0 dB (very high noise level) to 30 dB (almost no noise)

and over a λ range chosen from 10−5 to 1012 with 20 values dispersed on a logarithmic320

scale.

To show the quality of estimation, for each noise level, we run arbitrarily 30

test cases (input rainfall x). For each randomly chosen x convolved with the known

k, the resulting y signal has Gaussian noise added to it according to the input SNR

test value. We apply the AM, XCORR and Cirpka et al. (2007) methods to each test325

case for all λ s. For each test run we record the kest SNR value, the yrec SNR value

and the yrec correlation coefficient. Since 30 tests are made for each input y SNR, we

obtain 30 plots showing the evolution of the kest SNR, of yrec SNR and yrec correlation

coefficient, depending on the λ choice.

By averaging these plots, mean values and their standard deviation can be330

computed which are shown in Figure 5 for a y input SNR of 5 dB and Figure 6 for 25

dB respectively. We lose the optimality for each single example due to averaging, but

we show the variability of the criteria depending on noise level and input data. We also

present graphically the four strategies of λ determination.
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Figure 5: Selection strategy of hyper-parameter λ . We plot average and standard deviation over 30 synthetic

examples of: (a) kest SNR, (b) yrec SNR and (c) yrec correlation coefficient as a function of λ . The y input

SNR is 5 dB, meaning very noisy measurements. The λoracle point in (a) shows the best λ in average to

maximize the kest SNR for the synthetic tests. This can be computed only when the true solution is known.

In (b) the λ f idelity maximizes the yrec SNR. The λdiscrepancy is achieved when yrec SNR is closest to the actual

noise level. In (c), the λcorrCoe f f is the optimum over the correlation coefficient between yrec and y.
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Figure 6: Same as in Figure 5 with an y input SNR of 25 dB. We find that λ f idelity, λdiscrepancy and λcorrCoe f f

approach the optimal λoracle in average.

In Figure 7, we can see how the four strategies compare with the cross-335
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correlation method. For a kest length of 1000 data points to estimate, we show in

(a) the results for when inputs x and y are 1000 data points long and in (b) the results

for when they are 5000 data points long. The kestSNR is always the best for the λoracle

strategy as expected. Across the plots, λcorrCoe f f performs closest to it. The λ f idelity

strategy is similar to λdiscrepancy for SNRs from 10 dB to 30 dB. For the highest noise340

level, y input SNR < 10 dB, λ f idelity is worst for short time series and λdiscrepancy is

worst for longer time series. Whatever the strategy, our method is always better than

the cross-correlation.

The average optimal λ value for each strategy, given the y input SNR level,

is presented in Figure 8. In (a) and (b), we see the evolution of the λ values ver-345

sus the y input SNR for the four given strategies. The four strategies of the hyper-

parameters λ are similar at low noise level, down to 10 dB for both 1000 and 5000 data

points. Then, they begin to diverge but λcorrCoe f f always stays in the neighborhood of

λoracle, meaning it is a valid strategy to use in real test cases where k is not known.

At very high noise levels for 1000 data points, λdiscrepancy increases and provides an350

over-regularized, highly smooth solution that is far from the optimum. For 5000 data

points both λ f idelity and λdiscrepancy deliver smaller λ s. If for λ f idelity we can still expect

that it would deliver a proper kest , we can suspect that λdiscrepancy would stress more an

attachment to the data. This means that the estimated kest would give a yrec that would

follow too closely the shape of y, including its noise.355

Furthermore we investigate the influence of data volume on the k estimate.

The aggregated results are presented in Figure 9, (a) for a y input SNR of 5 dB and in
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(b) for a y input SNR of 25 dB. All of our four strategies show significant improvement

when the input time series of rainfall and aquifer measurements are longer, especially

when the measurements are noisy.360

(a)

(b)

Figure 7: Quality of the residence time estimation kest for the four hyper-parameter selection strategies and

the cross-correlation method. Mean and standard deviation of obtained kest SNRs, as a function of the noise

level of the measurements, for inputs of length: 1000 data points (a) and 5000 data points (b). The cross-

correlation method always stands lower indicating a poorer estimation. The correlation coefficient strategy

λcorrCoe f f is the best strategy, across noise level and signal length.
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Figure 8: The evolution of the four λ strategies depending on the input SNR. For 1000 data points in (a) and

5000 data points in (b).
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Figure 9: Quality of residence time kest estimation depending on the number of data points contained by x

(input rain) and y (output aquifer level). We can observe that more data points lead to a better estimation for

our method for all four λ strategies. (a) is for a y input SNR of 5 dB and (b) is for a y input SNR of 25 dB

6.2. Comparison to Similar Methods

In Figure 10, we can see how our method compares to the cross-correlation

method and the algorithm described in Cirpka et al. (2007) for various y input SNRs

and 1000 and 5000 data points respectively (positive time interval of residence time to
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be estimated of 500 data points). Our method and the Cirpka et al. (2007) algorithm365

show similarly good results in comparison with the cross-correlation. The method

of Cirpka et al. (2007) has a smaller standard deviation than our method, showing a

weaker dependence of the noise/structure of the dataset.

(a)

(b)

Figure 10: Comparison between our algorithm, the cross-correlation and the Cirpka et al. (2007) algorithm

for 1000 data points (a) and 5000 data points (b)

While our proposed approach provides different output results depending on

the given λ , the best solution being picked automatically, the operator can choose an370
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appropriate solution based on his own expertise, from an appropriate range around the

optimal λ . Moreover, the solution is independent from the initialization due to the

convexity of the J functional.

In Figure 11, bar plots illustrate the average runtime for 30 test cases, for dif-

ferent y input SNRs, for the three algorithms. The AM algorithm is consistently faster375

than the Cirpka et al. (2007) algorithm for y input SNRs higher than 15 dB 11(c). It is

also faster for the small data sets of 1000 points 11(a),11(b).
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Figure 11: Analysis of runtimes between the AM algorithm and the Cirpka et al. (2007) algorithm for various

lengths of the dataset and various noise levels.
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7. Real Data

The tests on real data are conducted on data sets made available from the380

”Base de Donnes des Observatoires en Hydrologie” c© Irstea, Irstea (2017). The data

is gathered in the Ile de France region, in France. The measurements are from two

neighboring sites, one at a higher altitude for rainfall measurements and the second

at a lower altitude for aquifer measurements, taken at every 1 hour intervals, between

January 1st , 2016 until January 1st , 2017.385

For the real data, the estimates are based on the λcorrCoe f f strategy with λ s

chosen around the optimal values found with the synthetic data set, between 108 to 102.

In Figure 12 and in Figure 13, estimates of the residence time for real life measurements

of x and y are shown.
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Figure 12: Examples of results for real data using the λcorrCoe f f strategy. We estimate the residence time

kest and the aquifer level cest ; we also plot the breakthrough curve yrec in blue. AM stands for the Alter-

nating Minimization, XCORR for the standard cross-correlation, the true residence time k is not known.

The position of the maximum amplitude of kest is similar for the two methods but the shape of kest varies

significantly. Only the AM method has the physical properties of positivity and causality.
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Figure 13: Same as in Figure 12.

In all cases, the estimated curves honor the given positivity and causality390

constraints. For the cross-correlation, even if the yrec is close to the original y, the curve
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for the residence time estimated by this method has the disadvantage to not respect the

positivity and causality constraints across all of the presented cases.

The aquifer level measurements have negative values due to the conventions

of the used measuring instruments. The AM algorithm is also capable of estimating the395

aquifer average level c, and depending on this constant and the amplitude of the rain

fall input, the estimated residence time curve kest will also have a certain amplitude

(the curve is not normalized to resemble that of a pdf).

The AM algorithm succeeds in reconstructing the yrec with an SNR around

10 dB in the studied cases, using the λcorrCoe f f and provides a better reconstruction400

SNR than the cross-correlation (XCORR) method.

We find small but significant changes in the residence time curve for different

data sets of the same channel, as also identified in other datasets Delbart et al. (2014).

This may be due to the seasonal variability of the inputs (rainfall) and its effects on

the hydrological process. This aspect would be of interest to study into more detail for405

specific sites to better understand it.

Another observation to be made is the fact that if non-linearities of the sys-

tem are present (in transit or at the aquifer level), our approach may also lead to over

simplification. Nonetheless the question arises if a hydrological channel could be con-

sidered as a linear and stationary system by parts (smaller time series) and therefore410

allow the use of our method for estimating partial residence time curves which can

then be put together in a more complex mapping of the channel.
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One can also note in the plots that the yrec is slightly better for cases when a

heavy rainfall event appears at the beginning of the time series x instead of towards the

end, suggesting the fact that the residence time estimation would also be better.415

Finally, the examples show the appearance of multiple lobes that are con-

sidered a sign of reservoirs of the hydrological channel keeping part of the water for

some time before releasing it in a later discharge. This demonstrates the usefulness of

a non-parametric deconvolution method in comparison with parametric deconvolution

methods where such lobes are either ignored or fixed in number.420

8. Conclusion

We propose a new approach to estimate a smooth residence time taking into

account positivity and causality constraints and having a fast runtime. We highlight

why these constraints must be used all along the algorithmic process to reach the ex-

pected solution in the case of non-parametric 1D deconvolution for the AM algorithm425

presented here.

The estimation of the residence time kest was done using a fast Alternating

Minimization algorithm with two steps: (1) 1D deconvolution and (2) estimation of

the aquifer initial level. All tests have been done on a personal laptop, with CPU

Intel(R) Core(TM) i7-6600U CPU @ 2.6GHz 2.81 GHz, 16.0 GB RAM, 64-bit OS,430

x-64-based processor, using Matlab R©. We validated the approach on synthetic tests

and proposed several strategies to automatically estimate a hyper-parameter, λ , that
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controls the smoothness of the residence time curve. We have found that between these

strategies, the correlation coefficient strategy seems to be very efficient to estimate the

best value for λ .435

We validated our AM method on synthetic data and found that the results

are better than the standard cross-correlation method and similar to those of the Cirpka

et al. (2007) method. We also demonstrated the capabilities of our AM method on real

data. Additionally, our method respects the physical constraints (positivity, causality,

non-circularity) which are important for interpretation purposes. The estimation made440

by our method will provide better information for hydro-geologists on amplitude and

full shape of the residence time, the mean level of the aquifer and will also improve the

estimation of the mean residence time (Appendix A shows how to compute it).

As possible improvements we propose refining this methodology for the po-

tential non-linear aspects of the water transit time through the medium.445

The Matlab implementation of the code is available under CECILL license

at: http://planeto.geol.u-psud.fr/spip.php?article280.
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Appendix A. Mean Residence Time

In order to estimate the mean residence time τ , one has to simply renormalize

the estimated transfer function kest and take the mean:

τ =

t=
K
2

∑
t=0


kest(t) · t

t=
K
2

∑
t=0

kest(t)


(A.1)
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