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In this Supplemental Material (SM), we first present the detailed calculation of the finite-frequency noise for
an interacting quantum dot (QD) with asymmetric couplings to the reservoirs (Section A), secondly we prove the
relation MLL

LL (ε, ν) = |t1 + t2 + t3|2 (Section B), where the second formulation appears when we take the coherent
superposition of the processes P1, P2 and P3. Thirdly, we give the relation between the various transmission amplitudes
and coefficients in the case of a non-interacting QD, or when only elastic scattering is present, for which the optical
theorem holds, and we derive the noise matrix elements in that case (Section C). Fourthly we give the expression of
the self-consistent equations of motion used to determine numerically the retarded Green function in the case of an
interacting QD (Section D), and end up by discussing the results obtained for the differential conductance in the case
of symmetric and asymmetric couplings (Section E).

A – CALCULATION OF THE CURRENT NOISE FOR AN INTERACTING QD WITH ARBITRARY
COUPLING SYMMETRY

We start from the expression for the current noise in a QD given by Eqs. (A11-A15) in Ref. 1 obtained in the flat

wideband limit (FWBL) for the conduction band. We get Sαβ(ν) =
∑5
i=1 C

(i)
αβ(ν) with

C(1)
αβ (ν) =

e2

h
δαβ

∫ ∞
−∞

dε
[
G<σ (ε)Σ>α,σ(ε− hν) + Σ<α,σ(ε)G>σ (ε− hν)

]
, (S1)

C(2)
αβ (ν) = −e

2

h

∫ ∞
−∞

dε
[
Grσ(ε)Σ<α,σ(ε) +G<σ (ε)Σaα,σ(ε)

][
Grσ(ε− hν)Σ>β,σ(ε− hν) +G>σ (ε− hν)Σaβ,σ(ε− hν)

]
,(S2)

C(3)
αβ (ν) =

e2

h

∫ ∞
−∞

dε
[
Σ<α,σ(ε)Grσ(ε)Σrβ,σ(ε) + Σaα,σ(ε)G<σ (ε)Σrβ,σ(ε) + Σaα,σ(ε)Gaσ(ε)Σ<β,σ(ε)

]
G>σ (ε− hν) , (S3)

C(4)
αβ (ν) =

e2

h

∫ ∞
−∞

dεG<σ (ε)
[
Σrα,σ(ε− hν)Grσ(ε− hν)Σ>β,σ(ε− hν)

+Σrα,σ(ε− hν)G>σ (ε− hν)Σaβ,σ(ε− hν) + Σ>α,σ(ε− hν)Gaσ(ε− hν)Σaβ,σ(ε− hν)
]
, (S4)

C(5)
αβ (ν) = −e

2

h

∫ ∞
−∞

dε
[
G<σ (ε)Σrβ,σ(ε) +Gaσ(ε)Σ<β,σ(ε)

][
G>σ (ε− hν)Σrα,σ(ε− hν) +Gaσ(ε− hν)Σ>α,σ(ε− hν)

]]
,

(S5)

where Σ
r,a,≷
α,σ (ε) =

∑
k∈α |Vα|2g

r,a,≷
k,α,σ(ε) is the contribution to the self-energy brought by the tunneling between the α

reservoir and the QD. G
r,a,≷
σ (ε) and g

r,a,≷
k,α,σ(ε) are the retarded, advanced, Keldysh greater and lesser Green functions

in the QD and in the disconnected α reservoir respectively. The approximation made to get Eqs. (S1-S5) amounts to
having factorized the two-particle Green functions in the QD into a product of two single-particle Green functions.
Provided that this approximation is made together with the FWBL assumption, the latter expression for the noise is
general and valid for any value of the Coulomb interactions in the QD and any symmetry of the tunneling couplings of
the dot to the two reservoirs. We remark that even if the spin index σ appears in the Green function and self-energy
notations, it does not appear as an index in the noise notation since the system we consider in this Letter is spin

unpolarized. When the system is in a steady state, G
≷
σ (ε) is simply given by [2, 3]

G≷
σ (ε) = Grσ(ε)Σ

≷
tot,σ(ε)Gaσ(ε) . (S6)
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In the presence of interactions, the total self-energy can be put in the form [2, 4]

Σ
r,a,≷
tot,σ (ε) = Σ

r,a,≷
L,σ (ε) + Σ

r,a,≷
R,σ (ε) + Σ

r,a,≷
int,σ (ε) , (S7)

where Σ
r,a,≷
int,σ (ε) is the additional contribution brought by the interactions residing in the central region. In the FWBL,

Σrα,σ(ε) = −iΓα/2, Σaα,σ(ε) = iΓα/2, Σ<α,σ(ε) = iΓαf
e
α(ε), and Σ>α,σ(ε) = −iΓαfhα(ε), where Γα = 2πρα|Vα|2, ρα being

the density of states of the α reservoir and Vα the electron hopping amplitude between the QD and the α reservoir.
In the absence of interactions, Σint,σ(ε) = 0 and the self-energy contains only the tunneling contributions. As a

result, the following relation holds: Grσ(ε) − Gaσ(ε) = −iGrσ(ε)(ΓL + ΓR)Gaσ(ε), ensuring the optical theorem to be
satisfied; the expression for the noise in this case is given in the Section C of this SM.

In the general case, when interactions are present, the latter relation no longer holds due to the contribution of the
interaction self-energy. However the calculation of the noise can still be done according to the procedure presented
below provided that the system is in a steady state. By incorporating Eqs. (S6) and (S7) into the expression of the
noise given in Eqs. (S1-S5), one gets

Sαβ(ν) =
e2

h
Γαδαβ

∫ ∞
−∞

dε

[
fhα(ε− hν)Grσ(ε)

∑
γ

Γγf
e
γ (ε)Gaσ(ε) + feα(ε)Grσ(ε− hν)

∑
γ

Γγf
h
γ (ε− hν)Gaσ(ε− hν)

]

+
e2

h
ΓαΓβ

∫ ∞
−∞

dε

[
Grσ(ε)

∑
γ

Γγf
e
γ (ε)Gaσ(ε)Grσ(ε− hν)

∑
δ

Γδf
h
δ (ε− hν)Gaσ(ε− hν)

−feα(ε)fhβ (ε− hν)Grσ(ε)Grσ(ε− hν)− feβ(ε)fhα(ε− hν)Gaσ(ε)Gaσ(ε− hν)

−i
[
feα(ε)Grσ(ε)− feβ(ε)Gaσ(ε)

]
Grσ(ε− hν)

∑
γ

Γγf
h
γ (ε− hν)Gaσ(ε− hν)

+i
[
fhα(ε− hν)Gaσ(ε− hν)− fhβ (ε− hν)Grσ(ε− hν)

]
Grσ(ε)

∑
γ

Γγf
e
γ (ε)Gaσ(ε)

]
. (S8)

The r.h.s. of Eq. (S8) results from the contribution proportional either to Σ<γ,σ(ε)Σ>δ,σ(ε−hν) or to Σ>γ,σ(ε)Σ<δ,σ(ε−hν)
in Eqs. (S1-S5), once we have inserted Eqs. (S6) and (S7). We have checked that the remaining contributions coming

from the linear and quadratic terms in Σ
≷
int,σ(ε), Σ

≷
int,σ(ε− hν) cancel in the steady state.

Expression for the auto-correlators SLL(ν) and SRR(ν)

From Eq. (S8), taking α = β = L and rearranging the various terms, we get the expression of the auto-correlator
noise associated with the L reservoir, that is

SLL(ν) =
e2

h

∫ ∞
−∞

dε

[∑
γ

ΓLΓγG
r
σ(ε)Gaσ(ε)feγ (ε)fhL(ε− hν)

+
∑
γ

ΓLΓγG
r
σ(ε− hν)Gaσ(ε− hν)feL(ε)fhγ (ε− hν)

+
∑
γ,δ

Γ2
LΓγΓδG

r
σ(ε)Gaσ(ε)Grσ(ε− hν)Gaσ(ε− hν)feγ (ε)fhδ (ε− hν)

−Γ2
L

[
Grσ(ε)Grσ(ε− hν) +Gaσ(ε)Gaσ(ε− hν)

]
feL(ε)fhL(ε− hν)

−i
∑
γ

Γ2
LΓγ

[
Grσ(ε)−Gaσ(ε)

]
Grσ(ε− hν)Gaσ(ε− hν)feL(ε)fhγ (ε− hν)

+i
∑
γ

Γ2
LΓγ

[
Gaσ(ε− hν)−Grσ(ε− hν)

]
Grσ(ε)Gaσ(ε)feγ (ε)fhL(ε− hν)

]
. (S9)
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Introducing the transmission amplitude tαβ(ε) = i
√

ΓαΓβG
r
σ(ε) and the transmission coefficient Tαβ(ε) = |tαβ(ε)|2 =

ΓαΓβG
r
σ(ε)Gaσ(ε) in this expression, and performing the sum over γ and δ, we get

SLL(ν) =
e2

h

∫ ∞
−∞

dε

[
TLR(ε)TLR(ε− hν)feR(ε)fhR(ε− hν)

+
[
TLL(ε) + TLL(ε− hν) + TLL(ε)TLL(ε− hν) + tLL(ε)tLL(ε− hν) + t∗LL(ε)t∗LL(ε− hν)

−2Re{tLL(ε)}TLL(ε− hν)− 2Re{tLL(ε− hν)}TLL(ε)
]
feL(ε)fhL(ε− hν)

+
[
1−

[
2Re{tLL(ε)} − TLL(ε)

]]
TLR(ε− hν)feL(ε)fhR(ε− hν)

+
[
1−

[
2Re{tLL(ε− hν)} − TLL(ε− hν)

]]
TLR(ε)feR(ε)fhL(ε− hν)

]
. (S10)

We have used this result to write the expression of the matrix elements Mγδ
LL(ε, ν) along the first row of Table I

introducing an effective transmission coefficient defined as: T eff,L
LR (ε) = 2Re{tLL(ε)}− TLL(ε). The expression for the

auto-correlator noise in the R reservoir, SRR(ν) given along the second row of Table I, is obtained from SLL(ν) by
interchanging the indices L and R.

Expression for the cross-correlators SLR(ν) and SRL(ν)

From Eq. (S8), taking α = L and β = R and rearranging the various terms, we get the expression for the cross-
correlator noise, that is

SLR(ν) =
e2

h
ΓLΓR

∫ ∞
−∞

dε

[∑
γ,δ

ΓγΓδG
r
σ(ε)Gaσ(ε)Grσ(ε− hν)Gaσ(ε− hν)feγ (ε)fhδ (ε− hν)

−Grσ(ε)Grσ(ε− hν)feL(ε)fhR(ε− hν)−Gaσ(ε)Gaσ(ε− hν)feR(ε)fhL(ε− hν)

−i
∑
γ

Γγ
[
feL(ε)Grσ(ε)− feR(ε)Gaσ(ε)

]
Grσ(ε− hν)Gaσ(ε− hν)fhγ (ε− hν)

+i
∑
γ

Γγ
[
fhL(ε− hν)Gaσ(ε− hν)− fhR(ε− hν)Grσ(ε− hν)

]
Grσ(ε)Gaσ(ε)feγ (ε)

]
. (S11)

Introducing the transmission amplitude and coefficients, and performing the sum over γ and δ, we get

SLR(ν) =
e2

h

∫ ∞
−∞

dε

[[
TLR(ε)TLL(ε− hν)− tLL(ε)TLR(ε− hν)− TLR(ε)t∗LL(ε− hν)

]
feL(ε)fhL(ε− hν)

+
[
TLR(ε)TRR(ε− hν)− t∗RR(ε)TLR(ε− hν)− TLR(ε)tRR(ε− hν)

]
feR(ε)fhR(ε− hν)

+
[
TLR(ε)TLR(ε− hν) + tLR(ε)tLR(ε− hν)− tRR(ε)TLR(ε− hν)− TLR(ε)tLL(ε− hν)

]
feL(ε)fhR(ε− hν)

+
[
TLR(ε)TLR(ε− hν) + t∗LR(ε)t∗LR(ε− hν)− t∗LL(ε)TLR(ε− hν)− TLR(ε)t∗RR(ε− hν)

]
feR(ε)fhL(ε− hν)

]
.

(S12)

We have used this result to write the expression of the matrix elements Mγδ
LR(ε, ν) along the third row of Table I.

The cross-correlator SRL(ν), given along the fourth row of Table I, is obtained from the expression of SLR(ν) by
interchanging the indices L and R.

B – PROOF OF THE RELATION: MLL
LL (ε, ν) = |t1 + t2 + t3|2

From Table I, we have

MLL
LL (ε, ν) = |tLL(ε)− tLL(ε− hν)|2 + T eff,L

LR (ε)T eff,L
LR (ε− hν) , (S13)
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with T eff,L
LR (ε) = 2Re{tLL(ε)} − TLL(ε), thus

MLL
LL (ε, ν) = |tLL(ε)− tLL(ε− hν)|2 +

[
2Re{tLL(ε)} − TLL(ε)

][
2Re{tLL(ε− hν)} − TLL(ε− hν)

]
= |tLL(ε)− tLL(ε− hν)|2 +

[
tLL(ε) + t∗LL(ε)

][
tLL(ε− hν) + t∗LL(ε− hν)

]
+TLL(ε)TLL(ε− hν)− 2Re{tLL(ε)}TLL(ε− hν)− 2Re{tLL(ε− hν)}TLL(ε) . (S14)

Knowing that |tLL(ε)− tLL(ε− hν)|2 = TLL(ε) + TLL(ε− hν)− t∗LL(ε)tLL(ε− hν)− tLL(ε)t∗LL(ε− hν), this leads to

MLL
LL (ε, ν) = TLL(ε) + TLL(ε− hν) + tLL(ε)tLL(ε− hν) + t∗LL(ε)t∗LL(ε− hν)

+TLL(ε)TLL(ε− hν)− 2Re{tLL(ε)}TLL(ε− hν)− 2Re{tLL(ε− hν)}TLL(ε) , (S15)

which can be factorized under the form

MLL
LL (ε, ν) = TLL(ε) + [1− tLL(ε)][1− t∗LL(ε)]TLL(ε− hν)

+tLL(ε)[1− t∗LL(ε)]tLL(ε− hν) + t∗LL(ε)[1− tLL(ε)]t∗LL(ε− hν)

= TLL(ε) +RLL(ε)TLL(ε− hν) + tLL(ε)r∗LL(ε)tLL(ε− hν) + t∗LL(ε)rLL(ε)t∗LL(ε− hν) , (S16)

where we have used the definitions of the reflection amplitude: rLL(ε) = 1 − tLL(ε), and the reflection coefficient:

RLL(ε) = rLL(ε)r∗LL(ε). Note that we have also the relation: RLL(ε) = 1− T eff,L
LR (ε).

The terms appearing in Eq. (S16) correspond precisely to the terms appearing in |t1 + t2 + t3|2, with t1 =
tLL(ε)t∗LL(ε− hν), t2 = tLL(ε)r∗LL(ε− hν) and t3 = rLL(ε)t∗LL(ε− hν), so that we finally obtain

MLL
LL (ε, ν) = |t1 + t2 + t3|2 . (S17)

C – NON-INTERACTING LIMIT OR ELASTIC SCATTERING LIMIT

In this Section, we show that when we neglect the interactions in the QD, or when we have only elastic scattering,
the Table I of Ref. 1 can be derived from the Table I given in the main text of this Letter. Indeed, in that case
there are specific relations between the transmission and reflection coefficients which can be obtained from the optical
theorem as summarized below.

1 – Optical theorem

We define the S-matrix of a QD connected to a L reservoir and a R reservoir as S = 1 + iT, where the T -matrix
is given by

T =

(
τLL(ε) τLR(ε)
τRL(ε) τRR(ε)

)
, (S18)

in the {L,R} basis, where ταβ(ε) = itαβ(ε) with tαβ(ε) the transmission amplitude from the α reservoir to the β
reservoir. For a QD, we have ταβ(ε) = −

√
ΓαΓβG

r
σ(ε), and thus τRL(ε) = τLR(ε). At low temperature, when only

elastic scattering of electrons are considered, S is a unitary matrix, SS+ = 1. Consequently the T -matrix must fulfill
the optical theorem: TT+ = i[T+ −T], leading to the following relations

2Im{τLL(ε)} = TLL(ε) + TLR(ε) , (S19)

2Im{τRR(ε)} = TRR(ε) + TLR(ε) , (S20)

2Im{τLR(ε)} = τ∗LR(ε)τLL(ε) + τLR(ε)τ∗RR(ε)

= τLR(ε)τ∗LL(ε) + τ∗LR(ε)τRR(ε) , (S21)

where we have defined the transmission coefficient as Tαβ(ε) = |ταβ(ε)|2 = |tαβ(ε)|2. Eqs. (S19) to (S21) can
equivalently written in terms of transmission amplitudes as

2Re{tLL(ε)} = TLL(ε) + TLR(ε) , (S22)

2Re{tRR(ε)} = TRR(ε) + TLR(ε) , (S23)

2Re{tLR(ε)} = t∗LR(ε)tLL(ε) + tLR(ε)t∗RR(ε)

= tLR(ε)t∗LL(ε) + t∗LR(ε)tRR(ε) . (S24)
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Note that these relations are automatically verified if the relation Grσ(ε)−Gaσ(ε) = −iGrσ(ε)(ΓL + ΓR)Gaσ(ε) holds.
It is easy to show that provided the optical theorem holds, the reflection coefficient Rαα(ε) = |rαα(ε)|2 with

rαα(ε) = 1 + iταα(ε) = 1− tαα(ε), reads as

RLL(ε) = RRR(ε) = 1− TLR(ε) . (S25)

2 – Matrix elements appearing in the noise

When the optical theorem holds, which is the case in the non-interacting limit or in the elastic scattering processes
limit, the matrix elements involved in Table I of this Letter can be rewritten as shown below in Table II. Indeed,
starting from the definition of the effective transmission coefficients, we have

T eff,α
LR (ε) = 2Re{tαα(ε)} − Tαα(ε) = 2Im{ταα(ε)} − Tαα(ε) = TLR(ε) , (S26)

thanks to Eqs. (S19) and (S20). Note that for symmetric couplings, i.e. ΓL = ΓR, the transmission amplitude does
not depend on the reservoir index any longer, and is simply denoted t(ε), which allows one to derive the matrix
elements given in Table I of Ref. 1.

Mγδ
αβ(ε, ν) γ = δ = L γ = δ = R γ = L, δ = R γ = R, δ = L

α = L TLR(ε)TLR(ε− hν) TLR(ε)TLR(ε− hν) [1− TLR(ε)]TLR(ε− hν) TLR(ε)[1− TLR(ε− hν)]

β = L +|tLL(ε)− tLL(ε− hν)|2

α = R TLR(ε)TLR(ε− hν) TLR(ε)TLR(ε− hν) TLR(ε)[1− TLR(ε− hν)] [1− TLR(ε)]TLR(ε− hν)

β = R +|tRR(ε)− tRR(ε− hν)|2

α = L tLR(ε)t∗LR(ε− hν) t∗LR(ε)tLR(ε− hν) tLR(ε)tLR(ε− hν) t∗LR(ε)t∗LR(ε− hν)

β = R ×[r∗LL(ε)rLL(ε− hν)− 1] ×[rRR(ε)r∗RR(ε− hν)− 1] ×r∗LL(ε)r∗RR(ε− hν) ×rRR(ε)rLL(ε− hν)

α = R t∗LR(ε)tLR(ε− hν) tLR(ε)t∗LR(ε− hν) t∗LR(ε)t∗LR(ε− hν) tLR(ε)tLR(ε− hν)

β = L ×[rLL(ε)r∗LL(ε− hν)− 1] ×[r∗RR(ε)rRR(ε− hν)− 1] ×rLL(ε)rRR(ε− hν) ×r∗RR(ε)r∗LL(ε− hν)

TABLE II: Expressions of the matrix elements Mγδ
αβ(ε, ν) for a non-interacting QD, or in the presence of elastic scattering

processes only.

D – NUMERICAL CALCULATION OF Grσ(ε) IN THE PRESENCE OF COULOMB INTERACTIONS

When Coulomb interactions U are present in the QD, it is necessary to take the spin degree of freedom into
account. Indeed the Hamiltonian describing our system is the single-site Anderson Hamiltonian including on-site
Coulomb interaction and reads as

H =
∑

k,α∈(L,R),σ

εkαc
†
kασckασ +

∑
σ

ε0d
†
σdσ + Un↑n↓ +

∑
k,α∈(L,R),σ

(Vαc
†
kασdσ + h.c.) , (S27)

where d†σ (c†kασ) and dσ (ckασ) are the creation and annihilation operators of an electron in the QD (α reservoir)
respectively, and nσ = d†σdσ. Following Refs. 5–7, we numerically calculate the retarded Green function using the
expression

Grσ(ε) =
1− 〈nσ̄〉

ε− ε0 − Σ0
σ(ε)−Π

(1)
σ (ε)

+
〈nσ̄〉

ε− ε0 − U − Σ0
σ(ε)−Π

(2)
σ (ε)

, (S28)

with Σ0
σ(ε) = −iΓσ(ε) and Γσ(ε) =

∑
α=L,R Γασ(ε). In the FWBL, Σ0

σ(ε) is independent of ε and takes the value

−iΓσ. Π
(1)
σ (ε) and Π

(2)
σ (ε) are defined as

Π
(1)
σ (ε) = −U Σ

(1)
σ (ε)− (ε− ε0)Σ

(4)
σ (ε)

ε− ε0 − U − Σ
(3)
σ (ε) + UΣ

(4)
σ (ε)

, (S29)

Π
(2)
σ (ε) = U

Σ
(2)
σ (ε) + (ε− ε0 − U)Σ

(4)
σ (ε)

ε− ε0 − Σ
(3)
σ (ε) + UΣ

(4)
σ (ε)

, (S30)
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where for i ∈ [1, 4],

Σ(i)
σ (ε) =

∑
k,α

|Vα|2
[ A(i)

kασ

ε+ ε̃σ̄ − ε̃σ − εkα + iγ̃σ
+

A′(i)kασ

ε+ ε̃kα − ε̃σ − ε̃σ̄ − U + iγ̃D

]
, (S31)

with ε̃σ = ε0 + Re{Σ(1)
σ (ε̃σ)}, A(1)

kασ =
∑
k′〈c
†
k′ασ̄ckασ̄〉, A

(2)
kασ = 1 −

∑
k′α〈c

†
k′ασ̄ckασ̄〉, A

(3)
kασ = 1, and A(4)

kασ =

〈d†σ̄ckασ̄〉/Vα. A′(i)kασ = (A(i)
kασ)∗ for i ∈ [1, 3], and A′(4)

kασ = −(A(4)
kασ)∗. γ̃σ and γ̃D are calculated by using the Fermi

golden rule up to the fourth order with Vα [6, 7]. The numerical calculations are performed self-consistently.

E – DIFFERENTIAL CONDUCTANCE IN A KONDO QD

In Fig. S1, we report the color-plot of the differential conductance, G = dI/dV , for an interacting QD as a function
of the level energy ε0 and bias voltage V . The results are shown for both symmetric and asymmetric couplings, and
both symmetric and asymmetric bias voltage profiles. In the presence of Coulomb interactions (U = 3 meV), we
observe a Kondo ridge in the n = 1 conductance valley (n being the QD occupation) characteristic of the Kondo
effect which manifests itself at low temperature (see plots in Fig. S1 at V = 0). Here T = 80 mK is lower than the
Kondo temperature, TK ≈ 4.38 K, estimated from the Haldane formula: kBTK ≈

√
UΓ/2 exp(πε0(ε0 + U)/2UΓ),

with Γ = ΓL + ΓR. Moreover, one observes a Coulomb blockade structure: a Coulomb diamond (shown in violet
in the center of the Fig. S1(a)) when the bias voltage profile is symmetric, or two parallel branches (eV = ε0 and
eV = ε0 + U) when the bias voltage profile is asymmetric (see Fig. S1(c)). The introduction of an asymmetry in the
couplings (weakening ΓR over ΓL, keeping ΓR + ΓL constant) induces the following two changes in the conductance:
(i) the value of the conductance decreases due to the reduced transmission through the QD, as it can be clearly seen
by comparing the intensity along the Kondo ridge; (ii) at a given value of ε0, the relative height of the two broad
peaks is changed, e.g., in case of asymmetric bias voltage profile (Fig. S1(d)), the two sub-branches, eV = ε0 +U < 0
and eV = ε0 > 0, becomes more prominent than the two other sub-branches eV = ε0 + U > 0 and eV = ε0 < 0.

0

0.25

0.50

0.75

1.00

1.25

0

0.25

0.50

0.75

1.00

1.25

FIG. S1: Color-plot of the differential conductance G of an interacting QD (in units of e2/h) as a function of the level energy
ε0 and bias voltage V , for T = 80 mK and U = 3 meV. (a) and (c): symmetric couplings ΓL,R = 0.5 meV (a = 1). (b) and (d):
asymmetric couplings ΓL = 0.8 meV, ΓR = 0.2 meV (a = 4). (a) and (b): symmetric bias voltage profile µL = −µR = −eV/2.
(c) and (d): asymmetric bias voltage profile µL = 0 and µR = eV .

Additional remark: the profile of the bias voltage through the QD and the asymmetry of the left and right couplings
are closely linked. It is generally expected that the profile is symmetric at a = 1, and asymmetric at a 6= 1. However
only the consideration of the electrodynamics of the whole system can help in determining the link. Here, we rather
consider all the possible cases in Fig. S1, but choose to focus on an asymmetric bias voltage profile to be able to
compare the curves of Fig. 2 given in the main text of this Letter with experiments of Ref. 8.
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