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Unscented Kalman Filter on Lie Groups for Visual
Inertial Odometry
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*MINES ParisTech, PSL Research University, Centre for Robotics, 60 Boulevard Saint-Michel, 75006 Paris, France
tSafran Tech, Groupe Safran, Rue des Jeunes Bois-Chateaufort, 78772, Magny Les Hameaux Cedex, France

Abstract—Fusing visual information with inertial measure-
ments for state estimation has aroused major interests in recent
years. However, combining a robust estimation with computa-
tional efficiency remains challenging, specifically for low-cost
aerial vehicles in which the quality of the sensors and the
processor power are constrained by size, weight and cost. In this
paper, we present an innovative filter for stereo visual inertial
odometry building on: 7) the recently introduced stereo multi-
state constraint Kalman filter; i7) the invariant filtering theory;
and ii7) the unscented Kalman filter (UKF) on Lie groups. Our
solution combines accuracy, robustness and versatility of the
UKF. We then compare our approach to state-of-art solutions
in terms of accuracy, robustness and computational complexity
on the EuRoC dataset and a challenging MAV outdoor dataset.

Index Terms—Lie groups, unscented Kalman filter, visual
inertial odometry, aerial vehicle, localization

I. INTRODUCTION

Fusion of visual and inertial measurements, albeit a well
established field of research, is receiving increasing attention
owing to the development of highly maneuvering autonomous
robots able to solve tasks such as mapping or search and
rescue [1]. In such scenarios, Micro Aerial Vehicles (MAVs)
have to navigate in cluttered and GPS-denied environments
that pose challenges to Visual Inertial Odometry (VIO)
algorithms both for the frontend image processor and the
estimation itself, with, e.g., highly varying lighting condi-
tions and vehicle attitude. The visual inertial system, which
consists of an Inertial Measurement Unit (IMU) associated
with a camera and equips most of MAVs, constitutes an
attractive sensor suite both for localization and environment
awareness, due to its low-cost and reduced lightweight.
Indeed, the IMU measures noisy biased accelerations and
rotational velocities at high sampling time (100 —200 Hz)
whereas camera provides rich information for visual tracking
at lower rate (20 Hz).

In this paper, we tackle the problem of fusing IMU signals
with stereo vision, since adopting a stereo configuration
provides higher robustness compared to the popular monoc-
ular configuration. We propose a novel algorithm whose
implementation mainly builds on the very recent Stereo
Multi-State Constraint Kalman Filter (S-MSCKF) [2]. The
difference with the latter paper is twofold.

1) We benefit from the Unscented Kalman Filter (UKF)
methodology as compared to the standard Extended

Kalman Filter (EKF). Since the unscented transform
spares the computation of Jacobians, the algorithm is
versatile and allows fast prototyping in the presence
variations in the model (e.g., the camera model).
2) We build upon the theory of the Unscented Kalman
Filter on Lie Groups (UKF-LG) [3], and leverage the
Lie group structure of the SLAM problem introduced
in [4].
We demonstrate that the proposed stereo VIO filter is able
to achieve similar or even higher accuracy than state-of-art
solutions on two distinct datasets with high efficiency.

A. Links with Previous Literature and Contributions

Over the last decades, tremendous progresses have been
achieved in visual localization frameworks, whose estima-
tion and robustness can be improved by tightly coupling
visual and inertial informations, which is the major focus
of this paper. Most approaches combine data using filtering
based solutions [2,5]-[10], or optimization/bundle adjustment
techniques, e.g., [11]-[13]. Optimization based methods are
more efficient but generally come with higher computational
demands, and filtering approaches are well suited to real time
applications. One drawback of conventional VIO filter-based
algorithms are their inconsistency [5,14], which is resolved
by using the observability constrained approach [8,10,15,16].
Among popular solutions, the MSCKF and its state-of-the-
art variants [2,8,9] offer an efficient compromise between
accuracy and computational complexity.

Recently, manifold and matrix Lie group representations
of the state variables have drawn increasing attention for
computer vision and robotics applications [11,17,18]. With
the natural capability for associating uncertainty to rigid body
motion [19], matrix Lie group representations have been
successfully utilized to design optimization or filter-based
methods. Additionally, it has been shown that, by expressing
the EKF estimation error directly on the Lie group and
leveraging an Invariant-EKF, consistency guarantees can be
obtained without ad hoc remedies both for wheel odometry
SLAM [4,20] and VIO [6] filtering algorithms. Specifically
for VIO purpose, in [7], the authors devise an UKF that takes
advantage of the Lie group structure of the robot’s (quadrotor)
pose SE(3), and uses a probability distribution directly
defined on the group (the distributions in [21]) to generate
the sigma points, which is akin to the general unscented



Kalman filtering on manifolds of [22], that contrasts with
the generation of the sigma points directly in the Lie algebra
we proposed in [3].

In this paper, we propose an UKF-based stereo VIO
solution that leverages the Lie group structure of the state
space SE(3)24,. Our main contributions are:

« an embedding of the state and the uncertainties into
a matrix Lie group which additionally considers the
unknown IMU to camera transformation;

o the derivation of a Kalman filter that combines an
(Invariant-)EKF propagation for computational effi-
ciency and an UKF-LG update, in which our choice
is motivated by the UKF superiority performance com-
pared with the EKF for many non-linear problems, and
its ease of implementation for the practitioner, allowing
him to readily handle additional measurements (such as
GPS measurements) or variations in the output model
(the camera model) since the update is derivative free;

o since the computational demands of a standard UKF
update is generally greater than those of the EKEF,
we provide: ¢) a computationally efficient strategy for
computing our UKF-LG update in the formalism of an
(Invariant-)EKF update, inspired by [16,23]; and ) a
closed-form expression for alternatively performing the
update in a full (Invariant-)EKF manner;

o the publicly available C++/ROS source code used
for this paper, available at https://github.com/
mbrossar/msckf_vio.git. It uses building blocks
from the code of [2].

Finally, the accuracy and computational complexity of the
proposed filter is validated and compared with state-of-the-art
VIO solutions on two challenging real-world MAV datasets
[2,24].

B. Paper’s Organization

Section II formulates the filtering problem. Section III
contains mathematical preliminaries on matrix Lie groups
and unscented Kalman filtering on Lie groups. Section IV

Fig. 1. The coordinate systems that are used in the paper. The IMU pose
(R, x) maps vectors expressed in the IMU frame to the global frame (G).
The transformations TY¢ and TR pass, respectively, from the IMU frame
to the left camera (C'p) frame, and from the left camera frame to the right
camera (C'r) frame. The pose Tl.C consists of the position of Cp, in the
global frame and the rotation mapping vectors expressed in the C'y, frame to
vectors expressed in the global frame. Unknown 3D features p? (expressed
in the global frame) are tracked across a stereo camera system.

describes the proposed filter for stereo VIO. Section V
illustrates the performances of the proposed filter based on
two publicly available datasets, and Section VI concludes the

paper.
II. PROBLEM MODELING

We define in this section the kynodynamic model for flying
devices equipped with an IMU where N past cloned camera
poses make up the state [9]. We then detail the stereo visual
measurement model, and we finally pose the filtering problem
we seek to address.

A. Variables of Interest and Dynamical Model

Let us consider an aerial body navigating on flat earth
equipped with an IMU. The dynamics of the system read

R=R(w—b,+ny,),
v=R(a—ba+n,)+g

IMU-related state X=Vv )
bw = nbw
ba = Np,
T =0
camera-related state . o 2)
T; =0, i=1,...,N

where the state we want to estimate consists of the current
orientation R € SO(3) of the body frame (referred to as the
IMU frame), that is, the rotation matrix that maps the IMU
frame to the global frame, velocity v € R3, position x € R3,
IMU biases b, € R? and b, € R3, as well as the relative
transformation between the IMU frame and the left camera
frame T/¢ € SE(3) and an arbitrary number of N recorded
left camera poses TS € SFE(3), i = 1,..., N. Finally, (w)x
denotes the skew symmetric matrix associated with the cross
product with vector w € R3, and the various white Gaussian
noises can be stacked as

3)

These equations model the dynamics of small MAVs such as
quadrotors where the IMU measurements w and a in (1) are
considered as noisy and biased inputs of the system.

n:[n n

B. Measurement Model

In addition to the IMU measurements used as inputs for the
dynamics, the vehicle observes and tracks static landmarks in
the global frame from a calibrated stereo camera. A landmark
p’ € R3 is observed through both the left and right cameras

corresponding to the recorded ¢-th pose as
y! =h(T¢,p’) +ny € R, )

where the non-linear stereo measurement model A(:,-) is
given as [2]

z
i1 0
' Yr
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in which p; = [z Zz]T and p, = [#+ ur zr]T refer
to the landmark coordinates expressed in the left and in
the right camera frames (ic., [pf 1]7 = T !pT 1]"
and [p? 1]" = (TTLR)f1 [p7 1]7). Note that the stereo
cameras have different poses at the same time instance,
represented as TS for the left camera and T TLE for the
right camera, although the state only contains the pose of
the left camera, since using the assumed known extrinsic
parameters TR € SF(3) leads to an expression for the
pose of the right camera, see Figure 1.

C. Estimation/Fusion Problem

We would like to compute the probability distribution
of the system’s state (R,x,V,b,,ba, TIC, Tf, ... ,T%)
defined through an initial Gaussian prior and the probabilistic
evolution model (1)-(2), conditionally on the measurements
of the form (4). This is the standard probabilistic formulation
of the (Stereo-)MSCKEF [9].

III. MATHEMATICAL PRELIMINARIES

In this section we provide the reader with the bare mini-
mum about matrix Lie groups and the UKF on Lie Groups
(UKF-LG) introduced in [3].

A. Matrix Lie Groups

A matrix Lie group G € RV*N is a subset of square
invertible matrices such that the following properties hold:

IcG;, VX eG,X 1 e@; ¥X1,Xs € G, X1 X2 €G. (6)

Locally about the identity matrix I, the group G can be
identified with an Euclidean space R? using the matrix
exponential map exp,,(-), where ¢ = dim G. Indeed, to
any £ € RY one can associate a matrix £" of the tangent
space of G at I, called the Lie algebra g. We then define the
exponential map exp, : R? — G for Lie groups as

expg (€) = exp,, (£"), (7)

Locally, it is a bijection, and one can define the Lie logarithm
map log, : G — R? as the exponential inverse, leading to

logg; (expg (§)) = €. (8)
B. Uncertainty on Lie Groups

To define random variables on Lie groups, we cannot apply
the usual approach of additive noise for X € G as G is
not a vector space. In contrast, we define the probability
distribution X ~ AN (X, P) for the random variable X € G
as [17,19]

X = expg (€)X, € ~ N (0,P), ©)

where N (-, ) is the classical Gaussian distribution in Eu-
clidean space R? and P € R?%*Y is a covariance matrix. In
(9), the original Gaussian £ of the Lie algebra is moved over
by right multiplication to be centered at X € G, hence the
letter R which stands for “right”, this type of uncertainty
being also referred to as right-equivariant [3]. In (9), X may
represent a large, noise-free and deterministic value, whereas
P is the covariance of the small, noisy perturbation £. We

stress that we have defined this probability density function
directly in the vector space R? such that Ng(-,-) is not
Gaussian distribution.

Remark 1: one can similarly define the distribution X ~
N1 (X, P) for left multiplication of X, as

X =Xexpg (§), £~ N(0,P).

The advantages of using (9) for SLAM, instead of (10) or a
standard Euclidean error can be found in [4,6].

Remark 2: defining random Gaussians on Lie groups
through (9) [or (10)] is advocated notably in [17,19], and
the corresponding distribution is sometimes referred to as
concentrated Gaussian on Lie groups, see [25]. An alternative
approach, introduced to our best knowledge in [21], and used
in [26], consists in defining a (Gaussian) density directly on
the group using the Haar measure. In the latter case, the
group needs be unimodular, but such a requirement is in fact
unnecessary to define the random variable (9).

(10)

C. Unscented Kalman Filtering on Lie Groups

By representing the state error as a variable £ of the Lie
algebra, we can build two alternative unscented filters for any
state living in Lie groups following the methodology recently
introduced in [3]. Let us consider a discrete time dynamical
system of the form

Xn+1 - f (Xnv un,wn), (11)

where the state X,, lives in G, u,, is a known input variable
and w,, ~ N (0,Q,,) is a white Gaussian noise, associated
with generic discrete measurements of the form

Yn="n (Xnavn) ) (12)

where v,, ~ N (0,R,,) is a white Gaussian noise. Essen-
tially two different UKFs follow from the above uncertainty
representation.

1) Right-UKF-LG: the state is modeled as X, ~
/\/'R(Xn,Pn), that is, using the representation (9) of the
uncertainties. The mean state is thus encoded in X,, and
dispersion in & ~ N (0, P,,). The sigma points are generated
based on the £ variables, and mapped to the group through
the model (9). Note that, this is in slight contrast with [7,26],
which generate sigma points through a distribution defined
directly on the group. The filter consists of two steps along
the lines of the conventional UKF: propagation and update,
and compute estimates X,, and P,, at each n.

2) Left-UKF-LG: the state is alternatively modeled as
X, ~ Np(X,,P,), that is, using the left-equivariant for-
mulation (10) of the uncertainties.

D. Unscented Based Inferred Jacobian for UKF-LG Update

In [23], the authors interpret the conventional UKF as a
linear regression Kalman filter and show how the propagation
and update steps in UKF can be performed in a similar
fashion as an EKF, which can save execution time [16].
The method is here straightforwardly adapted for the case
of the Right-UKF-LG update. Within this interpretation, the



filter seeks to find the optimal linear approximation to the
nonlinear function

y = h(expg(§)X) = g(§)
~H{+y

13)
(14)

given a weighted discrete representation (the so-called sigma-
points) of the distribution & ~ A (0, P). The objective is thus
to find the regression matrix H and vector y that minimize
the linearization error e = y — (H& + ¥). The optimal linear
regression matrix is given as [23]

H=P, P! (15)

where Py is the cross-correlation between y and &, and y is
the estimated mean of y, both computed from the unscented
transform of the UKF-LG. The numerically inferred Jacobian
H serves as a linear approximation toy —y = ¢g(£€) —y and
can then be used for the Right-EKF-LG update.

E. The Special Euclidean Group SFE24,(3)

As early noticed in [27], the SLAM problem bears a natural
Lie group structure, through the group SE;4,(3) for wheel
odometry SLAM, that is properly introduced and leveraged
in [4], to resolve some well-known consistency issues of EKF
based SLAM. Some other properties have also recently been
proved in [20]. Any matrix X € SFE5;,(3) is defined as

x=|Rvxpiopy (16)
021 px3 Iproxpra
The uncertainties, defined as £ = [512;53{,{5;{1 gp]T €

R*3P, are mapped to the Lie algebra through the transfor-
mation £ — &/ defined as

6/\ _ |:(£R)>< Sv €x £p1

17
02+p>< 5+p ( )

€PP:| .

The closed-form expression for the exponential map is given
as

XD, (0 (§) =L+ 6"+ TR Dy
18
Jénl — sin (lgwl) grs
sl

IV. PROPOSED FILTERS

In this section, we propose the Stereo-UKF-LG (S-UKF-
LG), a VIO filtering solution which embeds the state in
a specially defined and high dimensional Lie group. Our
solution operates in two steps, as for any Kalman filter-based
algorithm:

e a propagation step that propagates both the mean state
and the error covariance, where the matrix covariance
is computed with (Invariant-)EKF linearization [17] for
computational efficiency.

o an update step that considers the visual information
obtained from the feature tracking, in which we used
as a basis the UKF-LG [3]. We additionally provide
Jacobian expressions to alternatively perform (Invariant-
)EKF update.

A. State and Error Embedding on Lie Groups

Based on Section III-E, we embed the state into a high
dimensional Lie group, by letting X € G be the matrix that
represents:

o the IMU variables R, v and x through X! € SE»(3), a
group obtained by letting p = 0 in (16);

o the IMU bias x? = [bZ b7]" € RS;

o the IMU to left camera transformation T/ ¢ SE(3);

o the N left camera poses TS € SE(3), i =1,...,N.

The dispersion on the state

lexbaTlcaTlca"'vTC éXNNR(X,€)7

where £ stands for “identifiable to” and (-) for estimated
mean value, is partitioned into

E=[r & & & & &ic &

19)

ggN}T,

(20)

and encoded using the right uncertainty (9), i.e., the uncer-
tainty representation is defined as

expsr, o) ([6h €7 €1]7) X!
2 ) [€0 €l 4 x®

expg () (€10) T'C

expgps) (€c,) TF,i=1,...,N

exp (§) X 2n

and we define for convenience the IMU error as &; =
(¢4 €7 ¢7 ¢Z ¢7]". Any unknown feature p’, albeit not
explicitly considered in the state, appear in the measurement
(4) and consequently we have to define an error on this
feature. In the following and inspired from Section III-E, we
propose to identify each (T{,p’) as a element of the Lie
group SE3(3) [4]. Note that, error £, on landmark j then
differs from the standard Euclidean error.

Remark 3: using another camera pose than T{ does not
influence the performances of the filter in our experiments.

B. Propagation Step

Let us now present the proposed filter’s mechanics. To deal
with discrete time measurement from the IMU, we essentially
proceed along the lines of [9]. We apply a 4-th order Runge-
Kutta numerical integration of the model dynamic (1) to
propagate the estimated state X. To propagate the uncertainty
of the state, let us consider the dynamic of the IMU linearized
error as

&1 =F& + Gn, (22)
where
0 00 O -R
(g, 00 -R —(v),R
F=| 0 10 0 —(x),R|, (23)
0 00 O 0
0 00 O 0



0 R 00
R v),,R 00
G=|0 (x),R 0 0], (24)
0 0 IO
0 0 01

and first compute the discrete time state transition matrix

tn41
P, =P (tt1,tn) = exp,, </ . F(T)dT) (25)
tn

and discrete time noise covariance matrix

tnt1
Q, - / & (tni1,7) GQGT® (1,1, 7) dr.  (26)
t

The covariance matrix from ¢,, to ¢, is propagated as the
combination of partitioned covariance matrix as follows. The
propagated covariance of the IMU state becomes

Pl =®,P/®, +Q,, 27)
and the full uncertainty propagation can be computed as
Pl &, PC
Ppi= {PCITI;T pcc
When new images are received, the state should be aug-

mented with the new camera state. The new augmented
covariance matrix becomes

T
1 I
e [l

To obtain the expression of J in (29), let us denote T €
SE(3) as the sub-matrix of x! that contain only the IMU

(28)

(29)

pose (R,x) with &x = [¢% &7 ]T its corresponding uncer-
tainties and thus write the current camera pose as
TC = TT'¢

= expgp(s) (€1) Texpgp (&1c) TC

= €XPgE(3) (€T) C€XPsE(3) (Adt&rc) TT'¢

~ expgp(s) (€o) T,
in which T¢ = TT!¢ and ¢ ~ &1+ Adg &1¢ after using a
first order BCH approximation, and where Ad- is the adjoint
notation of SFE(3), which finally leads to

I 0 0 0346 R 0 0 Osx6n
0 0 I O34 (X)XR 0 R Osyxen

C. Update Step in the MSCKF Methodology

Let us first consider the observation of a single feature
p’, in which the estimated unbiased feature position >p7 is
computed using least squares estimate based on the current
estimated camera poses [9]. Linearizing the measurement
model at the obtained estimates X, I-Spj, the residual of the
measurement is approximated as

= UKFH{g + Hiﬂfpj + ng,

(30)

J= 31)

_ UKF_j

) =y] y! (32)

where V$FHY, H., and UKFy7 are computed in Section IV-D
and are not the usual Jacobians appearing in [9] (beyond the
fact they are computed using the unscented transform) since
we use here alternative state errors £, &€, related to the Lie

group structure we have endowed the state space with. By
stacking multiple observations of the same feature p’, we
then dispose of

vl =yl Uyl S UTHIE L Hpig +0d. (33)

Then, along the lines of [9], to eliminate the landmarks from
the residual, measurements are projected onto the null space
V of H;j, ie.,

rf; —vTpi =T UKFHjé- +VvTp = Hgﬁ =+ ng. (34)

Based on (34) and after stacking residual and Jacobians for
multiple landmarks in, respectively, r, and H,, the update
step is carried out by first computing S = R + H,P,,HY
and the gain matrix K = P,,HZ'/S. We then compute the
innovation f to update the mean state as [3,17]

é: Kr,,
xt =exp(§) X,

which is an update that is consistent with our uncertainties
(21) defined using the right multiplication based representa-
tion (9). The associated covariance matrix writes

P/ =P,(I1-KH,).

(35)
(36)

(37

The filter concludes the update step with a possible marginal-
ization of camera poses.

D. Proposed Lie Group Based Update Using the Unscented
Transform of UKF-LG

In this sectiqn, we describe the computation of UKFH{ s
prj and YKFy? in (32) following Section III-D.

1) Computation of H; : since the covariance of &}, is un-
known, we can not apply UKF-LG update and consequently
we compute H;_j in closed-form, as Hllaj =0, and for: > 1,

as
i ] RiL ’
Hpj = Jz [ER?%T] ’

where RE and RZ are the orientations of the i-th left and
right cameras, and where

(38)

1z, 0 —z/z}

; 0 1/z —u/z?

J l
Ji = 1/z, 0 —x,./z2 (39)

0 1/z. —y,/z2
is the intermediate Jacobian after applying the chain rule in
(4). We stress that even if (38) is the same expression as
the Jacobians appearing in [9], they are associated to the
alternative state errors &p;.

2) Computation of UKFHg and UKFyg : we apply the
UKF-LG [3] to numerically infer the Jacobian UKFH{ and
estimated measurement UKFy,]i (see Section III-D). This com-
putation allows us to then project the residual in (34) and
can be computed efficiently as follow. First, the filter stacks
multiple observations w.r.t. the same camera pose in a vector
yi that can be written in the form y; = g; (€c¢,,&c,), when
noise and landmark errors are marginalized, as follow. Since



yi is the concatenation of (4) for multiple landmarks, it is
sufficient to write y] as a function of &, and &¢; only. Let
us first write our alternative state error as

expso) (€re,) = Re,RE, (40)
€xe, = Ro,RExe, — %o, (41)
&pi = R, RE P! — B/, (42)

and consider the measurement function of the stereo camera
such that

y; =R, (P = xc)),

where [(-) is the projection function. After inserting the
uncertainties (40)-(42) in (43), we obtain

(43)

y; = Z(Ra (GXPSO(:;) (chi ) €XPso(3) (—ERc1 ) LSPj

_Rgl (XC'L + gxci ))7

which depends on {r. and £c, = [érc, &xc, | only, such
that we can write y’ and by extension y* as function of &g,
and &¢, only. Following then [16], we sample only sigma-
points from variables the observations depend on, i.e., from
the rotational part of §c, and &¢,, such that the complexity
remains dominated by (37) and comparable to the S-MSCKEF,
which is illustrated in Section V.

(44)

E. Alternative Invariant-EKF Update

Albeit the UKF-LG update is computed efficiently, an
Invariant-EKF update remains slightly more computationally
efficient and can be adopted for computationally restricted
platforms. Thus, as an alternative, we provide the closed-form
expression for an Invariant-EKF update, yielding a stereo
extension of [6], and where moreover the IMU to camera
transformation is also estimated. The mean y! = (T¢, p’)
is alternatively computed with estimated state, H;j in (38)

and H/ as

B/ =3/ [0 B, 0 H, 0], (45)
where Jg is computed in (39), for ¢ > 1,
[R5, 0
H] — (_1 X , 46
=Rt o o
. RE (Spi)  — (RE)T
and, for i = 1,
« 0 - (RD)”
H] — - _1 48
Ch C; [O . (R{%)T ( )

The rest of the update follows Section I'V-C.

F. Filter Update Mechanism and Image Processing Frontend

Our implementation builds upon [2], and preserves its
original methodology both for the filter update mechanism,
marginalization of camera poses, outlier removal and the
image processing frontend.

’ Il OKVIS Il VINS-MONO S-MSCKF S-UKF-LG Il S-IEKF

0 ‘ il |I‘ il \“ ‘

Fig. 2. Root Mean Square Error of the proposed S-UKF-LG and S-IEKF
compared to various methods on the EuRoC dataset [24]. Statistics are
averaged over ten runs on each sequence.
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V. EXPERIMENTAL RESULTS

In this section, we compare the performances of the
proposed S-UKF-LG and its full (Invariant-)EKF variant,
that we call S-IEKF, with state-of-the-art VIO algorithms
including S-MSCKF [2], OKVIS (stereo-optimization) [12]
and VINS-MONO (monocular-optimization) [13], i.e., with
different combinations of monocular, stereo, filter-based and
optimization-based solutions. We first evaluate the algorithms
on the EuRoC dataset [24], and then on a runway environ-
ment [2] with high speed flights. In both of the experiments,
VINS-MONO considers only the images from the left camera
and has its loop closure functionality disabled. The three
filters (S-MSCKF, S-UKF-LG and S-IEKF) use the same
frontend and the same parameters provided from the S-
MSCKF github repository, with N = 20 camera poses.
Finally, we provide to each algorithms the off-line estimating
extrinsic parameters between the IMU and camera frames.

Summary of the results can be found in Figure 2 and Figure
4. They reveal good performances of our proposed S-UKF-
LG, which favorably compares to its conventional Stereo-
MSCKEF counterpart in terms of RMSE both on position and
orientation. Note that, optimization based OKVIS achieves
best estimation accuracy, but at the cost of extended CPU
load.

A. EuRoC Dataset

The EuRoC [24] dataset includes synchronized 20 Hz
stereo images and 200 Hz IMU messages collected on a MAV.
The dataset contains sequences of flights with different level
of flight dynamics. Figure 2 shows the Root Mean Square
Error (RMSE) and Figure 3 the average CPU load of the
different algorithms. As in [2], the filter-based methods do
not work properly on vV2_03_difficult due to their
same KLT optical flow algorithm. In terms of accuracy,
the filters compete with the stereo-optimization approach
OKVIS, whereas the results of VINS-MONO are affected
by its monocular camera frontend. The S-UKF-LG and S-
IEKF compare favorably to the recent S-MSCKF. Since
filters use the same frontend, differences come from the
filters’ backends. In terms of computational complexity, filter-
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Fig. 3. Average CPU load of the proposed S-UKF-LG and S-IEKF compared
to various methods on the EuRoC dataset [24].
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based solutions reclaims clearly less computational resources
than optimization-based methods, in which 80 % of the
computation is caused by the frontend including feature
detection, tracking and matching, on Precision Tower 7910
armed with CPU E5-2630 v4 2.20 Hz. The filters themselves
take about 10 % of one core when the camera rate is set at
20 Hz.

B. Fast Flight Dataset

To further test the accuracy and the robustness of the
proposed S-UKF-LG, the algorithms are evaluated on four
outdoor flight datasets with different top speeds of 5m/s,
10m/s, 15m/s, and 17.5m/s [2]. During each sequence,
the quadrotor goes 300 m straight and returns to the starting
point. The configuration includes two cameras running at
40Hz and one IMU running at 200 Hz. Figure 4 compares
the accuracy of the different VIO solutions on the fast flight
datasets. The accuracy is evaluated by computing the RMSE
of estimates w.r.t. GPS positions only in the zy directions
after making corrections on both time and yaw offsets. In
this experiment, OKVIS obtains the best results in terms of
accuracy, while VINS-MONO generally obtains an accurate
estimation with higher variance than than the other methods
which increase its RMSE. The S-UKF-LG appears to be
slightly more robust than S-MSCKF and S-IEKF. From
both experiments, it can be observed that the three filters
achieve the lowest CPU usage while maintaining comparable
accuracy regarding optimization solutions. However, com-
pared to the experiments with the EuRoC dataset, the image
processing frontend spends more computational effort, since
the image frequency and resolution are higher, and the fast
flight requires more detections of new features.

VI. CONCLUSION

In this paper, we introduced a novel filter-based stereo
visual inertial state estimation algorithm that is a stereo multi-
state constraint Kalman filter variant. It has the merit of
using the UKF approach while achieving execution times
that are akin to the standard EKF-based solution, namely S-
MSCKE. The UKF approach is generally more robust to non-
linearities, and allows fast prototyping since Jacobian explicit
computation is not required (and thus readily adapts to model
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Fig. 4. Root Mean Square Error of the proposed S-UKF-LG and S-IEKF
compared to various methods on the dataset [2]. Statistics are averaged over
ten runs on each dataset.

sl

v

10 m/s
15 m/s
17.5 m/s

| | |
Il OKVIS Il VINS-MONO S-MSCKF S-UKF-LG Il S-IEKF

S 300 |- 8
el
‘é‘ 200 n
=
& 100 |

: |

E

wv

10 m/s
15 m/s
17.5 m/s

Fig. 5. Average CPU load of the proposed S-UKF-LG and S-IEKF compared
to various methods on the dataset [2].

modifications, estimation of additional parameters, and fusion
with other sensors). We exploited an efficient inference of
the Jacobian that leads to similar computational complexity
between our S-UKF-LG solution and the S-MSCKF. We also
provided the closed-forms for the measurement Jacobian that
lead to an alternative S-IEKF, that can be considered as a
stereo version of [6] extending it also with an on-line esti-
mation of the extrinsic parameters, resulting in a consistent
filter with high level of accuracy and robustness. Accuracy,
efficiency, and robustness of our filters are demonstrated
using two challenging datasets.
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