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Photoelectron momentum distributions (PMDs) from atoms and molecules undergo qualitative
changes as laser parameters are varied. We present a model to interpret the shape of the PMDs. The
electron’s motion is guided by a fictitious particle in our model, clearly characterizing two distinct
dynamical behaviors: direct ionization and rescattering. As laser ellipticity is varied, our model
reproduces the bifurcation in the PMDs seen in experiments.

Subjecting atoms or molecules to intense laser fields
gives rise to a variety of non-perturbative and highly
nonlinear phenomena, such as high-harmonic generation
(HHG), non-sequential multiple ionization (NSMI), and
high-order above-threshold ionization (ATI). All these
phenomena are based on the key mechanism of attosec-
ond physics, namely the recollision [1–6]. A recollision
is obtained when (i) an electron tunnel-ionizes, (ii) freely
travels in the laser field, and then upon return to the ionic
core, (iii) either recombines into an atomic or molecular
bound state, or undergoes inelastic or elastic scattering.
Ionized electron rescattering has broad applications in
atomic and molecular physics. By experiencing a strong
ion-electron interaction, rescattered electrons probe the
atomic or molecular structure. This is the basis for imag-
ing techniques, e.g., laser-induced electron diffraction [7–
9] (LIED) for molecular imaging [10] and photoelectron
holography [11]. These techniques exploit the fact that
photoelectron momentum distributions (PMDs) encode
information on the structure of the atom or the molecule.
Understanding the photoelectron dynamics and identi-
fying the mechanisms responsible for the shape of the
PMDs is an essential step towards predicting and con-
trolling [12] these strong-field phenomena.

As laser parameters are varied, the shape of the PMDs
undergoes drastic changes. To assess these qualitative
changes in experiments [13, 14], the location of the peaks
of the PMDs are followed as a function of the laser ellip-
ticity. For low ellipticity, the shape of the PMD is a single
cloud peaked at the origin, as a signature of Coulomb fo-
cusing [15, 16]. For larger ellipticities, the cloud splits
into two lobes as the Coulomb focusing recedes. Along
the major polarization axis, the lobes’ peaks are shifted
from the origin, which is a signature of Coulomb asym-
metry [17, 18]. The hypothesis made in Ref. [13] is that
there is a bifurcation when varying the ellipticity of the
laser field. This bifurcation translates into a bifurcation
in the ATI spectrum –that is, the energy distribution of
the ionized electrons–, as observed in the upper panel of
Fig. 1. When the peak of the PMD is near the origin,
the maximum of the ATI spectrum is near zero energy.
When the PMD splits into two lobes, the energy at which
the ATI is maximum increases (mostly linearly) with in-
creasing ellipticity.

Both classical [19] and quantum [20] simulations suc-
cessfully reproduce the PMDs observed experimentally.

However, the underlying dynamical mechanism leading
to the drastic changes of shape of these distributions
for varying ellipticities is an open question. Standard
and widely used methods for the interpretation of the
PMDs, like the strong-field approximation [1, 2] (SFA)
and the Coulomb-perturbed SFA [17], fail to predict
these changes at low ellipticities, in particular the bi-
furcation observed in Ref. [13]. The SFA neglects the
Coulomb field after tunnel-ionization so it cannot capture
the Coulomb asymmetry, and the perturbative treatment
of the SFA is not sufficient to capture well Coulomb fo-
cusing. Our objective in this Letter is to explain the
PMDs and their qualitative changes in terms of micro-
scopic mechanisms given by the electron dynamics as
laser parameters are varied, using a method which fully
takes into account the Coulomb field.

We begin by building a reduced classical model which
reproduces the PMDs and which clearly exhibits the bi-
furcation in question. Analyzing this model in terms of
its trajectories allows us to uncover the mechanisms re-
sponsible for the bifurcation. In a nutshell, we demon-
strate that the bifurcation of the ATI spectrum is a con-
sequence of the depopulation of the Rydberg states of the
guiding fictitious particle after a critical ellipticity. The
simplicity of our reduced model allows us to obtain an
explicit expression for the critical ellipticity as a function
of the parameters of the laser and the atom. With our
model in hand, we can predict the shape of the PMDs,
thereby providing essential information for imaging tech-
niques.

Here, our framework is the three-step model. In step
one of the recollision process, the electron tunnel-ionizes
through the barrier induced by the laser field on the ionic
core potential [21, 22]. We consider an elliptically po-

larized electric field E(t) = f(t)E0/
√
ξ2 + 1[cos(ωt)x̂ +

ξ sin(ωt)ŷ], where E0, ω, f and ξ are the field ampli-
tude, frequency, envelope and polarization, respectively.
After tunnel-ionization, the initial conditions of the elec-
tron (r0,p0, t0) are determined by t0 and p⊥, the ioniza-
tion time and the initial transverse velocity, respectively.
The electron is initially at the outer edge of the potential
barrier, in the opposite direction of the electric field, i.e.,
r0 = −[IpE(t0)/2|E(t0)|2][1+(1−4|E(t0)|/I2

p)1/2], where
Ip is the ionization potential of the atom. The initial lon-
gitudinal velocity of the electron is zero, i.e., p0 = p⊥n̂,
for a unit vector n̂ such that n̂ · E(t0) = 0. In step
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FIG. 1: Upper panel: ATI spectrum as a function of ellip-
ticity, computed using CTMC from Hamiltonian (1). The
color scale indicates the probability distribution of photoelec-
tron energies. The grey curve is the prediction of our model.
Middle panel: The T-trajectory (see text) final momentum
P = Pxx̂+Pyŷ as a function of the laser ellipticity, scaled by
E0/ω. The solid colored curves and circles are computed us-
ing our model and Hamiltonian (1), respectively. The shaded
area is where the T-trajectory is rescattered in both our model
and Hamiltonian (1). The solid and dashed black curves are
computed using the SFA and the perturbed SFA, respectively
(the lower curves correspond to Px and the upper curves to
Py). Lower panels: The T-trajectory for ξ = 0.25 (left panel)
and ξ = 0.5 (right panel) shown for f = 1. The blue and
cyan solid curves are the T-trajectory of Hamiltonian (1) and
our model, respectively. The dashed cyan curve is the ficti-
tious particle trajectory guiding the T-trajectory. The black
crosses show the initial position of the T-trajectory. The axes
use atomic units unless stated otherwise.

two, the trajectory of the electron is obtained classically.
In classical trajectory Monte Carlo (CTMC) simulations,
ensembles of trajectories are integrated, with each one
weighted by the Ammosov-Delone-Krainov [22] (ADK)
ionization rate corresponding to the trajectory’s t0 and
p⊥. The trajectory with the highest weight corresponds
to the trajectory initiated with zero velocity (p⊥ = 0) at
the peak of the electric field, when the barrier width is the
thinnest. We refer to this trajectory as the T-trajectory.
Here, we take the ionization time of the T-trajectory to
be ωt0 = π. The final momentum of the T-trajectory
is denoted P = Pxx̂ + Pyŷ. We assume that when the

T-trajectory is not rescattered, the location of the peak
of the PMDs is at P.

In the SFA, the T-trajectory reaches the detector with-
out experiencing a recollision with the ionic core for all
laser polarizations, with a final momentum equal to its
initial drift momentum. In the middle panel of Fig. 1,
we show the final momentum of the T-trajectory, which

in the SFA is PSFA = ŷ(E0/ω)ξ/
√
ξ2 + 1. The SFA so-

lution does not exhibit a bifurcation for increasing ellip-
ticity, in contradiction with the ATI spectrum depicted
in the upper panel of Fig. 1 and the experimental re-
sults [13, 14].

In order to remedy this shortcoming, a Coulomb-
perturbed SFA [17] is used in Ref. [13]. The correc-
tion of the final electron momentum is given by ∆P =
−
∫∞
t0

rSFA(t)/|rSFA(t)|3dt, where rSFA(t) is the SFA elec-

tron trajectory. In the middle panel of Fig. 1, we see
that the Coulomb-corrected final momentum of the T-
trajectory, i.e., P ≈ PSFA + ∆P, does not exhibit a bi-
furcation for increasing ellipticity either, nor does it pre-
dict a change of dynamical behavior of the T-trajectory.
In addition, it was noted in Ref. [13] that this method
does not predict correctly the location of the center of the
PMDs for low ellipticities both in Px and in Py. Hence,
for low ellipticities and this range of laser parameters,
a perturbed SFA is not the adapted framework for in-
cluding the Coulomb interaction in order to assess the
PMDs.

Instead of perturbing the SFA, we consider here an
averaging method over a fast timescale [23] to describe
the photoelectron dynamics. In the dipole approximation
formulated in length gauge, the dynamics of the electron
interacting with an electric field and an ionic core is gov-
erned by Hamiltonian

H(r,p, t) =
|p|2

2
+ V (r) + r ·E(t), (1)

where atomic units (a.u.) are used unless stated oth-
erwise. Here, the atom is He, the field wavelength is
λ = 780 nm (ω = 0.0584 a.u.) and the laser intensity
is I = 8 × 1013 W · cm−2 (E0 = 0.048 a.u.). The field
envelope f consists of a two laser-cycle plateau followed
by a two laser-cycle linear ramp-down, unless stated oth-
erwise. The position of the electron is r, and its canoni-
cally conjugate momentum is p. We use a soft Coulomb
potential [24] V (r) = −(|r|2 + 1)−1/2 to describe the ion-
electron interaction.

Averaging Hamiltonian (1) over the fast timescale, set
by the period of the laser field, using Lie transform
perturbation theory [23] reveals that a fictitious parti-
cle guides the electron, as shown in the lower panels of
Fig. 1. We build a hierarchy of models using an itera-
tive method for computing the n-th order perturbative
expansion from the (n − 1)-th one with Lie transforms.
At the lowest order of the perturbative expansion, the
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FIG. 2: Polar plots of the PADs for ξ = 0.25 (left panel) and
ξ = 0.5 (right panel) computed using CTMC. The computa-
tion from our model (cyan) is in agreement with the one from
Hamiltonian (1) (blue). Also shown are computations using
the SFA (solid black line) and the perturbed SFA (dashed
black line).

electron phase space coordinates are of the form

r = rg + E(t)/ω2, (2a)

p = pg + A(t), (2b)

where (rg,pg) are the canonically conjugate variables of
the guiding fictitious particle, and A(t) is the vector po-
tential. Here, it is straightforward to see that pg is the
electron drift-momentum. The guiding fictitious particle
dynamics is governed by the averaged Hamiltonian

H(rg,pg) =
|pg|2

2
+ Veff(rg,pg). (3)

We notice that this Hamiltonian no longer depends on
time, as a result of averaging. Consequently, its energy
E = H(rg,pg) is conserved. At the lowest order in the
perturbative expansion, Veff(rg,pg) = V (rg). Thus, the
angular momentum of the guiding fictitious particle is
also conserved, and the system is integrable in the Liou-
ville sense. At higher order in the perturbative expan-
sion, the effective potential corresponds to the first non-
trivial order of the Kramers-Henneberger potential [25],
and depends on the laser parameters. In this case, the
angular momentum is no longer conserved, and as a con-
sequence, the averaged system is no longer integrable.
Our reduced model is valid for all positive energies and
when ω � ωg = (2|E|)3/2 for negative energy, where
ωg is the approximate frequency of the guiding fictitious
particle trajectory, provided the electron and the guiding
fictitious particle are outside the ionic core region. Here,
we focus on the lowest-order model.

In our model, after tunnel-ionization, the electron is
driven by a guiding fictitious particle. The initial con-
ditions of the fictitious particle guiding the electron are
determined by substituting the initial conditions of the
electron (r0,p0, t0) in Eqs. (2). Then, the guiding ficti-
tious particle dynamics is governed by Hamiltonian (3).
When the electric field is turned off, the vector poten-
tial vanishes and the electron coordinates, in particular

the momenta, become the same as that of the guiding
fictitious particle. Figure 2 shows photoelectron angular
distributions (PADs) computed using CTMC methods
from Hamiltonian (1), which is compared with CTMC
from the SFA, the perturbed SFA [17] and our model. In
the left panel, we observe excellent agreement between
the prediction of our model and the full system before
averaging. Moreover, since only direct electrons, i.e., the
ones that do not undergo rescattering, reach the detec-
tor in our model, it becomes possible to locate rescat-
tered electron contributions in the full system. For ex-
ample, we observe two peaks around π/3 and 4π/3 in the
CTMC curve that are absent in the PAD of our model,
corresponding to the rescattered electron contribution.
In the right panel, we observe that predictions of both
the perturbed SFA and our model are in agreement with
the full system. The shift of the true PADs compared
to the SFA prediction is known as the Coulomb asym-
metry [17, 18]. In order to understand this phenomenon
from a dynamical point of view, as well as the bifurcation
in the ATI spectrum, we apply our model to analyze the
T-trajectory.

The lower panels of Fig. 1 compare the T-trajectory
computed from Hamiltonian (1) and our model. The en-
ergy of the fictitious particle guiding the T-trajectory is
denoted ET . If ET > 0 (right panel), the guiding fictitious
particle trajectory is unbounded, and the T-trajectory
reaches the detector without recolliding, with final mo-
mentum P. However, the T-trajectory is deflected due to
the effective Coulomb interaction in the averaged Hamil-
tonian (3). The Coulomb asymmetry observed in Fig. 2
is the direct consequence of this deviation. If ET < 0 (left
panel), the fictitious particle populates Rydberg states of
Hamiltonian (3) after tunnel-ionization, i.e., the guiding
fictitious particle trajectory is bounded, and the electron
must return to the ionic core. During rescattering, the
energy of the guiding fictitious particle jumps to another
energy level [since the averaged model (3) is not valid
close to the ionic core], and then could ionize if its en-
ergy is positive after rescattering. In addition, we notice
that if the field envelope lasts only a few laser cycles,
i.e., less than the period of the Rydberg orbit, then the
electron is captured in a Rydberg state [26].

The energy of the fictitious particle ET depends on the
laser parameters, and in particular on the field elliptic-
ity, through the change of initial coordinates (2). There
exists a critical polarization ξc such that ET (ξc) = 0. An
approximation of the critical ellipticity is

ξc '
√

2ω2

E
3/2
0

(
1 + γ2/2

)−1/2
, (4)

where γ =
√
Ip/2Up is the Keldysh parameter [21]

and Up = E2
0/4ω

2 is the ponderomotive energy. We
have assumed that V (rg) ' −1/|rg|, ξ2

c � 1, and

r0 ' Ip
√
ξ2
c + 1/E0. If ξ < ξc then ET < 0, and the

T-trajectory is rescattered. In our model, the observ-
able P does not exist because the T-trajectory does not
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reach the detector. If ξ > ξc then ET > 0, and the T-
trajectory reaches the detector without recolliding. For
I = 8× 1013 W · cm−2, the critical field polarization ob-
tained from Eq. (4) is ξc ≈ 0.32, in agreement with upper
panel of Fig. 1. For I = 8 × 1014 W · cm−2, the criti-
cal field polarization obtained from Eq. (4) is ξc ≈ 0.08,
in agreement with experimental measurements [13]. For
I = 1.2× 1014 W · cm−2, a wavelength of 790 nm and an
Ar atom, it is given by ξc ≈ 0.27, also in agreement with
experimental measurements [14]. We notice that the ad
hoc criterion used in Ref. [13] based on the perturbed
SFA theory [17] does not provide a correct estimate of ξc
for intensities smaller than 5× 1014 W · cm−2.

The final momentum of the fictitious particle guid-
ing the T-trajectory is P =

√
2ET (x̂ cos Θ + ŷ sin Θ) for

ξ ≥ ξc, where Θ is the scattering angle of the ficti-
tious particle guiding the T-trajectory. Assuming that
V (rg) ' −1/|rg|, the scattering angle is Θ = π/2 +

sin−1(2ET `2 + 1)−1/2, where ` is the guiding fictitious
particle angular momentum. Close to the bifurcation, the
guiding fictitious particle energy is ET ≈ 4Upξc(ξ − ξc),
and we have

Px ≈ −
√

2ξc(E0/ω)(ξ − ξc)1/2,

Py ≈ 4(E0/ω)(ξ − ξc).

We notice that the bifurcation is observed for both Px

and Py. Consequently, we show that Coulomb focusing
breaks down when Coulomb asymmetry becomes signifi-
cant, as experimentally observed [13].

Two kinds of photoelectrons coexist –direct and rescat-
tered electrons– and contribute to the PMDs, and both
are essential for probing the ion-electron interaction.
However, the chaotic behavior of the rescattered electron
trajectories, as shown in high-energetic part of ATI spec-
tra [27], reduces their local contribution in the PMDs.
Figure 3 shows the scattering angle of the electron as
a function of the initial conditions (t0, p⊥), computed
from the trajectories of Hamiltonian (1). We observe
chaotic regions which are the signature of the highly non-
linear interactions driving the electrons during rescatter-
ing. Two main chaotic regions, centered at ωt0 = π and
ωt0 = 3π/2, are surrounded by initial conditions leading
to electrons trapped into Rydberg states. We refer to
this set of domains as the rescattering domain. In our
model, the rescattering domain is determined by E < 0,
and the black lines in Fig. 3 are its boundaries E = 0.
We notice the very good agreement between the region
E < 0 in our model and the set of trajectories which have
undergone rescattering or remained trapped in Rydberg
states. In the upper panel of Fig. 3, we observe that for
ξ < ξc, the initial conditions of the T-trajectory belong to
the rescattering domain. Hence, even if the rescattered
trajectories are heavily weighted by the ADK ionization
rate, their local contribution in the PMDs is relatively
weak. Consequently, the electrons that contribute the
most are the ones close to the boundaries of the rescat-
tering domain, corresponding to electrons reaching the
detector with energy E = 0. Therefore, the maximum of

FIG. 3: Scattering angle of the electron of Hamiltonian (1)
as a function of the initial conditions (t0, p⊥), for ξ = 0.25
(upper panel) and ξ = 0.5 (lower panel), for a field envelope
f with an eight laser-cycle plateau and a two laser-cycle ramp-
down. The final electron energy is negative in grey areas. The
black lines show where the guiding fictitious particle energy
is E = 0 according to our model (3). The crosses show the
initial conditions of the T-trajectory. The momentum p⊥ is
in atomic units.

the ATI spectrum is at zero energy. As the laser param-
eters are varied, particularly the ellipticity, the rescatter-
ing domain moves in the plane of initial conditions after
tunnel-ionization. For ξ > ξc, the T-trajectory no longer
belongs to the rescattering domain, as seen in the bottom
panel of Fig. 3, so the ATI spectrum is peaked at ET and
the PMDs are dominated by direct electrons. Thus, we
predict that the peak of the ATI spectrum is located at
E = max{0, ET }, as shown in the upper panel of Fig. 1.
We notice that when ξ increases further away from ξc, the
rescattering domain moves to regions of initial conditions
with very low ADK ionization rate. Consequently, the
contribution of rescattered electrons and electrons with
energy E = 0 in the PMDs becomes very weak. Hence,
we observe a lack of electrons in the neighborhood of the
origin of the PMDs.

In summary, we determined the microscopic mecha-
nisms responsible for the shape of PMDs from the analy-
sis of Hamiltonian (1), and in particular, we showed that
the change of shape observed in Ref. [13, 14] as ellipticity
is varied corresponds to a bifurcation. Our approach is
based on a fictitious particle guiding the photoelectron
motion. This model provides several predictions on the
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photoelectron motion and the shape of the PMDs, and
allows the control of the ratio between the yield of rescat-
tered and direct electrons, elements which are essential
for imaging techniques.
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Villeneuve, and P. B. Corkum, J. Phys. B: At. Mol.
Opt. Phys. 38, 1923 (2005).

[17] S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and
N. I. Shvetsov-Shilovski, Phys. Rev. Lett. 93, 233002
(2004).

[18] A. D. Bandrauk and S. Chelkowski, Phys. Rev. Lett. 84,
3562 (2000).

[19] M. Li, Y. Liu, H. Liu, Q. Ning, L. Fu, J. Liu, Y. Deng,
C. Wu, L.-Y. Peng, and Q. Gong, Phys. Rev. Lett. 111,
023006 (2013).

[20] M. Li, J.-W. Geng, H. Liu, Y. Deng, C. Wu, L.-Y. Peng,
Q. Gong, and Y. Liu, Phys. Rev. Lett. 112, 113002
(2014).

[21] L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
[22] M. V. Ammosov, N. B. Delone, and V. P. Krainov, Sov.

Phys. JETP 64, 1191 (1986).
[23] J. R. Cary and R. G. Littlejohn, Ann. of Phys. 151, 1

(1983).
[24] J. Javanainen, J. H. Eberly, and Q. Su, Phys. Rev. A

38, 3430 (1988).
[25] R. Bhatt, B. Piraux, and K. Burnett, Phys. Rev. A 37,

98 (1988).
[26] T. Nubbemeyer, K. Gorling, A. Saenz, U. Eichmann, and

W. Sandner, Phys. Rev. Lett. 101, 233001 (2008).
[27] B. Walker, B. Sheehy, K. C. Kulander, and L. F. Di-

Mauro, Phys. Rev. Lett. 77, 5031 (1996).


