
HAL Id: hal-01735576
https://hal.science/hal-01735576

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synergetic use of Sentinel-1 and Sentinel-2 data for soil
moisture mapping at 100 m resolution

Qi Gao, Mehrez Zribi, Maria-José Escorihuela, N. Baghdadi

To cite this version:
Qi Gao, Mehrez Zribi, Maria-José Escorihuela, N. Baghdadi. Synergetic use of Sentinel-1 and
Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors, 2017, 17 (1966), 21 p.
�10.3390/s17091966�. �hal-01735576�

https://hal.science/hal-01735576
https://hal.archives-ouvertes.fr


sensors

Article

Synergetic Use of Sentinel-1 and Sentinel-2 Data for
Soil Moisture Mapping at 100 m Resolution

Qi Gao 1,2,3,*, Mehrez Zribi 1, Maria Jose Escorihuela 2 ID and Nicolas Baghdadi 4 ID

1 CESBIO (CNRS/CNES/UPS/IRD), 18 av. Edouard Belin, bpi 2801, 31401 Toulouse CEDEX9, France;
mehrez.zribi@cesbio.cnes.fr

2 isardSAT, Parc Tecnològic Barcelona Activa, Carrer de Marie Curie, 8, 08042 Barcelona, Spain;
mj.escorihuela@isardsat.cat

3 Observatori de l’Ebre (OE), Ramon Llull University, C.\ Horta Alta, 38, 43520 Roquetes, Spain
4 IRSTEA, UMR TETIS, 500 rue Franois Breton, 34093 Montpellier CEDEX 5, France;

nicolas.baghdadi@teledetection.fr
* Correspondence: qi.gao@isardsat.cat or qi.gao@cesbio.cnes.fr; Tel.: +34-933-505-508

Received: 10 July 2017; Accepted: 22 August 2017; Published: 26 August 2017

Abstract: The recent deployment of ESA’s Sentinel operational satellites has established a new
paradigm for remote sensing applications. In this context, Sentinel-1 radar images have made it
possible to retrieve surface soil moisture with a high spatial and temporal resolution. This paper
presents two methodologies for the retrieval of soil moisture from remotely-sensed SAR images, with
a spatial resolution of 100 m. These algorithms are based on the interpretation of Sentinel-1 data
recorded in the VV polarization, which is combined with Sentinel-2 optical data for the analysis of
vegetation effects over a site in Urgell (Catalunya, Spain). The first algorithm has already been applied
to observations in West Africa by Zribi et al., 2008, using low spatial resolution ERS scatterometer
data, and is based on change detection approach. In the present study, this approach is applied to
Sentinel-1 data and optimizes the inversion process by taking advantage of the high repeat frequency
of the Sentinel observations. The second algorithm relies on a new method, based on the difference
between backscattered Sentinel-1 radar signals observed on two consecutive days, expressed as
a function of NDVI optical index. Both methods are applied to almost 1.5 years of satellite data
(July 2015–November 2016), and are validated using field data acquired at a study site. This leads to
an RMS error in volumetric moisture of approximately 0.087 m3/m3 and 0.059 m3/m3 for the first
and second methods, respectively. No site calibrations are needed with these techniques, and they
can be applied to any vegetation-covered area for which time series of SAR data have been recorded.

Keywords: soil moisture; SAR; Sentinel-1; NDVI; Sentinel-2; change detection

1. Introduction

Surface soil moisture plays an essential role in numerous environmental studies related to
hydrology, meteorology and agriculture. For hydrological and agricultural applications, accurate
soil moisture estimations are essential, since the hydric state of the soil is a key variable in the
rainfall-runoff process [1]. Regular evaluation of this parameter can significantly improve flood and
drought estimations [2], since it affects the amount of water available for vegetation growth [3,4]. In situ
networks represent single point locations, and usually cover relatively short periods of observation [5],
whereas the acquisitions of satellite data make it possible to continuously retrieve surface soil moisture,
at regional and global scales. Various approaches have been developed for the retrieval of soil moisture,
using optical, thermal infrared (TIR), and microwave (MW) sensors [6,7]. Optical sensors in the thermal
spectrum are able to identify temperature differences, which can be related to surface soil moisture.
Microwave soil moisture estimations are based on the strong contrast between the dielectric properties
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of water (≈80) and dry soil (<5) [8]. The depth at which the moisture is sensed depends on the sensor
frequency but usually does not exceed several centimeters, in order to access rootzone soil moisture a
more or less complex model is needed and several approaches have been developed such as techniques
based on the energy balance approach based on thermal infrared soil moisture [9] or simplified water
balanced approaches [10,11].

Traditional passive remote sensing instruments can be used to determine the surface soil moisture
with a temporal resolution of 2–3 days. However, these instruments, which include the European Space
Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission [12,13] and the National Aeronautics
and Space Administration (NASA) Soil Moisture Active Passive (SMAP) mission [14], have a low
spatial resolution (around 40 km [15]). With the current Sentinel-1 mission, the active onboard C-band
sensor offers regular temporal coverage (about five days for Europe when both A and B satellites are
considered), together with a spatial resolution of 10 m.

In recent decades, SAR imagery has been shown to be advantageous for the estimation of soil
surface characteristics, in particular surface roughness and soil moisture [16–23]. SAR data in the
L, C and X bands is widely used for soil moisture retrieval [15,16,19,21–34], and the C-band sensor
carried by Sentinel-1 has demonstrated its ability to retrieve soil characteristics over vegetation-covered
surfaces [35–42]. The Sentinel-1 data can either be used to retrieve soil moisture or for downscaling
SMOS or SMAP soil moisture. By using active and passive microwave data fusion method [43], it could
be possible to retrieve soil moisture at a higher accuracy.

Radar remote sensing measurements of bare soil are very sensitive to the surface-layer water
content, due to a pronounced increase in the dielectric constant of the soil with increasing water
content [43]. In the last twenty years, different empirical, semi- empirical and physical models have
been proposed for the retrieval of soil moisture from various sources of SAR data (ERS, RADARSAT,
ENVISAT, TerraSAR-X, etc.). At the field scale, inversion models often take into account the effects
of roughness and vegetation, due to their significant influence on radar signals. The most widely
used techniques for the retrieval of soil moisture from SAR data include the Neural Network (NN)
approach [17,44–54], the Water Cloud Model (WCM) [39,41,55–59], and the Change Detection method
(CD) [11,60–69].

The artificial NN technique involves nonlinear parameterized mapping from an input vector to
an output vector [70,71]. Santi et al. [46] reported retrieved soil moisture measurements derived from
ENVISAT/ASAR data, using an artificial neural network (ANN) technique. The neural network was
trained using satellite backscattering coefficients and soil parameters measured during simultaneous
ground-truth campaigns, characterized by an RMSE of 0.023 m3/m3. Baghdadi et al. [52] retrieved soil
moisture values from C-band SAR data using the NN technique, with an RMSE close to 0.098 m3/m3

in the absence of a priori information related to the soil parameters, and an RMSE of 0.065 m3/m3

when a priori soil moisture data obtained over bare agricultural areas was included in the analysis.
The Water Cloud Model (WCM) approach can be used over densely vegetated areas, since it relates

the backscattering coefficient to soil moisture content and the presence of vegetation. He et al. [57]
estimated the soil moisture of an alpine grassland area, using the Integral Equation Method (IEM) and
the modified Water Cloud Model (WCM), leading to R2 = 0.71 and RMSE = 0.0332 m3/m3. Two-thirds
of the data points derived from field surveys were used to parameterize the backscattering model, and
the remainder were used for validation. Zribi et al. [41] estimated soil moisture values from C-band
ASAR data using the WCM, leading to an RMSE of approximately 0.06 m3/m3 over a semi-arid region.
Typical input vegetation parameters include the albedo of the vegetation and the attenuation factor,
both of which are difficult to define. Laboratory-based measurements of the vegetation water content
can be used when a high level of accuracy is required [72].

When multi-temporal SAR data is available, the Change Detection (CD) approach can be
advantageously used, in the absence of prior knowledge of the study area. Zribi et al. [68] mapped
soil moisture in a semi-arid region using ASAR/Wide Swath satellite data, based on the CD approach,
with an RMSE equal to 0.13 (approximately 0.035 m3/m3 as volumetric moisture) over a semi-arid
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region. This approach makes the assumption that changes in vegetation and soil roughness have only
a minor influence on variations in backscattering coefficient, which are dominated mainly by changes
in the value of soil moisture [73].

In the present paper, two simple CD methodologies are applied, without field calibrations, and
validated over an area characterized by a dense vegetation cover (irrigated crop fields). The soil
moisture is retrieved from the synergetic interpretation of Sentinel-1 and Sentinel-2 data. The mean soil
moisture is computed with a resolution of 100 m, which is compatible with agricultural applications.
Despite S1 spatial resolution being around 10 m, the soil moisture is estimated a lower resolution
(100 m) in order to decrease uncertainties caused by different types of heterogeneities in agricultural
fields such as local changes in roughness, heterogeneities in vegetation cover etc. The first proposed
method is based on the interpretation of backscattering statistics from Sentinel-1 observations, using
the minimum and maximum values of this parameter throughout the full period of observation,
whereas the second method is based on the analysis of backscattering differences on two consecutive
acquisition days. With both methodologies, the Sentinel-1 data is combined with the normalized
difference vegetation index (NDVI) computed from Sentinel-2 data. Site calibration is not mandatory
for these two methods.

Our paper is organized as follows: in Section 2, the studied site and database are presented.
Section 3 describes the two proposed methodologies. Section 4 presents our validation methodology,
the ground measurements, and the resulting soil-moisture maps. Finally, our discussion and
conclusions are presented in the last section.

2. Study Site and Database

2.1. Study Site

The study area covers a 20 km by 20 km area and is located in Urgell (Catalunya, Spain). The Urgell
climate is typically Mediterranean, with a continental influence: mild in winter and warm in summer,
with a very dry summer season and two rainier seasons in autumn and spring [74].

The average annual temperature lies between 13 and 14 ◦C for most of the region, where winter
temperatures are low and the summer climate is rather warm, with frequent cool nights. The average
yearly rainfall is less than 500 mm for most of the region, with the winters having low rainfalls, and
the summers being very dry.
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More than 80% of the Urgell area is cultivated and there is very little natural vegetation, except
in the mountainous areas towards the northern and southern extremities of the region. The most
common crops are corn, fruit trees, wheat and alfalfa. In the mountains, the natural vegetation consists
of oak forests.

An old irrigated district located in this region has an open channel (built in 1862) transporting
water towards the agricultural fields, thus allowing the vegetation to flourish in this specific area.
Although the land surrounding the irrigated area is much drier, and a new irrigation network is being
developed to augment the coverage of the old irrigation system, its influence is not yet visible on
satellite imagery. The locations of two demonstration fields (inside the new irrigation area, at Foradada
and Agramunt) are shown in Figure 1.

2.2. Database

2.2.1. Ground Measurements

In-situ soil moisture measurements were acquired continuously (5 min sampling frequency) over a
period of several months, in two demonstration fields belonging to the new irrigation district: Foradada
and Agramunt (Figure 1). Each measurement point was analyzed at different depths. The precipitation
data comes from the nearest meteorological station to the demonstration field. For Foradada field, the
Baldomar station, which is about 6 km away, is taken, while for Agramunt field, the Tornabous station,
which is about 11 km, is considered. Table 1 lists the measured soil moisture and texture characteristics
of the two test fields.

Table 1. Ground soil moisture measurements in two demonstration fields at Foradada and Agramunt.

Site Foradada Agramunt

Coordinates 41.866◦ N, 1.015◦ E 41.782◦ N, 1.089◦ E
At soil depths in cm 3, 9, 10, 20 5, 10, 20, 40

Period of ground measurements May–August 2015
February–October 2016

June–October 2015
July–November 2016

Sand, silt, clay in % 41.5, 42.3, 16.2 52.1, 35.3, 12.6
Irrigation method Sprinklers Subsurface drippers

Surface soil moisture (min, max) in m3/m3 (0.08, 0.45) (0.04, 0.28)
Meteorological station Baldomar station Tornabous station

2.2.2. Satellite Data

(1) Sentinel-1 data

The Sentinel-1 satellites are equipped with C-band Synthetic Aperture Radar (SAR) instruments,
providing data in dual or single polarizations. Sentinel-1 provides data with a spatial resolution of
10 m and a temporal resolution of 12 days, in both VV and VH polarizations. In the present study,
signals recorded in the VV polarization were used to compute the soil moisture estimations. Only one
ground track (110) was considered, for which the incidence angle was approximately 40.3◦. Previous
studies have shown that VH data has only a limited potential for the estimation of soil moisture,
in particular as a consequence of its high sensitivity to volume scattering, which depends strongly
on the geometrical alignment and characteristics of the vegetation [75–77]. The Sentinel-1 satellite
database corresponds to the period from July 2015 to November 2016 (Table 2). All of the Sentinel-1
data was pre-processed using the Sentinel-1 Toolbox, in three steps:

- Thermal noise removal
- Radiometric calibration
- Terrain correction using SRTM DEM at 30 m.

The last step is needed to average the data over 100 m pixels or cells. As discussed above,
the methodologies proposed in this study were developed on the basis of this spatial resolution, which
also has the advantage of eliminating speckle effects in the radar data.
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Table 2. Sentinel-1 database.

Date Date Date Date Date Date

16 July 2015 13 Nov. 2015 05 Feb. 2016 29 Apr. 2016 03 Aug. 2016 26 Oct. 2016
28 July 2015 25 Nov. 2015 17 Feb. 2016 11 May 2016 15 Aug. 2016 07 Nov. 2016
09 Aug. 2015 07 Dec. 2015 29 Feb. 2016 23 May 2016 27 Aug. 2016 19 Nov. 2016
21Aug. 2015 19 Dec. 2015 12 Mar. 2016 04 June 2016 08 Sept. 2016 -
02 Sept. 2015 31 Dec. 2015 24 Mar. 2016 28 June 2016 20 Sept. 2016 -
14 Sept. 2015 12 Jan. 2016 05 Apr. 2016 10 July 2016 02 Oct. 2016 -
26 Sept.2015 24 Jan. 2016 17 Apr. 2016 22 July 2016 14 Oct. 2016 -

(2) Sentinel-2 data

The Sentinel-2A satellite was launched in June 2015, and was followed by Sentinel-2B in March
2017. It is a wide-swath, high-resolution, multi-spectral imaging mission, and is designed to provide
full and systematic coverage of the Earth’s land surfaces [78]. The Sentinel-2 database corresponds
to the period from July 2015 to November 2016 (Table 3). The Sentinel-2 data corresponds to images
recorded in 13 spectral bands, with a spatial resolution of 10 m. In the present study, band 4 (Red) and
band 8 (NIR) are used to calculate the NDVI:

NDVI =
(NIR− Red)
(NIR + Red)

(1)

Band “QA60”, which is a bit-mask band containing cloud mask information, is applied in order
to remove areas covered by cloud. Figure 2 is a NDVI map of our study area, computed from
Sentinel-2 data recorded on 25 August 2015, and characterized by a dynamic range between 0.1 and
0.8. The temporal variations in NDVI during 2016 are shown for two different locations:

- The first of these corresponds to dry (non-irrigated) land, revealing an NDVI cycle that occurs
between April and July, with a low NDVI for the remaining periods of the year. This trend is
confirmed for all of the pixels observed at this location.

- The second site corresponds to an irrigated area, which is characterized by a broad range of
spatial and temporal variations in NDVI.
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Table 3. Sentinel-2 database.

Date Date Date Date Date Date

06 July 2015 21 Oct. 2015 19 Mar. 2016 21 May 2016 30 July 2016 28 Sept. 2016
16 July 2015 20 Nov. 2015 22 Mar. 2016 28 May 2016 06 Aug. 2016 05 Oct. 2016
02 Aug. 2015 30 Nov. 2015 29 Mar. 2016 07 June 2016 09 Aug. 2016 15 Oct. 2016
05 Aug. 2015 03 Dec. 2015 01 Apr. 2016 10 June 2016 16 Aug. 2016 18 Oct. 2016
12 Aug. 2015 23 Dec. 2015 08 Apr. 2016 20 June 2016 19 Aug. 2016 25 Oct. 2016
15 Aug. 2015 30 Dec. 2015 11 Apr. 2016 27 June 2016 26 Aug. 2016 28 Oct. 2016
22 Aug. 2015 12 Jan. 2016 18 Apr. 2016 30 June 2016 29 Aug. 2016 04 Nov. 2016
25 Aug. 2015 19 Jan. 2016 28 Apr. 2016 07 July 2016 05 Sept. 2016 07 Nov. 2016
11 Sept. 2015 29 Jan. 2016 01 May 2016 10 July 2016 08 Sept. 2016 14 Nov. 2016
14 Sept. 2015 18 Feb. 2016 08 May 2016 17 July 2016 15 Sept. 2016 17 Nov. 2016
24 Sept. 2015 09 Mar. 2016 11 May 2016 20 July 2016 18 Sept. 2016 24 Nov. 2016
01 Oct. 2015 12 Mar. 2016 18 May 2016 27 July 2016 25 Sept. 2016 27 Nov. 2016

In order to develop suitable soil moisture algorithms, a mask is used to remove high density
vegetation areas with an NDVI > 0.8, corresponding to forests that are not encountered in the
agricultural pixels, and low density vegetation areas with an NDVI < 0.1, corresponding to
water surfaces.

3. Proposed Methodologies

3.1. Method 1 Description

The first method involves retrieval of soil moisture using the radar signal CD technique.
This approach to soil water content estimations has already been applied to data recorded by the ERS
Scatterometer over West Africa [15]. In the present study, this method was adapted to the characteristics
of the Sentinel-1 observations, and the inversion algorithm was optimized to take advantage of the
high repeat rate of this data. The radar signals backscattered by the surface can be modeled as the sum
of the radar signals scattered by the bare soil and attenuated by vegetation effects, and the signals
scattered by the vegetation cover. These two contributions can be expressed as:

σ0
cover = σ0

veg + γ2(θ)σ0
soil (2)

where γ2(θ) = exp[−2τ/ cos(θ)] is the two-way vegetation canopy transmissivity, θ is the incidence
angle and τ is the optical thickness parameter that depends on the type of geometrical structure and
vegetation water content of the canopy [79].

Temporal variations in soil moisture can be directly related to the dynamics of the radar signal.
When radar signals are considered for the same 100 × 100 m cell, and for approximately the same
NDVI index, the roughness effect can be considerably reduced by computing the difference between
two radar signals recorded at two dates.

For a given NDVI (retrieved from S2 data), by taking all of the corresponding radar data into
account, the minimum value of σ0, corresponding to the driest signal, can be determined for each cell.
The radar signal difference for a given cell (i,j), between one radar signal at date d and the driest signal,
can be written as follows:

∆σNDVI
(i,j)

= σ0
(i,j),NDVI(d)− σ0

dry,(i,j),NDVI = H(i,j)(NDVI, Mv) (3)

where σ0
(i,j),NDVI(d) is the backscattered signal from cell (i,j) at date d, with the corresponding NDVI

computed from the (S2) optical images; σ0
dry,(i,j),NDVI is the lowest backscattered signal, corresponding

to the driest conditions, and computed using the S1 time-series using the same NDVI as for the data
recorded on date d (σ0

(i,j),NDVI(d)), and H(i,j)(NDVI, Mv) is a function of the NDVI and soil moisture
Mv in cell (i,j).
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As our radar database covers a period of only 1.5 years (due to the later launch date of the
Sentinel-2 satellite, i.e., June 2015), it was not possible to retrieve this relationship for each value
of NDVI. We thus consider NDVI classes for the computation of σ0

dry,(i,j),NDVI, using intervals of
0.1 (0.1–0.2, 0.2–0.3, 0.3–0.4, etc.). In the present case, the NDVI over the studied agricultural site ranges
between a minimum of 0.1 and a maximum of 0.8.

Various experimental studies have shown that a linear relationship exists between radar signal
differences and changes in soil moisture [19,80], in the case of bare soils and vegetation-covered
surfaces. For a given NDVI, the radar signal difference, ∆σNDVI, can thus be written as:

∆σNDVI = α(NDVI)∆Mv (4)

where ∆Mv is the change in soil moisture between the date d and the date when the soil was at its
driest. The parameter α depends on the NDVI.

When the NDVI increases, the moisture sensitivity of the signal can be expected to decrease [22,81],
as shown in Figure 3. This means that the difference between surface backscattering at a given date d,
and that observed on the driest date, decreases as a function of NDVI.

The strongest variation in moisture, ∆Mvmax, corresponding to the difference between the driest
value (Mvmin) and the wettest conditions (Mvmax), can be written as:

∆Mvmax = Mvmax −Mvmin (5)

Under the conditions for which ∆Mvmax is defined, the maximum variation in backscattered
signal (for a fixed value of NDVI), can be written as:

∆σNDVI
max = α(NDVI)∆Mvmax = f(NDVI) (6)

The predicted values of backscattered signal difference, corresponding to S1 data, are shown as a
function of NDVI in Figure 4. The backscattering difference calculations were carried out for all cells
and all S1 acquisition dates (over a period of approximately two years).

∆σNDVI
max is modeled as [15]:

∆σNDVI
max = f(NDVI) = a NDVI + ∆σbare

max (7)

When NDVI = 0, ∆σNDVI
max = ∆σbare

max, which corresponds to the maximum value of backscattering
difference under the driest, bare-soil conditions.

In order to minimize the influence of noise when estimating f(NDVI), for each selected value
of NDVI, we excluded the upper 1% of the corresponding values of radar signal difference, as well
as all data points having a radar signal lower than −15 dB, since these are known to correspond to
water [46,82] (Figure 4).
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Δσ = Δσ , which corresponds to the maximum value of backscattering 

difference under the driest, bare-soil conditions. 

In order to minimize the influence of noise when estimating  f NDVI , for each selected value of 

NDVI, we excluded the upper 1% of the corresponding values of radar signal difference, as well as 

all data points having a radar signal lower than −15 dB, since these are known to correspond to water 

[46,82]. (Figure 4). 
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Figure 4. Illustration of the processed radar signal differences (dB) for all dates, with the driest radar
signals shown as a function of NDVI for all (100 m × 100 m) cells in the Urgell area. Each point
corresponds to a single radar signal difference ∆σNDVI

(i,j)
for a cell (i,j).

The soil moisture for each pixel can thus be retrieved using the following function:

Mv(i, j, NDVI, d) =
∆σNDVI

(i,j)

f(NDVI)
(Mvmax −Mvmin) + Mvmin(i, j, d) (8)

SMOS low-resolution moisture products (SMOS Level 3 daily product), corresponding to the
two-year period of S1 acquisitions, were used to estimate Mvmax and Mvmin, since the ground
measurements were recorded for a limited period of time. The mean S1 radar signal is estimated over
a SMOS pixel (40 km × 40 km). Figure 5 plots the relationship between this mean radar signal and the
SMOS moisture values, for dates that are common to both SMOS and S1 acquisitions. An approximately
linear relationship is found between the values of volumetric soil moisture and the backscattered
radar signal, up to Mvmax ≈ 0.32 m3/m3, following which it saturates with a constant radar signal
strength of approximately −9.5 dB. This result confirms the findings of several scientific studies, which
have revealed radar signal saturation for soil moisture levels in the range (0.3–0.35 m3/m3) [21,81].
From this result, when using method 1 we consider Mvmax = 0.32 m3/m3. As shown shown in Figure 5,
the value of Mvmin is taken to be ≈ 0.05 m3/m3.
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Figure 5. Mean S1 radar signal as a function of the SMOS soil moisture computed over a single SMOS
pixel (40 km × 40 km). The radar signal saturates beyond soil moisture levels of 0.32 m3/m3.

3.2. Method 2 Description

A second change detection approach is proposed in this paper. This is based on the difference
in backscattered signals observed on two consecutive days of Sentinel-1 data (12 days). Under
these conditions, the temporal change in vegetation cover is generally very small such that, for a
nearly constant value of roughness and constant vegetation conditions, the difference between the
backscattered signals depends mainly on the change in soil moisture [24].

When the value of the NDVI increases, the radar signals’ sensitivity to temporal variations in
moisture decreases. This means that the absolute value of the S1 radar signal difference decreases over
two consecutive days, provided that the NDVI remains approximately stable on these two dates. In the
present case, the latter parameter is taken to be the average of the NDVI values observed for the two
consecutive dates. Figure 6 shows this change (either negative or positive) in radar signal behavior
for successive S1 acquisitions, as a function of NDVI. δσNDVI

max is the maximum change in radar signal,
corresponding to the maximum value of soil moisture change δMvmax, for a given value of NDVI.
This can be modeled by the empirical function g:

δσNDVI
max = g(NDVI)

Figure 7 shows the difference in radar signal between two consecutive dates, as a function of NDVI,
for all cells (i,j) and all NDVI levels at the Urgell site. The radar signal difference (negative or positive)
between two adjacent days decreases in absolute value, when the NDVI increases. The negative or
positive radar signal differences, resulting from respectively increasing or decreasing values of soil
moisture, can be seen to follow a symmetrical, linear pattern.
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Figure 7. Illustration of the radar signal difference (dB) computed for two consecutive dates, as a
function of NDVI over the Urgell site. Each point corresponds to a single cell (i,j). For each value of
NDVI, the green points indicate the upper decile of the corresponding differences in radar signal.

In the case of the maximum value of soil moisture change δMvmax, the function g can be written as:

δσNDVI
max = g(NDVI) = b NDVI + δσbare

max (9)

where δσbare
max is the maximum radar signal difference between two consecutive measurements over

bare soil, associated with the highest value of moisture change.
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When the NDVI is equal to zero, δσNDVI
max is equal to δσbare

max, where b is the slope of the empirical
function g. This describes the decrease in radar signal sensitivity to soil moisture. We observe an
approximately symmetrical result in the computed values for the upper and lower limits. This is due
to the fact that for a given value of mean soil moisture, a very similar behavior results from either a
decrease or an increase in soil moisture, as these are linearly related to the radar signal.

In order to minimize the influence of noise arising from rare events, when estimating the function
g(NDVI), for each selected value of NDVI we exclude the upper 1% of the corresponding values.

For a given NDVI, the backscatter difference δσ(t1, t2), with t1 and t2 being adjacent S1 acquisition
dates, is assumed to be linearly correlated with the soil moisture difference. The soil moisture difference
δMv(t1, t2) for each cell (i,j), between successive acquisition dates t1 and t2, can be retrieved using the
following function:

Mv(i, j, t1) = H(δσ(t1, t2)) + Mv(i, j, t1) (10)

where H is equal to:

H(δσ(t, t + 1)) =
δσNDVI

g(NDVI)
(δMvmax)

From the ground measurement statistics, the maximum soil moisture difference between two
adjacent dates of Sentinel-1 data, δMvmax, is assumed to be equal to 0.15 m3/m3.

From a starting date t1, which in the present case is a date corresponding to a ground measurement,
an iterative calculation is used to determine the soil moisture for the following dates t1, t2, t3, . . . :

Mv(i, j, t2) = Mv(i, j, t1) + H(δσ(t1, t2))

Mv(i, j, t3) = Mv(i, j, t2) + H(δσ(t2, t3))

......

(11)

4. Results and Discussion

4.1. Results

Using ground measurements recorded in the Foradada field from May to August 2015, and from
February to October 2016, and in the Agramunt field from May to October 2015, and from July to
November 2016, the values of retrieved soil moisture were validated with Sentinel-1 data, using the
two approaches described in the previous section. We compare the satellite estimations with surface
moisture measurements obtained at a depth of 3 cm in the Foradada field, and at a depth of 5 cm in
the Agramunt field.

4.1.1. Method 1 Validation with Ground Measurements

Figure 8 compares the ground measurements with the values of soil moisture modeled using
method 1. The Root Mean Square (RMS) error in volumetric soil moisture is 0.087 m3/m3, with
a bias of approximately 0.026 m3/m3. For Agramunt field, the RMSE is 0.074 m3/m3, with a bias
of −0.019 m3/m3 and for Foradada field, the RMSE is 0.095 m3/m3, with a bias of 0.057 m3/m3.
The RMSE can be estimated more reliably by defining an unbiased RMSE [83]:

ubRMSE =

√
E{[(Mvretrieved − E[Mvretrieved])− (Mvinsitu − E[Mvinsitu])]

2} (12)

where E[·] is the expectation operator. The unbiased RMSE corresponding to the first method is
0.083 m3/m3, which is equal to 0.071 m3/m3 for Agramunt field, and to 0.076 m3/m3 for Foradada field.
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It can be seen that the errors are particularly high in the case of high moisture levels. This is
due to possible variations in saturation moisture levels, and/or to spatial variations in soil roughness
at the studied site. The statistical analysis should be improved by using a larger number of data
acquisitions from the S1 time series. This can be expected to improve calibration of the function f.
Figure 9 compares the soil moisture estimations with the ground measurements, as a function of time.
The soil moisture levels retrieved from the satellite data are well correlated with precipitation events:
a strong increase in soil moisture is observed, following each significant rainfall event.
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Figure 9. Temporal variations in ground measurements and S1 estimations of soil moisture at the
Agramunt site (a) and Foradada site (b).

4.1.2. Method 2 Validation with Ground Measurements

Figure 10 compares the ground measurements with the estimated values of soil moisture obtained
with method 2. From this regression, the RMSE in volumetric soil moisture is 0.059 m3/m3, and the
unbiased RMSE is 0.053 m3/m3. The RMSE is respectively equal to 0.048 m3/m3 and 0.066 m3/m3 for
Agramunt and Foradada field, with a bias of 0.028 m3/m3 and 0.026 m3/m3 separately. The unbiased
RMSE is 0.04 m3/m3 for Agramunt field and 0.06 m3/m3 for Foradada field. Figure 11 compares
the moisture estimations with ground measurements, as a function of time. The soil moisture values
retrieved from satellite data are also well correlated with the observed precipitation events, with the
soil moisture increasing after each significant rainfall event. As both method1 and method 2 have a
relatively high RMSE, the small number of ground measurements and the relatively small size of the
radar signal database could explain this high error.
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Figure 11. Temporal variations in ground measurements and S1 estimations of soil moisture at the
Agramunt site (a) and Foradada site (b), determined using method 2.

4.2. Discussion

The soil moisture at two study sites has been computed and mapped, using Equations (5)–(11)
and data produced by Sentinel-1 radar observations. Figure 12 provides two illustrations of moisture
mapping, using methods 1 and 2, for two cases: a very dry day (21 August 2015) and a wet day
(2 September 2015). All cells with NDVI < 0.1 or NDVI > 0.8, which are associated with water bodies
and forests respectively, are masked out. A high similarity is observed between the products obtained
with these two methods. We retrieve nearly the same spatial variations in moisture on the two analyzed
dates. The first dry case clearly reveals the irrigated fields inside dry area. The second wet case shows
high values of soil moisture over most of the observed area.

Figure 13 shows the difference between method 1 and method 2 for date 21 August 2015 and
date 2 September 2015. A limited difference is illustrated for the two dates between the two methods.
The highest differences correspond to high vegetation density covers. Figure 14 plots the variation in
RMSE between methods 1 and 2, as a function of NDVI. This is estimated with a sliding NDVI window,
with an NDVI width = 0.2, for NDVI values lying in the range between 0.1 and 0.8. The RMSE can
be seen to increase with NDVI. In practice, a high vegetation density can significantly attenuate the
signals, thus leading to correspondingly higher errors in soil moisture estimation. Areas with higher
vegetation cover are with higher uncertainties. Rapid vegetation change and soil properties such as
surface roughness will contribute to uncertainties as well. As change detection approaches, these two
methods are very applied operationally since the ground measurements are not prerequisite and that
they can be improved with the size of time series.
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Figure 14. RMS between methods 1 and 2, as a function of NDVI for date 21 August 2015 (a) and date
2 September 2015 (b).

5. Conclusions

In this study, two inversion approaches are developed for the interpretation of high repeat
frequency Sentinel-1 radar data in synergy with Sentinel-2 optical data. Change detection techniques in
proposed methodologies, are validated with ground measurements carried out in two demonstration
fields. The estimated (volumetric) RMS soil moisture errors are approximately 0.087 m3/m3 for method
1 and 0.059 m3/m3 for method 2. Both methods are found to predict soil moisture variations that are
well correlated with rainfall events. Method 1 models the backscattering difference with the driest
value, whereas method 2 is based on the difference between radar signals observed on two consecutive
dates, meaning that the radar signals are influenced by much smaller changes in vegetation. Method 2
is found to be more robust than method 1, since it does not require searching for the minimum value
in each pixel, which can introduce larger errors under extreme local conditions. The backscattered
radar contributions produced by the vegetation are small in the case of method 2. However, as the
retrieved value of soil moisture depends on the soil moisture determined at an earlier date with
this method, the iterative process can lead to the accumulation of errors. Comparing to other types
of inversion algorithms (e.g., NN or calibrated model inversion), both of these methods allow soil
moisture to be estimated, with no need for calibrations based on ground measurements, and have
led to the production of similar, 100 m resolution soil moisture maps of the study area. SMOS data is
used for limiting the maximum soil moisture retrieved by satellite. However, the interest of SMOS
(or SMAP or other low-resolution soil moisture sensor) is that it is available globally and needs no
local maintenance, which makes our method applicable globally in contrast with methods that require
in-situ data such as NN or calibrated model inversion.

These results demonstrate the potential of Sentinel-1 data for the retrieval of 100 m (or even
better) resolution soil moisture. Both methods can be applied to any vegetation-covered area for which
time-series of SAR and optical data have been recorded. In future, the statistical analysis should be
improved by using a larger number of data acquisitions from the S1 time series.

In the present study, data derived from the VV polarization was analyzed, since it is more sensitive
to soil conditions. However, Sentinel-1 provides data in both VV and VH polarization modes, and
it is planned to include VH polarization analyses in future studies, since this operational mode is
highly sensitive to the influence of vegetation, and can be used to discriminate between the effects
of vegetation.
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