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Abstract—In RF receivers nonlinearities are inherent to analog
processing. This is the result of strong signals presence close to
the bandwidth of the signal of interest, or a power excess of this
signal. Both cases greatly deteriorate the receiver bit-error-rate.
Methods to compensate for nonlinearities consist in equalizing
resulting intermodulation terms by predistortion or a subtraction
mechanism. In this article, we propose a proof of concept for a
novel technique to limit the harmful effects of nonlinearities. It
consists in making a measure of intermodulation terms power,
thanks to a cyclostationary sensing mechanism. And then, to
dynamically adapt receivers parameters to make it works in a
linear regime. We detail principles of that method and develop the
theoretical analysis of detection. Thanks to simulations, we show
that this method is reliable and allows a nonlinearity detection
16dB below the compression point. This work was conducted in
the scope of high end radio such as professional mobile radios
(PMR) receiver.

I. INTRODUCTION

Current technologies of private communication systems
PMR offer far less download speed than commercial
technologies such as 4G. Hence, the FITNESS project (see
[1]) aims to take into account new users requirements and
prepare the future of PMR in Europe and in the world. It
paves the way towards high performance PMR based on
Long-Term Evolution (LTE). New functionalities requested
by mission critical markets are added, while preserving
backwards compatibility with existing narrowband PMR
systems. In this work, we focus on the narrowband receiver
with stringent specifications, and more particularly on a
method to make it compliant with the four European PMR
norms in terms of receiver selectivity.

The main issue of PMR receivers is to deal with a dynamic
up to 141 dB with channel bandwidth of 12.5 kHz. This
specification is particularly severe, as we consider a fully
integrated receiver (RX). Then, tight linearity and gain
requirements lies on the front-end. To manage it, a new
low-IF reconfigurable architecture has been defined. However,
in presence of unwanted strong signals close to the signal
of interest (SOI), some requirements may not be hold and
the SOI may be affected. This degradation is the result
of nonlinearities caused by RF components such as Low
Noise Amplifier (LNA) or mixers (see [2]) used outside of

their linear region. It might manifest through saturation, and
presence of intermodulation products and harmonics. Indeed,
as developed in [3], in presence of an additive unwanted
strong signal with the SOI, some intermodulation distortion
terms can be created and lay in the bandwidth of the SOI. In
the following development, unwanted signals are referred as
blockers, jammers or interferers.

The idea to compensate for nonlinearities is tackled by many
ways. [4] proposes a training approach thanks to pilot signals.
But, it requires to process baseband signals and interpret the
received data flow, which is time consuming. Most advanced
ways to compensate for third order intermodulation distortion
(IMD3) products are developed in [5], [6]. Those methods
rely on clever mechanisms to model the IMD3 products and
then subtract it from the received signal. In [5] Valkama et
al. propose a digital approach which requires very selective
narrowband filter. ADCs sampling frequency also has to be
high enough to respect Shannon’s condition for interferers
signals. This last requirement is very restrictive in our context
since the considered bandwidth is fairly large. In a different
manner, Keehr et al. use an analog cubic term generator
to equalize the IMD3 products in [6]. However, as the RX
has to be compliant with existing PMR standards, our RX
architecture can’t be modified. This solution also requires
additional analog components and thus consumes more power
than the original RX architecture. Those papers show that it
is possible to almost completely remove the IMD3 terms at
the cost of complex digital operations. Another strategy was
chosen in [7]. The principle is to estimate the IMD3 terms
thanks to a sensing mechanism, and subtracts it from samples
of the SOI. So, IMD3 terms just have to be measured, and
not longer to be modeled as in other approaches. But, each of
these studies left aside the fact that powerful IMD3 harmonics
are created only when interferers are strong, and close to the
maximum dynamic.

In this paper, we propose a novel method to decrease IMD3
products power, based on the idea that the RX linearity could
be improved thanks to dynamic range real-time tuning. In
addition to pure analog design, a sensing mechanism could
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be performed by digital processing means. That way, the RX
could be partially aware of its spectral environment and could
dynamically adapt its parameters thanks to a quick feedback
loop. The detection is based on cyclostationary properties of
IMD3 harmonics, which only appear when the RX works
close to its nonlinear regime. Principles of this new method
are developed in section II. The nonlinear system model, as
well as principles of cyclostationarity, are presented in section
III. In section IV, the cyclostationary analysis is derived and
binary hypothesis test is defined. A numerical analysis and
simulations are proposed in the section V, and section VI
concludes the paper.

II. DIGITAL ADAPTIVE AUTOMATIC GAIN CONTROL

In fig.1a, the unknown scenario corresponds to a classic
receiver. In such a case, the RX parameters are fixed. The
input interception point of third order (IIP3) is a quantity
which serves as a comparison of linearity of different circuits.
It has to be the highest as possible, in order to make the
receiver as linear as possible. The noise figure (NF) classically
describes the noise added by the analog RX to the received
signal. The lower the NF, the better the signal-to-noise-ratio
(SNR). However, NF and IIP3 are linked by the RX gain, and
the maximization of IIP3 could be done only at the trade-off
of a higher NF (see Friis formula and its nonlinear counterpart
for cascaded IIP3 in [2]). We clearly understand the possible
improvement if those parameters could be changed separately,
which is exactly what we propose to do. Indeed, in the sensing
scenario (fig.1b), we consider that the SOI is the only signal
in presence (i.e. no jammers) and has a low power. In that
particular case, the NF and IIP3 could be decreased to improve
the SNR. Indeed, no jammer is present, the IIP3 requirement
could be relaxed. In the linearity scenario (fig.1c), two cases
could happened:

• the SOI is the only signal in presence (i.e. no jammers)
and has a strong power,

• the SOI and jammers are present.

In both cases, we are not limited by sensitivity but rather
by the RX linearity. So, the RX gain could be decreased to
increase the IIP3, to allow a better linearity at the cost of a
NF degradation. Moreover, it would be of some use to know
if the RX is close to work in its nonlinear region, and identify
the reason.
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Fig. 2. PMR Receiver scheme

If the receiver is able to detect in which scenario it has to
work, it could improve significantly its dynamic by applying
a quick feedback loop to set up its parameters. This principle
is depicted in fig.2, which represents a classic RX with the
innovative part in dashed lines. To develop such a RX, the
first step is to be able to detect in which scenario the RX
is. This is the goal of the paper. So, the sensing mechanism
allows us to: a) detect the working region of the RX (i.e.
linear or nonlinear mode); b) detect the presence of interferer;
c) identify the reason of the nonlinear behavior : if its is due
to the interferer or due to a powerful SOI.

Let us now focus on the sensing mechanism, which has
to be performed with very few information on the received
signal. We also assume that neither the signal power nor the
noise power are known. Blocker’s potential carrier frequency
and its modulation types are assumed to be known, and
described in standards. Obviously, the algorithm sensitivity has
to be high enough to detect the nonlinear behavior signatures.
Several techniques of spectrum sensing, that are used in
cognitive radios, are summarized in [8]. However, simples
detectors (energy detection, waveform based-sensing, match
filter) requires additional knowledge than our hypothesis. In
particular, the noise power has to be known to use the energy
detector. Moreover, this approach is not adapted to detect a
specific interferer. In a same way, the transmission rate or
at least the emission filter are required to use the match filter
method. That is why we consider a detector based on received
signal cyclostationary property in our context.

Based on the detection criterion, developed in [9], we
propose to track several specific parameters which shows
saturation or jammer presence. In this article, we propose
the sensing algorithm and we demonstrate by simulation the
efficiency of this concept.

III. SYSTEM MODEL

Our goal is now to be able to identify in which regime the
RX works. We propose a novel sensing algorithm based on
communication signal cyclostationary properties. We suppose
a perfect synchronization between emitter and receiver in
phase and frequency. That way, the RX signal frequencies
are perfectly known and there is no phase noise. We also
suppose that there is no I/Q imbalance, since this problem
has several solutions proposed in the state-of-the-art. In the
following, we consider the case of a nonlinear RX front-end
of narrowband PMR signals. We only consider a model of third



order, since the even-order harmonics lay far from SOI carrier
frequency and thus can be discarded by a filtering operation.
This simplification holds if we consider that higher odd-order
distortion are far less powerful than third-order distortion. The
selection of the SOI and amplification are performed before a
digitization, which is realized at an intermediate frequency f1
(see fig.2).

A. Received signal model

Let us define the base-band model of communication sig-
nals, where T is the symbol period, h(t) is a waveform low-
pass filter and si,k are the random complex symbols:

zi(t) = ziR(t) + jziI(t) =

N∑
k=1

si,kh(t− kT ) (1)

ziR(t) and ziI(t) are the real and imaginary parts of the base-
band signal zi(t). The index ’i’ take the values in {1,2} and
stands for useful and jammer signal respectively. Signal xi(t)
at carrier frequency fi can be expressed as:

yi(t) = <[zi(t)e
j2πfit] (2)

The SOI is at intermediate frequency such as f1 = fc − f0,
where fc is the channel frequency before down conversion, as
shown in fig.2.

We assume the following expression of the received signal,
which is a combination of the useful signal and another PMR
signal in an adjacent channel :

x(t) =

2∑
i=1

yi(t−∆t) (3)

In the following parts, we take the propagation delay ∆t

in eq.(3), equal zero. A short development shows that this
hypothesis has no impact on the method, and does not lead
to a loss of generality.

B. Nonlinear Model

The nonlinear RX, which input is x(t) defined in eq.(3), is
classically expressed as a polynomial (see [3], [7]):

p(t) = α1x(t) + α2x(t)2 + α3x(t)3 + n(t) (4)

Where αk, k ∈ {1, 2, 3} are characteristics of the RX front-end
and n(t) is an additive white Gaussian noise (AWGN).

In this paper, the α2 coefficient is assumed to be 0, since
harmonics created by even coefficients are located at twice the
frequency of input signal. Thus, there is no harmonic leaks
at f1. Such a harmonics are suppressed by a filter before
demodulation. As in [7], α3 is obtained thanks to the relation
eq.(5):

α3 = −4

3

α1

IIP32
(5)

where IIP3 is the RX Input Interception Point of third order.
Coefficients of p(t) are extracted from practical measurements
on the PMR receiver demonstrator conceived in CEA labs. The
input-output representation of p(t) with those parameters is
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Fig. 3. Vin/Vout representation of a real PMR receiver front-end non linear
model

displayed in fig.3. In this article, the whole RX is modeled
as a nonlinear system. This assumption holds, thanks to
the equivalent of the Friis formula (see [2]) for nonlinear
counterpart.

The substitution of eq.(3) into eq.(4) leads to the complete
formula of harmonic creation for the nonlinear model. All the
terms are listed in [3], but α2 is not considered here. We focus
on the baseband representation of the received signal in a given
subband of interest. The SOI in this subband is given by:

p(t) = Re
{(
α1z1(t) +

3α3

2
z1(t)|z1(t)2|

+ 3α3z1(t)|z2(t)|2
)
ej2πf1t

}
(6)

In the linearity scenario context, we consider that the SOI is
much smaller than the blocker, so the term in z1(t)|z1(t)2|
can be neglected. The term proportional to |z2(t)2| becomes
dominating as blocker’s power comes high, and may affect
the SOI. Hence, in the linearity scenario, coefficients αk, k ∈
{1, 3} have to be modified to overcome the blocker’s influence.

C. Cyclostationarity Bases

In this part, we derive the cyclostationary bases and prin-
ciples of the sensing algorithm. A complete explanation on
cyclostationary concept can be found in [10]. The main idea
is that almost every communication signal is cyclostationary.
That way, the autocorrelation function defined in eq.(7) is
periodic in time.

Rz2(t, τ) = E[z2(t)z∗2(t− τ)] (7)

Here, E[.] is the expectation operator and (.)∗ is the complex
conjugate operation. As a periodic function, Rz2(t, τ) admits
a decomposition in Fourier series, which is given by:

Rz2(t, τ) =
∑
α∈Iz2

Rαz2(τ)ej2παt (8)



Let Iz2 = { kT , k ∈ Z} be the set of z2(t) cyclic frequencies.
Fourier coefficients Rαz2(τ) are called cyclic autocorrelation
functions (CAF), where α is a specific cyclic frequency.
The CAF theoretical expression is the Fourier transform of
Rz2(t, τ).

Rαz2(τ) = lim
Tα→∞

1

Tα

∫ Tα

0

Rz2(t, τ)e−j2παtdt (9)

With that representation, z2(t) is cyclostationary and its cyclic
frequencies are multiple of 1/T . In eq.(8), for k > 1 the CAF
of z2(t) are 0 since their magnitude drops quickly.

The classic method to check if α is a cyclic frequency
consists in estimating the corresponding CAF of the received
signal, and measure its power. The natural estimator of CAF
is defined in eq.(10) below:

R̂αz2,N (l) =< z2(k)z∗2(k − l)e−j2παk > (10)

In eq.(10), the expectation is replaced by a temporal average
operator defined as < . >= 1

N+1

∑N/2
k=−N/2(.). The notation

R̂αz2,N (l) stands for the estimate of Rαz2(lTs), with Ts the
sampling period.

However, PMR signals which uses among others the QPSK
or 4QAM modulations, can’t be detected by order two estima-
tors such as eq.(10). Hence, we propose to use the detection
criterion developed in [9] and bring out in eq.(11):

ĴL,N (α) =
ĈαN (L)

ĈβN (L)
(11)

where:

ĈηN (L) =
1

L+ 1

L∑
l=0

|R̂ηz2,N (l)|2 (12)

The criterion ĴL,N (2f2) allows us to detect a signal at
2f2, even QPSK modulated. Indeed, for that particular case,
Ĉ2f2
N (L) and ĈβN (L) do not converge to zero in the same way.

Neither 2f2 is a cyclic frequency, nor β, but this particular
behavior allows the detection.

Another particularity of this criterion is that it doesn’t need
a long observation time to perform the detection. This is not
a kind of energy level measure, but rather a measure of a
convergence behavior difference. It appears that even with a
very short observation duration, this behavior remains similar,
making ĴL,N (2f2) almost independent of N. This behavior is
shown for a set of representative values of N in table I.

A theoretical detection threshold Γ could be estimated from
eq.(11). Let us consider that z2(t) is an AWGN signal to

TABLE I
DETECTION PROBABILITY (PD(2f2)) IN FUNCTION OF N, FOR A FALSE

ALARM PROBABILITY Pfa = 5%, AND SNR = 2dB

Number of symbols (N) 6 32 128 512
PD(2f2) [%] 0.827 0.833 0.843 0.832
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Fig. 4. Cumulative distribution function comparison for experimental data
under H0 and doubly non central Fisher laws of 2L + 1 or bL/2c + 1
degrees of freedom, where L = 20

determine the P [ĴL,N (2f2)Γ ≥ |H0]. Under this hypothesis,
both Ĉ2f2

N (L) and ĈβN (L) are a sum of modulus complex
normal values at the power two. Therefore, nominator and
denominator of ĴL,N (2f2) follows unnormalized χ2 distribu-
tions of 2L+ 1. For that reason the criterion follows a doubly
non central Fisher distribution of 2L+ 1 freedom degrees.

IV. NONLINEAR DETECTION BASED ON A
CYCLOSTATIONARY ANALYSIS

In this section, we develop the cyclostationary analysis of
the signal p(t) after digitization.

A. Cyclostationary analysis

Considering the linearity scenario, we assume that a pow-
erful interferer y2(t) is present. We use the criterion eq.(11)
to detect its presence and track its CAF power at 2f2. Now,
we need to understand the impact of nonlinearities on cyclo-
stationarity properties of the received signal. To determine if
the RX works in a nonlinear mode, we propose to realize a
short cyclostationary analysis.

The eq.(4) is a sum of harmonics of frequency f1, f2,
2f1−f2, 2f2−f1, 3f1 and 3f2 (see [3]). Hence, a theoretical
search of cyclic frequencies (using eq.(9) and eq.(4)) leads to
a 81 terms expression, which are not detailed here for brevity
consideration. However, we noticed the presence of powerful
CAFs at cyclic frequencies 4f1 and 4f2. Their expression is
developed in eq.(13):

R̂4fi
p (l) =< α1α3|yi(k)|2|yi(k − l)|2e−j2π4fik > (13)

with i ∈ {1, 2}. The expression R̂4fi
p (l) is homogeneous to

a high order moment due to the nonlinear transformation.
Moreover, as a self product, it produces one of the greatest
energy.

So, we propose to monitor the criterion set M ={
ĴL,N (2f2), ĴL,N (4f1), ĴL,N (4f2)

}
. That information is
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enough to select the corresponding (b) or (c) scenario de-
scribed in fig.1.

B. Binary Hypothesis Testing

Each element of M is tested accordingly to a Neyman-
Pearson approach [11]. A constant false alarm threshold Γ, is
set to satisfy Pfa = P [M≥ Γ|H0]. The test is the following
one:

H :

H0 → p(t) = Re
{
α1z1(t) + α3z

3
1(t)

}
+ n(t)

H1 → p(t) = Re
{
α1x(t) + α3x(t)3

}
+ n(t)

(14)

Here, H0 denotes the absence of blocker and H1 denotes its
presence. However, in eq.(14) the H0 hypothesis corresponds
to SOI presence plus noise, instead of noise only as assumed
in the previous section.

Hence, we showed trough simulations that P [ĴL,N (4f2) ≥
Γ|H0] don’t follow a doubly non central Fisher law of 2(L+1)
freedom degrees. Indeed, as we can see in fig.4, the cumulative
distribution function of experimental data seems to follow a
bL/2c + 1 doubly non central Fisher law. The most likely
explanation would be that real and complex parts of the CAFs
R̂εp,N (l) are not independent. The theoretical justification of
such a dimension reduction is under demonstration, and will
be presented in a future work.

V. SIMULATION AND NUMERICAL ANALYSIS

In this section, we develop our simulation results, and
we show that we are able to identify precisely in which
scenario the RX is. We also show thanks to simulations, that
the proposed detection method answers the problematics of
rapidity, sensibility and reliability.

A. Experimental Conditions

To make sure that there is no cyclic frequency overlap, we
set a sampling rate fs = 10fc. The shaping filter h(t) is
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Fig. 6. criterion probability of true detection in function of SNR level, with
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defined as a square-root raised cosine of period T = 2.5T1, a
roll-off at 0.8 and span at 6 symbols. As detailed in section III,
nonlinear model coefficients are set thanks to measurements
on an experimental RX. The RX gain is fixed at 32dB, when
the input interception point of order 3 IIP3 = 3.6 dBm.
Blocker and useful signals are in adjacent channel, and the
blocker carrier frequency is defined as T2 = T1/2.4. Both SOI
and blocker are 4QAM symbols, independent and identically
distributed. N the number of symbols is set at 32, which
is few, as discussed in the previous section. We set L, the
number of delays used in the ĴL,N (α) estimation at 25, in
order to limit the calculation cost. We defined the SOI power
σ2
y1 at −106.0 dBm. 2048 Monte Carlo runs are performed to

estimate our method’s performance.

B. Results

We begin this section with the power of the test analysis,
for each element of M. Tests at frequencies 4f1, 4f2 have
same power. So, results are provided only for the tests at
frequencies 2f2 and 4f2. To answer the nonlinear sensibility
issue, we designed a simulation which corresponds to the
linearity scenario (i.e. scenario 1c) to produce nonlinear
harmonics of different power. The signal-to-noise-ratio (SNR)
is set at 2 dB and the signal-to-interference-ratio (SIR) is
defined as summed up in table II.

TABLE II
SIR VALUES AND CORRESPONDING DETECTION PROBABILITY, FOR A

Pfa = 5%

SIR [dB] Blocker Range [mVpp] PD(4f2) [%]
-28 4.0 23
-30 4.5 65
-32 5.0 95



In fig.5, we draw the power of the test using criterion
ĴL,N (2f2) and ĴL,N (4f2). Those curves represent the
receiver operating characteristic (ROC) for the two criteria.
For each blocker power, we draw the criterion ĴL,N (2f2),
which allows us to reach 100% of good detection. The
P [ĴL,N (2f2) ≥ Γ|H1] ROC for a SIR set at −28 dB,
is the only one represented for convenience. Hence, with
this simulation parameters the blocker presence could be
determined with high confidence. We can see in table II, that
a good detection is obtained for the higher SIR, and that the
detection rate decreases with the SIR. It is clear that as the
RX is weakly nonlinear and the 4f2 harmonic power is small.

To answer to the nonlinear harmonic detection reliability
against noise, we defined a Pfa = 5%. The SIR is defined
at −30 dB, to remain slightly nonlinear. We measure the
detection probability for several values of SNR. This analysis
is illustrated through fig.6. As we can see, blocker detection
gives a perfect detection if the SNR is greater than −15 dB.
Which means that, the blocker is perfectly detected 30 dB
before the nonlinear harmonic. As the RX works in weakly
nonlinear mode, the 4f2 harmonic is small in comparison to
the noise floor. Hence, if the SNR decreases, the detection
probability increases to reach 95% of good detection for a
SNR of 10 dB.

Fig.7 is dedicated to illustrate the sensibility of our detector.
This detection curve was obtained for a SNR of 2 dB and
a Pfa = 5%. The true detection rate grows quickly when
the SIR comes higher than 27dB, which is consistent with
remarks on fig.6. As PIIP3 =3.6 dBm, the corresponding
compression point is PC1dB =−6 dBm. A perfect detection
is obtained for a SIR set at −32 dB, which corresponds to
a PD(4f2) =−22 dBm. Hence, the detection is performed
16 dB before the PC1dB . Our detector allows a detection
before the system comes in a strong nonlinear region. So, our
method could be used to adjust accordingly the dynamic range
of the RX, before the degradation of its performance.

VI. CONCLUSION

In this article, we developed a proof of concept of a
spectrally aware PMR receiver in order to enhance its linearity.
We point out pros and cons of state-of-the-art methods, and
then develop the concept of our receiver. We goes on with the
nonlinear system model and order two cyclostationary detector
principles. It allows us to develop a binary hypothesis test and
to derive the theoretical background in a non linear context.
Finally, we showed through simulations that this concept
fulfills the RX requirements. The detection metrics proves
the efficiency and reliability of the nonlinear components
detection. As the detection method is very fast and sensitive,
we consider that a further analysis of this new concept is
interesting. In a future work, we propose to complete this study
with the design and analysis of the feedback loop.
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