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Abstract: In a perspective to develop an inversion approach for estimating surface soil moisture of
crop fields from Sentinel-1/2 data (radar and optical sensors), the Water Cloud Model (WCM) was
calibrated from C-band Synthetic Aperture Radar (SAR) data and Normalized Difference Vegetation
Index (NDVI) values collected over crops fields and grasslands. The soil contribution that depends
on soil moisture and surface roughness (in addition to SAR instrumental parameters) was simulated
using the physical backscattering model IEM (Integral Equation Model). The vegetation descriptor
used in the WCM is the NDVI because it can be directly calculated from optical images. A large
dataset consisting of radar backscattered signal in Vertical transmit and Vertical receive (VV) and
Vertical transmit and Horizontal receive (VH) polarizations with wide range of incidence angle, soil
moisture, surface roughness, and NDVI-values was used. It was collected over two agricultural
study sites. Results show that the soil contribution to the total radar backscattered signal is lower in
VH than in VV because VH is more sensitive to vegetation cover. Thus, the use of VH alone or in
addition to VV for retrieving the soil moisture is not advantageous in presence of well-developed
vegetation cover.

Keywords: water cloud model; integral equation model; SAR; C-band; crops; grasslands; soil moisture

1. Introduction

The new C-band radar satellites Sentinel-1A (launched on 3 April 2014) and Sentinel-1B
(launched on 22 April 2016), in addition to the optical satellites Sentinel-2A and Sentinel-2B
(launched on 23 June 2015 and 7 March 2017, respectively), provide free and open access data for
the whole globe with high spatial and temporal resolutions (six days with Sentinel-1 satellites and
five days with Sentinel-2 satellites at 10 m spatial resolution). This availability of both Sentinel-1
and Sentinel-2 satellites allows the coupling of SAR (Synthetic Aperture Radar) and optical data for
operational soil moisture mapping at field scale.

SAR remote sensing was widely used to estimate the surface soil moisture in agricultural areas
(e.g., [1–9]). Over bare soil, the estimation of soil moisture is performed using either a physical
(e.g., the Integral Equation Model [10] or statistical (e.g., Baghdadi [11], Dubois [12], and Oh
models [13]), with an accuracy better than 6 vol % [3,14,15]. As soils of agricultural areas are covered
for a long period of the year by vegetation, an approach that considers the effects of vegetation on
the backscattered radar signal for estimating the soil moisture is therefore necessary. The presence
of vegetation cover makes soil moisture retrieval from SAR data more complicated because the soil’s
contribution is attenuated by the vegetation. So, the estimation of soil moisture on agricultural areas
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with a good accuracy requires the use of a well calibrated radar backscattering model that takes into
account both vegetation and soil contributions.

Most studies used the Water Cloud Model (WCM) in an inversion scheme for soil moisture
estimation over areas with vegetation cover. The two terms, direct vegetation contribution and
attenuation, are computed using one vegetation parameter representing the vegetation effect.
This vegetation parameter could be estimated from optical data. Therefore, the best way for soil
moisture retrieval over areas covered by vegetation is to combine SAR and optical data [4–6,16–20].
Currently, the high temporal repetitiveness of Sentinel-1 and Sentinel-2 data makes it possible to
combine SAR and optical data for soil moisture monitoring at time scale close to user requirements
(weekly to daily depending on the applications).

In this study, the Water Cloud Model combined with the Integral Equation Model was
parameterized using real data composed of C-band radar backscattered signal, NDVI, soil moisture,
and surface roughness values. In the Water Cloud Model, the NDVI was used as the vegetation
descriptor because it is easier to derive NDVI from optical data than the other vegetation descriptors,
such as Leaf Area Index (LAI), vegetation water content (VWC), biomass, vegetation height, fraction
of absorbed photosynthetically active radiation (FAPAR), or the fractional vegetation cover (FCOVER).
Several studies showed that the correlation between the NDVI and the vegetation parameters
(LAI, VWC, biomass, etc.) is strong when the NDVI is less than 0.7–0.8 [21–23]. Beyond 0.7–0.8,
the NDVI saturates and does not vary with the increase of the vegetation parameters. For example,
the logarithmic relationship observed between NDVI and LAI saturates when the LAI exceeded
2–3 m2/m2 [6,21–23].

The research presented in this paper aims mainly to prepare the combined use of the new
Sentinel-1 SAR data with Sentinel-2 optical data for operational soil moisture mapping at field scale.
The resulting parameterized WCM permits the evaluation of the potential of C-band SAR data
combined with optical data to estimate soil moisture over agricultural areas. In this paper, Section 2
presents the study areas and the ground-truth in situ measurements. Section 3 presents the radar
signal modeling. The results and discussion are provided in Section 4. Finally, Section 5 presents the
main conclusions.

2. Dataset Description

In the study presented, a wide experimental dataset was used, consisting of SAR and optical
images as well as ground measurements of soil moisture and surface roughness collected over two
agricultural study sites: one in France and one in Tunisia (Figure 1). SAR images were acquired by the
C-band (radar wavelength about 6 cm) sensors ASAR and Sentinel-1, with incidence angles between
18◦ and 46◦, and in VV and VH polarizations.
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2.1. Study Sites

The French study site is located in southeastern France near Montpellier (43.38◦52′–43◦45′N,
03◦47′−03◦52′E, Figure 1). Relatively flat, it is composed mainly of forest, vineyard, grasslands, and
agricultural fields (mainly wheat). This site is characterized by a Mediterranean climate with rainy
season between mid-October and March and an average cumulative rainfall of approximately 750 mm.
The average air temperature varies between 2.9 ◦C in December and 29.3 ◦C in July. The predominant
soil texture of the agricultural fields is a loam.

The Tunisian study site is situated in the Kairouan plain (35◦1′−35◦55′N, 9◦23′−10◦17′E),
in central Tunisia (Figure 1). The climate in this region is semi-arid, with an average annual rainfall
of approximately 300 mm/year, characterized by a rainy season lasting from October to May, with
the two rainiest months being October and March [15]. The temperature in Kairouan varies between
10.7 ◦C in January and 28.6 ◦C in August. The mean annual potential evapotranspiration (Penman)
is close to 1600 mm. The study site consists mainly of agricultural fields (cereals) on flat landscape.
Soil texture measurements showed a clay percentage between 2.4% and 53.1% and sand percentage
between 4.4% and 84.3% [15].

2.2. Satellite Images

2.2.1. SAR Images

Twenty-five Sentinel-1 images were acquired between September 2016 and May 2017 (Table 1)
over the French study site at incidence angle close to 39◦, and in VV and VH polarizations. These
images were acquired with a spatial resolution of 10 m.

Seven ASAR and 5 Sentinel-1 images were acquired over the Kairouan plain respectively between
2009 and 2012, and between 2015 and 2017. For ASAR images, the radar incidence angle varies between
18◦ and 40◦, with VV and HH polarizations. Sentinel-1 images were acquired at incidence angle near
to 39◦ with VV and VH polarizations.

The radiometric calibration and the orthorectification of the SAR images was carried out using
algorithms developed by the European Space Agency (http://step.esa.int/main/toolboxes/snap).
The radiometric calibration converts the digital number value to radar backscattering coefficients.
In addition, our ortho-rectified images have pixel dimension of 10 m × 10 m.

Table 1. Description of the dataset used in this study.

Site SAR Sensor Optical Sensor Year Number of Data

Tunisian site:
Training dataset ASAR Landsat 2009, 2010, 2011,

2012
VV: 92

measurements

Tunisian site:
Training dataset Sentinel-1 Landsat 2015, 2016, 2017

VV: 68
measurements

VH: 68
measurements

French site:
Validation dataset Sentinel-1 Sentinel-2 2016, 2017

VV: 261
measurements

VH: 261
measurements

2.2.2. Optical Images

At dates very close to the SAR images (less than 2 weeks), 11 free cloud Sentinel-2 images were
acquired over the French site, and 12 Landsat images were acquired over the Tunisian site. The optical
images corrected for atmospheric effects and orthorectified were used to calculate the NDVI. As the
dates of the optical images were different from the SAR acquisition dates, the NDVI for each SAR

http://step.esa.int/main/toolboxes/snap
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acquisition date was estimated using a linear interpolation of the two NDVI-values calculated from
optical images with acquisition dates preceding and succeeding the SAR image.

The NDVI-values ranged between 0.13 and 0.92 for the French site and between 0.08 and 0.86 for
the Tunisia site.

2.3. In Situ Measurements

Simultaneously with the SAR acquisitions, in situ measurements of soil moisture and surface
roughness were collected on several reference fields (cereals in Tunisia, cereals and grasslands in
France). The size of the reference fields is in the range of 2 to 9 ha. Moisture measurements (mv)
were made within a 2-h window around the SAR overpass time. Between 20 and 30 volumetric soil
moisture measurements were performed in the first top layer (5 cm depth) for each reference field
using calibrated TDR (Time Domain Reflectometry) probes. The mean volumetric soil moisture was
then calculated for each reference field and each date. The soil moisture on the reference fields ranged
between 7.0 and 36.3 vol % for the French site and between 4.0 and 39.65 vol % for the Tunisia site.

The soil roughness measurements made on the reference fields use 1 m long pin profiler with
a resolution of 2 cm. Ten roughness profiles (five parallel and five perpendicular to the tillage row
direction) were made in each reference field using a 1 m long needle-profilometer and a sampling
interval of 2 cm. From these roughness profiles, the root mean square surface height (Hrms) were then
calculated for each reference field using the mean of all autocorrelation functions acquired for each
reference field. The rms surface height ranged between 0.8 cm and 4.0 cm for the reference fields in
the French site (mainly wheat and grasslands) and between 0.7 cm and 4.6 cm for the reference fields
(cereals) in the Tunisian site.

Finally, our dataset contains in situ measurements (mv and Hrms) and satellite information
(mean of radar incidence angle, radar backscattered signals and NDVI). In the dataset, each of these
latest data is associated to a SAR acquisition date. The mean of incidence angle, radar backscattered
signals and NDVI were calculated by averaging for each reference field the values of all pixels within
the reference field.

The dataset was divided into two sub-datasets. The first sub-dataset (training dataset)
combining data on Tunisia site was used to fit the WCM (ASAR and Sentinel-1 data). The second
(validation dataset) contains only data acquired on the French site (Sentinel-1 data) was used to
validate the agreement between the radar signal of the fitted WCM and the radar backscattered signal
of SAR images.

WCM was calibrated and validated in VV and VH. In the perspective of using Sentinel-1 data
for estimating soil moisture, the WCM validated only in VV and VH is sufficient because these two
polarizations correspond to the standard acquisition mode of Sentinel-1.

3. Radar Signal Modeling

In this study, the Water Cloud model (WCM) developed by [24], was used to model the radar
backscattered signal in agricultural environments as a function of soil and vegetation parameters. This
semi-empirical model is widely used because it can be easily performed in an inversion scheme to
estimate soil moisture and vegetation parameters [5,6,25–27].

For a given polarization pq (pq = HH, VV or VH), the Water Cloud model defines the
backscattered radar signal in linear scale (σ0

tot) as the sum of the contribution from the vegetation
(σ0

veg), the soil (σ0
soil) attenuated by the vegetation (T2σ0

soil), and multiple soil-vegetation scatterings
(often neglected).

σ0
tot,pq = σ0

veg,pq + T2
pqσ

0
soil,pq (1)

σ0
veg,pq = ApqV1 cos θ

(
1− T2

pq

)
(2)

T2
pq = e−2BpqV2 secθ (3)



Remote Sens. 2017, 9, 969 5 of 13

where V1 and V2 are the vegetation’s descriptors. In most studies, authors use mainly vegetation water
content [5,28], leaf area index [27,29], NDVI [4]. Recently, El Hajj et al. [4] obtained similar accuracy on
soil moisture estimation over irrigated grassland using X-band SAR data when NDVI, LAI, FAPAR,
and FCOVER were used in the WCM. In this paper, V1 = V2 = NDVI (NDVI values are calculated from
the optical images); θ is the radar incidence angle (in); Apq and Bpq are fitted parameters of the model
that depend on the vegetation descriptor and the radar configuration; T2

pq is the two way attenuation.
The soil contribution σ0

soil depends on soil moisture and surface roughness (in addition to SAR
instrumental parameters). It is simulated in this study using the physical backscattering model IEM [10]
calibrated by Baghdadi et al. [30,31]. Baghdadi et al. [30,31] proposed an empirical calibration of the
IEM model, in order to improve the determination of backscattering coefficients on bare agricultural
soils. This calibration was based on a large experimental database composed of SAR images and
ground measurements (soil moisture and roughness). The discrepancies between the IEM and satellite
radar data were related both to the shape of the correlation function, and to the accuracy of the
correlation length measurements. This calibration consisted in replacing the measured correlation
length by a fitting parameter (Lopt) that depends on the rms surface height (Hrms) and the SAR
parameters (radar incidence angle, and radar frequency).

At C-band, the fitting parameter Lopt was defined for each polarization as follows:

Lopt (Hrms, θ, HH) = 0.162 + 3.006(sin 1.23θ)−1.494 Hrms

Lopt (Hrms, θ, HV) = 0.9157 + 1.2289(sin 0.1543θ)−0.3139 Hrms (4)

Lopt (Hrms, θ, VV) = 1.281 + 0.134(sin 0.19θ)−1.59 Hrms

where θ is expressed in degrees, and Lopt and Hrms are expressed in cm. The formulations for Lopt
were obtained with a Gaussian correlation function.

4. Results and Discussion

4.1. Water Cloud Model Parameterization

The WCM parameterization was performed using the training dataset (Table 1). WCM
parameterization consists in fitting the model against ground measurements (Equations (1)–(3)).
A and B parameters were estimated for VV and VH polarization by minimizing the sum of squares of
the differences between the simulated and measured radar signal (Table 2). With A and B parameters,
it becomes possible to simulate WCM components (σ0

veg, T2, and σ0
soil) and consequently the

total backscattering coefficient (σ0
tot) using NDVI, soil moisture and surface roughness as inputs

in the WCM. Only data corresponding to NDVI values lower than 0.8 were used in the fitting
and the validation of the WCM. It is due to the low sensitivity of NDVI to vegetation parameters
(LAI, VWC . . . ) in the case of high values of vegetation parameters [21–23].

Table 2. Fit of Water Cloud Model (WCM) parameters for each polarization (pq = VV and VH) using
training dataset. N is the number of points used in the fitting.

V1 = V2 = NDVI

Polarization Apq Bpq R2
pq RMSEpq (dB) Biaspq (dB) N

pq = VV 0.0950 0.5513 0.55 1.55 0.18 160
pq = VH 0.0413 1.1662 0.63 1.30 −0.17 68

4.2. Water Cloud Model Validation

To validate the fitted WCM, a comparison was performed between the radar backscattering
coefficients predicted by the parameterized WCM (using the training dataset) and the observed
backscattering coefficients of the validation dataset (Table 1, Figure 2). Results showed that the
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fit of the WCM was similar in VV and VH polarizations (Table 2, Figure 2a,b). The correlation
coefficient R2 is equal to 0.55 for VV and 0.63 for VH with RMSE (Root Mean Square Error) on the
predicted backscattering coefficients of 1.55 dB in VV and 1.30 dB in VH. The RMSE obtained on
the WCM predictions close to 1.5 dB are slightly higher than the Sentinel-1 precision [32,33]. Indeed,
the radiometric accuracy for all measurement modes of Sentinel-1 is within 1 dB (3σ) and its sensitivity
expressed by the noise equivalent sigma naught is −22 dB or higher [32].

The validation of the WCM using the validation dataset shows a RMSE on the predicted
backscattering coefficients of 1.39 dB in VV and 1.15 dB in VH with a bias lower than 0.5 dB in
both VV and VH (Figure 2c,d).
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Figure 2. Observed backscattering coefficients from SAR images vs. modeled backscatter values from
WCM. Results of the training phase were given in (a,b). (c,d) correspond to validation phase. Mean of
the difference between SAR and WCM and root mean square error were calculated.

4.3. Behavior of Different Components of the WCM

Modelling results obtained using the NDVI as the vegetation descriptor in the WCM will be
presented and discussed in this section. The WCM components (T2σ0

soil and σ0
veg) were simulated

for soil moisture (mv) between 5 and 35 vol % and NDVI-values between 0 and 0.8. These ranges of
mv and NDVI values were used since they are the most encountered in agricultural environments.
Radar incidence angles of 25◦ and 40◦ were chosen. The surface roughness used in these simulations
corresponds to Hrms of 2 cm.

Figures 3 and 4 show the modelled σ0
veg, T2σ0

soil and σ0
tot in dB units as a function of mv using

three different values of NDVI (0.3, 0.6, and 0.8), with 25◦ and 40◦ incidence angles, and Hrms = 2 cm.
In addition, the modelled σ0

veg, T2σ0
soil and σ0

tot were also plotted according to NDVI for mv values
of 20 vol %, with 25◦ and 40◦ incidence angles, and Hrms = 2 cm (Figure 5).

Figure 3 shows that σ0tot in VV polarization are always sensitive to soil moisture (mv) even for
high NDVI values (NDVI = 0.8). However, this sensitivity to soil moisture slightly decreases as the
NDVI increases. As an example, for 25◦ incidence angle, this sensitivity decreases from 2.75 dB/%
for NDVI = 0.3 to 1.65 dB/% for NDVI = 0.8 (σ0

tot = S ln(mv) + b, with S is the sensitivity). Moreover,
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results also show that the sensitivity of σ0
tot to soil moisture decreases slightly when the incidence

angle increases. As an example, for NDVI = 0.8, the sensitivity of σ0
tot to soil moisture decreases from

1.65 dB/% to 1.40 dB/% as the incidence angle increases from 25◦ to 40◦. This is due to an increasing
of vegetation attenuation effect and vegetation component.
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The NDVI thresholds from which the soil’s contribution (T2σ0
soil) is lower than the vegetation’s

contribution (σ0
veg) are given in Table 3. The threshold values in VV with 40◦ incidence angle are

approximately 0.51 and 0.65 for soil moisture of 5 and 10 vol %, respectively. Results show that the
soil contribution begins to dominate the vegetation contribution at 40◦ for mv-values higher than
10 vol %. The comparison between results obtained at 25◦ and 40◦ shows that the NDVI thresholds are
higher at low incidence angle (25◦) than at high incidence angle (40◦) where the σ0

veg is almost always
dominated by T2σ0

soil (Table 3).

Table 3. Threshold values of NDVI at which vegetation contribution σ0
veg dominates soil contribution

T2σ0
soil at VV and VH polarizations. Dash symbols mean that the σ0

veg is always dominated by
T2σ0

soil (see Figure 3). The soil roughness Hrms was fixed to 2 cm.

VV (25◦) VV (40◦)

mv (vol %) 5 10 20 30 5 10 20 30
NDVI 0.70 - - - 0.51 0.65 - -

VH (25◦) VH (40◦)

mv (vol %) 5 10 20 30 5 10 20 30
NDVI 0.27 0.39 0.51 0.60 0.19 0.27 0.36 0.41
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Figure 4 shows that the sensitivity of σ0
tot in VH polarization to soil moisture strongly decreases

when both incidence angle and NDVI increases. Moreover, the sensitivity decreases when the soil
moisture decreases. The soil contribution becomes negligible for incidence angle higher than 40◦ from
an NDVI of 0.6 whatever the value of mv. For 25◦ incidence angle and VH polarization, this sensitivity
(σ0

tot = S ln(mv) + b, with S is the sensitivity) decreases from 3.05 dB/% for NDVI = 0.3 to 0.64 dB/%
for NDVI = 0.8. It is of 2.02 dB/% for NDVI = 0.3 and 0.24dB/% for NDVI = 0.8 in the case of 40◦

incidence angle. The NDVI threshold in VH from which the T2σ0
soil is lower than σ0

veg varies for 25◦

incidence angle from 0.27 for mv of 5 vol % and 0.6 for mv of 30 vol % (Table 3). For 40◦ incidence
angle, the NDVI thresholds are lower, with 0.19 for mv of 5 vol % and 0.41 for mv of 30 vol % (Table 3).

Results confirm that the soil’s contribution to total backscattering coefficient is lower in VH than
in VV because VH is more sensitive to vegetation cover. The use of VH alone or in addition to VV
for retrieving the soil moisture is not relevant as soon as the vegetation cover is well developed [4].
For bare soils, VH could be used in addition to VV in order to improve the soil moisture estimates.

Figure 5 shows that σ0
tot in VV decreases with increases in the NDVI whereas σ0

tot in VH decreases
with increases in the NDVI until reaching a minimum and then starts to increase. This minimum is
lower for low mv than for high mv. It is also lower for high incidence angles than for low incidence
angle. The decrease of σ0

tot in VV with the NDVI is related to an increase in the attenuation of the
soil contribution (T2), which is more important than the enhanced contribution from the vegetation
canopy [34–36]. The increase of σ0

tot in VH polarization with the NDVI results in the increase of the
vegetation contribution combined with the decrease in the soil contribution (this is also the case for VV
but the soil’s effect remains more important).

Additional simulations were carried out with Hrms of 1 and 3 cm. Results showed that when Hrms
increases σ0

tot also slightly increases. The thresholds on mv from which the vegetation contribution
(σ0

veg) is higher than the soil contribution (T2σ0
soil) decreases when Hrms increases. This decrease of

the threshold is strong for Hrms lower than 2 cm and for high incidence angles (θ = 40◦ for example).
As an example, for VV, NDVI = 0.8 and θ = 40◦, the threshold on mv is 30 vol % for Hrms = 1 cm against
20 vol % for Hrms = 2 cm (about 17 vol % for Hrms = 3 cm). In addition, the thresholds on NDVI for
which σ0

veg is greater than T2σ0
soil increase slightly when Hrms increases. As an example, for θ = 40◦

and mv = 20 vol %, the threshold is 0.75 for Hrms = 1 cm and 0.8 for Hrms = 2 cm at VV polarization,
and is 0.3 for Hrms = 1 cm and 0.35 for Hrms = 2 cm at VH polarization (about 0.35 for Hrms = 3 cm).

5. Conclusions

The Water Cloud Model (WCM) was calibrated using C-band SAR data, NDVI as a vegetation
descriptor derived from optical images, and in situ measurements of soil parameters (moisture content
and surface roughness) over crops fields and grasslands. In WCM, the Integral Equation Model
(IEM) was used in order to simulate the soil’s contribution on the total radar backscattered signal.
The objective of this study was to calibrate the water cloud model in C-band for winter fields and
grasslands. This calibration will allow in the future the development of a radar signal inversion
approach over agricultural fields by coupling radar and optical data (Sentinel 1 and Sentinel 2
for example).

The calibration of the WCM was performed using experimental dataset of soil moisture and
surface roughness as well as NDVI values calculated from optical images. Only data with NDVI
values lower than 0.8 were used because after this threshold this vegetation descriptor shows a low
sensitivity to vegetation parameters (LAI, VWC, etc.). The accuracy of the calibrated WCM was
evaluated with an RMSE lower than 1.5 dB for both VV and VH polarizations. The validity of the
proposed model is defined for winter crop fields and grasslands as follows: 0.7 cm ≤ Hrms ≤ 4.6 cm,
4 vol % ≤ mv ≤ 40 vol %, and 18◦≤ θ ≤ 40◦.

Results show that the soil contribution represents a large part of the total radar signal in VV
polarization when soil moisture is between 5 and 35 vol %, and NDVI between 0 and 0.8. However,
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this contribution decreases either when the soil moisture decreases or when the NDVI increases or
when the incidence angle increases.

In VH polarization, the soil contribution to the total radar signal strongly decreases when both
incidence angle and NDVI increase or when the soil moisture decreases. It becomes very weak (T2σ0

soil
< −20 dB) for incidence angle higher than 40◦ from an NDVI of 0.6 whatever the value of mv. This
result shows that the use of VH alone or in addition to VV for retrieving the soil moisture does not
correspond to the optimal SAR configuration in the case of well-developed vegetation cover (the soil
contribution to the total radar signal is low).

Results obtained show that the WCM developed in this study is applicable to agricultural
environments for winter crops and grassland. The performance of the model built from a dataset
acquired on different study sites over several years (one in France and one in Tunisia) gives confidence
that the resulting model is efficient and that may be applicable to other study sites.
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