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Abstract

Over the past decade, many works on the modeling of wireless networks
using stochastic geometry have been proposed. Results about probability
of coverage, capacity or mean interference, have been provided for a wide
variety of networks (cellular, ad hoc, cognitive, sensors, etc). These results
notably allow to tune network protocol parameters. Nevertheless, in their
vast majority, these works assume that the wireless network deployment is
flat: nodes are placed on the Euclidean plane. However, this assumption is
disproved in dense urban environments where many nodes are deployed in
high buildings. In this paper, we derive the exact form of the probability of
coverage for the cases where the interferers form a 3D Poisson Point Process
(PPP) and an approximation for the 3D Modified Matern Process (MMP).
We compare the 3D model with the 2D model and with simulation results.
We comment the adequacy of each model depending on the parameters of
the nodes (emission power, reception threshold, MAC protocol, etc.) and the
height of the buildings in the simulations.

Keywords: Urban Wireless Networks, 3D, Stochastic Geometry, CSMA

1. Introduction

Stochastic geometry has been largely used to study and design wireless
networks, because in such networks the interference, and thus the capacity,
is highly dependent on the positions of the nodes [1, 2]. Stochastic geometry
indeed allows to take into account the spatial component for the analysis of
wireless systems performance at a very low computational cost (in several
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cases closed form expressions are available [1]). Nevertheless, most of the
works in the literature focus on networks deployed on the Euclidean plane.
The motivation for this work comes from the intuition that for dense urban
networks such as WiFi private networks, sensor networks, connected objects,
deployed in dense urban areas, modeling the network with all the nodes lying
on a plane (as is necessarily done with 2D models) will lead to an inaccurate
representation of the interference suffered by a receiver. For instance, in
Fig. 1, a screen capture of the map tool of Open Mobile Network [3] is
provided. This tool offers approximate locations of WiFi and cellular access
points on a map. The data gathering is done by crowd-sourcing with a mobile
application. In Fig. 1, if we ignore obvious position errors, we observe that
the WiFi access points are often located very close to one another, as they
are presumably in the same building. In reality, they might in fact reside at
different heights in different floors. An estimation of the interference suffered
by a user based on this map would largely overestimate the real interference
because the third dimension is not taken into account: the nodes are all
projected on the same plane resulting in an unrealistic intensity of nodes.

Figure 1: 2D map of the WiFi AP near TU Berlin retrieved on the 22nd of November
2017 at http://map.openmobilenetwork.org/

We think that with the explosion of the number of devices expected in
the ISM bands, notably because of smartphones, tablets, connected objects
(Internet of Things) and sensors, there is a need for an accurate modeling
of the interference suffered by such devices in dense urban areas where the
vertical component is not negligible. Indeed, accurate interference modeling
is essential in order to design efficient mitigation mechanisms at different
layers (medium access schemes, coding schemes, retransmission mechanisms,
robust routing, etc.). In order to be accurate, the third space dimension has
to be taken into account.
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Throughout this paper, we model the node positions as a Poisson Point
Process (PPP). We argue that the PPP seems to be a good model for dense
urban areas where many networks are concurrently deployed in the same
frequency bands (notably ISM bands) in a chaotic manner. Unlike cellular
networks, for WiFi, sensor and IoT networks no planned deployment can be
assumed in general [4].

For the numerical applications, we take the example of private WiFi net-
works in a dense urban area such as the center of Paris. We consider the VIe
arrondissement of Paris which contains around 32500 dwellings [5] and cov-
ers a surface of 2.15km2. We assume that each dwelling has one WiFi router.
In the 2D model case, all the nodes have to lie on a plane and are distributed
according to a Poisson Point Process (PPP). We can compute the intensity
of the PPP in this case by dividing the number of routers by the area of the
considered zone, yielding λ = 1.51× 10−2 nodes per m2. In the 3D case, we
can place the nodes in a volume, it means that we can take into account the
building height. Therefore, the nodes are also spread on the z axis. If we
assume a building height of 20 meters, dividing the number of routers by the
volume of the considered area gives an intensity of ρ = 7.56 × 10−4 nodes
per m3. We can notice that in this scenario ρ = λ

20
. These intensities may

seem high, but they actually do not take into account the devices (laptops
and smartphones for instance) connected to the routers which also increase
the interference.

The 3D model seems appealing for dense urban zone where the nodes are
also distributed vertically. Nevertheless, the equations derived with stochas-
tic geometry usually apply to an infinite space [1]. In the 2D case, this as-
sumption seems reasonable since the studied networks usually cover a large
surface compared to the range of the nodes, so it limits the impact of the
border effects. In the 3D case, border effect may be more problematic be-
cause of the relatively small height of the building compared to the range
of the devices. Therefore, in Section 4, we compare the numerical results
obtained from the equations with simulation where the nodes are distributed
in a limited zone along the z axis in order to investigate this aspect.

In the remainder of this paper, we derive the probability of coverage, first
with no medium access control (the results are applicable to ALOHA [1]),
and then with a CSMA access when nodes are distributed according to a 3D
PPP.

The main contributions of this paper are as follows:
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• we give an approximation of the probability of coverage for CSMA
access in the 3D case;

• we compare 2D, 3D analytical models and simulation in order to de-
termine the most suited model depending on the parameters of nodes
and the network topology (notably the height of the deployment along
the z axis).

The paper is organized as follows. Section 2 presents and comments re-
lated works on stochastic geometry and 3D network modeling. In Section 3.1,
we derive the exact form of the probability of coverage for PPP interference
for arbitrary emitter-receiver distance. It gives us insights on the problem for
a simple case. In Section 3.2, we present the Modified Matern Process used
to model CSMA access and derive an approximation of the probability of
coverage for the 3D case. In section 4, we compare the numerical results ob-
tained from the models of Section 3 with 2D models and simulation. Section
5 concludes the discussion and provides potential future developments.

2. Related works

Even if most of the research efforts are focused on 2D networks, 3D net-
works have been emerging during the past few years. It is notably the case
for WSNs [6, 7, 8] underwater mobile networks [9] Unmanned Aerial Vehicle
(UAV) networks [10]. From a more theoretical point of view, 3D networks
have been investigated in terms of capacity [11, 12] and scaling laws have
been provided. Nevertheless, in the present work we focus on the stochastic
geometric approach to the study of wireless networks in the sense of [1, 2].
This approach has the advantage to provide tractable results for the proba-
bility of coverage in the case of the PPP model and good approximations for
other models [1]. Whereas many theoretical works, focusing on stochastic
geometry for wireless networks, consider dimension d [1, 2], when it comes to
applications to specific cases, the chosen space is nearly always the Euclidean
plane [13, 1, 14]. The only work explicitly covering the 3D case, to the best
of our knowledge, is the recent [15]. In this work, the authors derive the
probability of coverage with the two slopes propagation model for a 3D PPP.
This work considers cellular networks, the receiver is thus attached to the
nearest point of the PPP (the base station with the highest average received
power). In our work, we first focus on a 3D PPP model as well, but with
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a single slope propagation model and, more importantly, the receiver is re-
ceiving from an arbitrarily placed emitter. We argue that our model is more
relevant in non operated ISM band networks such as WiFi, IoT, WSNs, etc,
because the receiver cannot always connect to the closest node. Indeed, the
closest node might not belong to the same network. Moreover, in our work,
we mainly use the simple PPP model to easily compare simulation and the-
oretical models for different building heights (maximum value on the z axis)
and thus evaluating the relevance of the 3D approach. Additionally, we then
move to the Modified Matern Process which is a more realistic model for
CSMA networks.

Many works modeling CSMA access through stochastic geometry have
emerged in the literature these past ten years [13, 16, 14]. These works
are based on a modified version of the Matern Point Process for which the
points cannot live too close to each others. This allows to model the con-
tention radius of CSMA as follows. The nodes of the network form a PPP
on the Euclidean plane and they contend to access to the medium. Each
node picks uniformly a value between zero and one, the node is selected in
the process if it does not detect any node with a smaller mark value (this
models the backoff procedure). The resulting process is the Modified Matern
Process (MMP) which will be detailed in Section 3.2. As there is no known
exact formulation of the interference in such process, [13, 16] and [14] use
approximation techniques. They show that their approximations lie close to
simulation results. We extend these works by considering 3D distribution of
the nodes and compare the resulting model to simulation. To the best of our
knowledge, this has not been considered in the literature.

In the remainder of this paper, we show how the probability of coverage
is changed when going from 2D to 3D for Poisson distributed nodes in the
simple case where all nodes can be interferers, and in the case a CSMA
access protocol is used. We compare the theoretical prediction with simple
simulations in order to investigate the impact of the border effect on the
results. We also show that going from 2D to 3D is not trivial especially
in the CSMA case because changing the dimension dramatically affects the
form and thus the tractability of the expressions.

3. 3D models

In this part, we present two stochastic geometry models: 3D PPP and
3D MMP. We derive the closed form of probability of coverage for the former
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and an approximation for the later.

3.1. 3D Poisson Point Process interference

In this section, we derive the probability of coverage for a terminal at
distance d from the emitter when the interferers are distributed according to
a PPP Φ in R3. Whereas it is already given for Rn and for R2 in [1], here
we find interesting to emphasis the differences between the 3D and 2D cases,
and to show that considering the latter can lead to inaccurate representation
of the interference. We consider an interference limited network. We thus
use the Signal to Interference Ratio (SIR), which is defined as follows:

SIR =
hd−α

I
, (1)

with h the fading coefficient between the emitter and receiver, d the emitter-
receiver distance, α the pathloss exponent and I =

∑
xi∈Φ gir

−α
i the interfer-

ence where gi is the fading coefficient between the interferer xi ∈ Φ and the
receiver and ri the distance between them. As in [13, 17], we assume that
all the nodes emit with the same power so it is simplified in the expression
of the SIR. We have to note that unlike many works in the literature, we
do not consider that the receiver is connected to the nearest node of the
PPP because it is not always the case for the type of networks we consider
(private WiFi is a good example) so the probability of coverage depends on
the emitter-receiver distance. The probability of coverage is defined as the
probability that the SIR is over a given threshold β:

Pc(ρ, β, α, d) ≡ P{SIR > β}. (2)

Its expression, when considering Rayleigh fading between the emitter and
receiver, can be derived by the classic argument notably found in [1] and is
equal to the Laplace transform of the interference shot noise in interference
limited networks:

Pc(ρ, β, α, d)
(a)
= EI [e−µd

αβI ]

= LI(µβdα), (3)

where (a) follows from H ∼ exp(µ).
We derive the expression of the Laplace transform for the 3D PPP case

as follows:
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LI(µβdα)

= EGi,Ri [e
−µdαβ

∑
xi∈Φ

gir
−α
i

]

(b)
= ERi [

∏
xi∈Φ

EGi [e−µd
αβgir

−α
i ]]

(c)
= e

−ρ
+∞∫
0

2π∫
0

π∫
0

(1−EGi [e
−µdαβgir

−α
i ])r2

i sinθidridθidφi

(d)
= e

−ρ4π
+∞∫
0

(1− 1

1+βdαr−α
i

)r2
i dri

(e)
= e

−ρ4π d
3

3
β3/α

+∞∫
0

( 1

1+uα/3
)du
, (4)

where (b) follows from Gi being i.i.d. and independence with Ri, (c) follows
from the probability generating functional of the PPP [18], (d) follows from

the MGF of Gi ∼ exp(µ) and (e) with the change of variable u =
(

ri
dβ1/α

)3

.

It differs from the 2D case which is given by e
−λπd2β2/α

+∞∫
0

( 1

1+vα/2
)dv

. We note
that the solution of the integral in the general case (dimension D) is:

+∞∫
0

(
1

1 + sα/D
)ds = s× 2F1(1,

D

α
,
D

α
+ 1,−sα/d), (5)

with 2F1 the Gaussian hypergeometric function. This function gives highly
different values even for the same pathloss exponent α in the 2D and the 3D
cases. The other main difference is the exponential decay which is in d2 in
the 2D case and d3 in 3D. We give the closed form for α = 4 for the 3D case:

Pc(ρ, β, 4, d) = e−ρ(4/23/2)π2d3β3/4

. (6)

In the 2D case, it is:

Pc(λ, β, 4, d) = e−λπ
2d2β1/2/2. (7)

If we assume a slowly varying channel, we can define the average capacity
in bits per seconds as a function of the probability of coverage [19] (Section
4.2.3 p.96):

C = Pc(ρ, SIRmin, 4, d)B log2(1 + SIRmin). (8)
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In this case, the transmitter encodes the data for a rate of B log2(1+SIRmin)
and the data is correctly received if the SIR is greater or equal to SIRmin.
B is the channel bandwidth in Hz. The capacity is given in bits per second.

In Section 4, we compare numerical results from the 2D and 3D PPP
models. Furthermore, we compare the model predictions with simulation
results when the space has a finite height (in order to model nodes placed in
buildings).

In Section 3.2, we focus on the modeling of a more realistic setup: a 3D
CSMA network. Nevertheless, we can note that expression (6) is valid for
modeling an ALOHA medium access. In this case, the intensity of the process
should be multiplied by the probability for a node to emit [1]. ALOHA access
is currently one of the considered access mechanisms in the IoT standard
LoRaWAN [20] from the LoRa Alliance [21]. The 3D PPP model could thus
be used to model such IoT networks in dense urban areas.

In the next part of this paper, we consider another medium access model:
CSMA. More precisely, we extend to R3 an approximation of the probability
of coverage for the MMP model. We then compare the theoretical model
predictions to simulation results in Section 4.

3.2. 3D Modified Matern Process interference

In this section, we treat the 3D case for the Modified Matern type II
Process (MMP) which is considered in many works [13, 14] in order to model
CSMA access. With this model, nodes too close to each others cannot trans-
mit at the same time, interference is thus reduced. The MMP model is
detailed in Section 3.2.1.

Since the exact Laplace functional is not known for the MMP, the tech-
nique used in the previous section for PPP (notably step (c) in equation (4))
cannot be applied directly. In previous works, several different approxima-
tion techniques are used [13, 17, 16, 14]. In this paper, we use the technique
which consists in:

1. assuming a finite region containing the potential contenders for a node;

2. deriving the resulting MMP intensity ρcsma;

3. considering only dominant interferers;

4. approximating the MMP with a PPP of intensity ρcsma outside of the
emitter contention domain.

This approximation technique is notably used in [14] for an alternative
version of the MMP. In our work, we derive expressions for the 3D case,
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whereas [14] is only for the 2D case and the alternative MMP. The main
differences from the literature come from: the use of Rayleigh fading in
Equations (9) (11) (14) (16) and (18) and the impact of 3D in Equations
(11) (16) and (18). Concerning the remaining equations, the impact of going
from 2D to 3D is small on the derivations (notably for Equations (10) and
(15) whose derivation are given in Appendix A and Appendix B for the sake
of completeness). The presented approximation technique allows to obtain
an expression of the probability of coverage for the MMP, despite the fact
that the exact expression is not known. It is detailed for the 3D case in the
remainder of this section.

3.2.1. The Modified Matern type II Process

In this part of the paper, we use a modified version of the Matern type
II process [13]. The classic Matern type II process is built from a marked
PPP: each point of the PPP is marked with a real number m ∈ [0, 1] and the
PPP is thinned by retaining only the points which have the smallest mark
in a ball of radius D centered on themselves. Formally, Φm = {xi ∈ Φ|mi <
mj,∀xj ∈ Φ ∩ B(xi, D) \ xi}, with Φ the PPP in R3, mi the mark of point
xi and B(xi, D) a ball of radius D centered on xi. In the modified version
of the process, there is no fixed radius D, but the radius is replaced by the
notion of detection: a node from the marked PPP is kept in the MMP if
it does not detect any signal from a node with a lower mark. The signal
from a node is detected if it is above a threshold Td. So formally the process
is defined as Φm = {xi ∈ Φ|mi < mj,∀xj : Pthijr

−α
ij ≥ Td}, with Pt the

transmission power, hij and rij the fading coefficient and distance between
xi and xj respectively.

The MMP allows to model the position of the nodes accessing the medium
concurrently with a CSMA MAC scheme. The underlying PPP represents
the positions of the nodes. In the following subsections, we detail the steps
of the aforementioned approximation technique applied to the 3D case.

3.2.2. Defining a finite region for contenders

In reality, the region which contains the contenders of a given node (the
nodes which can be detected by that node) presents an irregular shape be-
cause of the randomness of the fading coefficients. Nevertheless, as mentioned
previously, the first step of the approximation technique consists in consider-
ing a fixed radius, called the detection radius (denoted rd), outside of which
the probability (denoted εd) that a node is detected is arbitrary low. Thus
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the contenders of a node xi are contained in B(xi, rd) which is a ball in the 3D
case. It allows to simplify the expressions without losing too much accuracy
[14]. Formally, the detection radius is defined as follows:

P (Pthijr
−α
d ≥ Td) ≤ εd ⇔ rd =

(
Pt
Td
F−1
Hij

(εd)

)1/α

⇔ rd =

(
Pt
Td

− ln(εd)

µ

)1/α

, (9)

if we consider Hij ∼ exp(µ).

3.2.3. The intensity of the Modified Matern Process

The intensity of the resulting process (considering only contenders in
B(xi, rd)) is given as ρcsma = ρPcsma [18], with Pcsma the probability for a
node of the underlying PPP to be retained and ρ the intensity of the PPP.
Thus Pcsma is the probability that among the contenders of a node xi (the
nodes of Φ which are inside B(xi, rd) and that are detected by xi) none have
a smaller mark than xi.

Formally, it is given as:

Pcsma =
+∞∑
k=0

+∞∑
n=k

1

1 + k
Pn

(
n

k

)
P k
d (1− Pd)n−k

=
1− e−ρ(4/3)πr3

dPd

ρ(4/3)πr3
dPd

. (10)

The details of the argument can be found in Appendix A (it is given for
the sake of completeness since it is similar to arguments in [13] or [14]). Pn
and Pd are respectively the probability to have n nodes in B(xi, rd) and the
probability to detect a node which is in B(xi, rd). Pn is thus the probability
that there are n nodes in a volume of (4/3)πr3

d which is given by the Poisson
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distribution. Concerning Pd, in the 3D case we have:

Pd = P (Pthijr
−α
ij ≥ Td)

= ERij
[
e−µTdr

α
ij/Pt

]
(f)
=

rd∫
0

3r2
ij

r3
d

e−µTdr
α
ij/Ptdrij

=
3

r3
d

Γ( 3
α

)− Γ( 3
α
,
µTdr

α
d

Pt
)

α
(
µTd
Pt

)3/α
, (11)

with Γ(a) and Γ(a, b) the Gamma function and incomplete upper Gamma
function, (f) follows from Hij ∼ exp(µ), and:

fRij(rij) =
3r2

ij

r3
d

, (12)

is the density function of the random distance between xi and xj in B(xi, rd).
In order to prove that expression (12) is correct for the 3D case (for the 2D
case it is given in [22]) we have to remember that xj is uniformly placed in
B(xi, rd) because of the underlying PPP properties, so we have FRij(rij) =
(4/3)πr3

ij

(4/3)πr3
d

. Taking the derivative with respect to rij yields the result. Ex-

pression (11) differs from the 2D case where fRij(rij) is
2rij
r2
d

[22], but the

expression remains reasonably easy to compute in the 3D case (the Gamma
functions can be efficiently computed).

From (10) and ρcsma = ρPcsma, we conclude that the intensity of the
MMP is:

ρcsma =
1− e−ρ(4/3)πr3

dPd

(4/3)πr3
dPd

. (13)

3.2.4. Dominant interferers vulnerability radius

Once we have obtained the intensity of the MMP, we consider only the
interferers which can corrupt the signal on their own, and we assume that
they all lie in a region around the receiver, called the vulnerability region.
Similarly to the detection radius, we define the vulnerability radius as the
radius for which nodes beyond that limit have an arbitrary low probability
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(noted εv) to make the SIR at the receiver drop under the reception threshold.
The receiver is placed at the origin and noted o. The emitter is part of the
process and noted xi. Formally the vulnerability radius is defined as follows:

P

(
hior

−α
io

hjor−αv
≤ β

)
≤ εv ⇔ εv = FHio

Hjo

(
β
r−αv
r−αio

)
⇔ rv = rio

(
β

1− εv
εv

)1/α

, (14)

with Hio
Hjo

the ratio of exponential random variables of parameter µ so FHio
Hjo

(l) =

1− 1
1+l

.

3.2.5. Probability of coverage

We give an approximation of the probability of coverage (P csma
c ) for a

typical receiver at the origin. As previously mentioned, the MMP is approx-
imated with a PPP of the same intensity outside of the contention domain
of the emitter xi, this approximation is known to be very close to simulation
results [23]. In this context, the probability of outage is the probability that
among the nodes in the vulnerability radius which coexist with xi (outside
of the contention region of xi) some will be able to make the SIR drop un-
der the threshold β. The probability of coverage is the complement of the
probability of outage:

P csma
c = 1−

+∞∑
k=1

+∞∑
n=k

k∑
l=1

Pn

(
n

k

)
(1− Pd′)kP n−k

d′

(
k

l

)
P l
β(1− Pβ)k−l

= e−KcsmaPβ(1−Pd′ ), (15)

with Pn = (Kcsma)ne−Kcsma

n!
, Kcsma = ρcsma(4/3)πr3

v, Pd′ and Pβ are respec-
tively the probability that a node coexists with the emitter and the probabil-
ity that the SIR drops under the reception threshold. Pd′ and Pβ are derived
below in this section. The full detail argument for Equation (15) can be
found in Appendix B. Again, the derivation is similar to the 2D case in [14].
Nevertheless, deep differences from the 2D case are found in the expressions
of Pd′ and Pβ derived below (and also in expression (13) of ρcsma as shown
in Section 3.2.3).
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Pd′ is the probability for a node in B(o, rv) to be in the contention domain
of xi (to be detected by xi):

Pd′ = P (Pthijr
−α
ij ≥ Td)

= ERij
[
P

(
hij ≥

Tdr
α
ij

Pt
|rij
)]

=

rv+rio∫
0

fRij(rij)e
−µTdrαij/Ptdrij

=
3Γ
(

3
α

)
− 3Γ

(
3
α
, A
)

α rv3
(
µTd
Pt

) 3
α

+
[
3C(−r4

v − 2rior
3
v + 2r3

iorv + r4
io) A

(4/α)B(2/α)

− 6D(rior
3
v + 3r2

ior
2
v + 3r3

iorv + r4
io)A

(4/α)B(1/α)

+ 3E(r4
v + 4rior

3
v + 6r2

ior
2
v + 4r3

iorv + r4
io)A

(4/α)

+B(4/α)
{

3F (r4
v − 2rior

3
v + 2r3

iorv − r4
io) A

(2/α)

+ 6G(rior
3
v − 3r2

ior
2
v + 3r3

iorv − r4
io)A

(1/α)

+3H(−r4
v + 4rior

3
v − 6r2

ior
2
v + 4r3

iorv − r4
io)
}]

/
[
4αrior

3
vA

(4/α)B(4/α)
]
, (16)

withA =
(
µ (rv−rio)α Td

Pt

)
, B =

(
µ (rv+rio)

α Td
Pt

)
, C = Γ(2/α,B), D = Γ(3/α,B),

E = Γ(4/α,B), F = Γ(2/α,A), G = Γ(3/α,A), and H = Γ(4/α,A).
Here the expression of fRij(rij) changes from (12) in Section 3.2.3, because

we are no more interested in B(xi, rd) but rather in B(o, rv). As can be seen
in Fig. 2 we now have two cases: either B(xi, rij), the dotted sphere, is
contained in B(o, rv), the dashed sphere (0 ≤ rij ≤ rv − rio), or it is not
(rv − rio < rij ≤ rv + rio). In the first case, the expression is similar to (12).
In the second case, the expression for fRij(rij) changes because we know that
xj cannot be outside of B(o, rv) so it must lie in the intersection of B(xi, rij)
and B(o, rv):

fRij(rij)

{
3r2
ij

r3
v
, for 0 ≤ rij ≤ rv − rio,

3rij(rv−rio+rij)(rv+rio−rij)
4rior3

v
, for rv − rio < rij ≤ rv + rio.

(17)
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o
xi

xj

rv rio

rij

(a) 0 ≤ rij ≤ rv − rio.

o
xi

xj

rv rio

rij

(b) rv − rio < rij ≤ rv + rio.

Figure 2: Representation of the distances rij and rio in the vulnerability radius

Interestingly, we note that the second piece of the expression of fRij(rij)
is rational whereas in the 2D case it includes trigonometric functions (see
Appendix C). It allows to have an exact expression for Pd′ in the 3D case
(expression (16)) whereas, to the best of our knowledge, numerical integration
has to be used in the 2D case (see Appendix C).

Pβ is the probability that a node in B(o, rv) is able to make the SIR at
the receiver drop under the reception threshold β:
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Pβ = P

(
hior

−α
io

hjor
−α
jo

≤ β

)

= ERjo
[
P

(
hio
hjo
≤ βr−αjo r

α
io

)]
=

rv∫
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where 2F1 is the Gaussian hyper-geometric function, (g) follows from FHio
Hjo

(l) =

1 − 1
1+l

and fRjo(rjo) =
3r2
jo

r3
v

, and (h) from the change of variable w =(
rjo

rioβ1/α

)3

.

In the CSMA case, with Equation (15), we have computed the probability
of coverage when the emitter is part of the MMP. Therefore, in order to
compute the capacity we have to modify Equation (8) to take into account
that the node has to be selected before it can transmit:

CCSMA = PCSMAP
CSMA
c B log2(1 + SIRmin). (19)

The terms are the same as Equation (8) with PCSMA
c defined by Equation

(15), and PCSMA (Equation (10)) is the probability that a node of the under-
lying PPP is selected in the MMP. It thus takes into account the fact that
the sender node has to be selected in the MMP in order to transmit.
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4. Numerical and simulation results

In this section, we present numerical results obtained from the models
described in Section 3. As stated in Section 1, the goal of this section is to
compare the 2D and 3D PPP and MMP models with simulation results when
a maximal building height is taken into account. This allows to investigate
the impact of the border effect on the results given by the 3D model.

4.1. 3D Poisson Point Process

4.1.1. Numerical results

Figure 3: Probability of coverage as a function of the emitter-receiver distance for 2D and
3D PPP interference

In Fig. 3, we plot Pc(ρ, β, 4, d) for the 2D and 3D cases with λ =
1.51 × 10−2 and ρ = 7.56 × 10−4 (as motivated in Section 1), µ = 1,
Pt = 100mW, Td = −76dBm, α = 4 and β = 10, the plot is as a func-
tion of the emitter-receiver distance d. We observe that Pc, in the 2D case,
is highly underestimated when the receiver is close to the emitter. Given
the steepness of the decay, the error might be important: for instance, there
is 0.23 absolute difference at 2 meters. We note that the Pc is getting very
rapidly low (after few meters Pc goes to zero) which is not realistic. We
observe this because, in this simple case, all the nodes transmit at the same
time, whereas it is not the case in reality where a MAC protocol is used. Nev-
ertheless, the results show important differences between 2D and 3D models.
Results for the more realistic MMP model are proposed in Section 4.2.

16



3D PPP intensity    (nodes/m3)

2D PPP intensity    (nodes/m2)

P
ro

b
a
b
ili

ty
 o

f 
co

v
e
rg

a
e

Figure 4: Probability of coverage as a function of the node intensity for 2D and 3D PPP
interference

In Fig. 4, we compare the probability of coverage as a function of the
intensity for d = 2m. As mentioned in Section 1, if we assume that the
average building height is 20m, we have ρ = λ

20
. This is because in the 2D

case, all the nodes have no choice but to lie on the plane whereas in the 3D
case they are also spread in the third dimension. In Fig. 4, we thus have
two curves with different x axis scales in order to take into account this fact.
We observe that both curves have an exponential decay with the 3D curve
being over the 2D. Equation (8) defines the capacity of the channel under
PPP interference as a function of the probability of coverage. Fig. 5 is a plot
of the capacity for B = 20MHz and SIRmin = β (d is kept equal to 2m).
The capacity is a product between the probability of coverage and a term
depending on the bandwidth and the minimum SIR, so we observe in Fig. 5
the same type of exponential decay as in Fig. 4.

4.1.2. Comparison with simulation results

In this section, we compare the theoretical and simulation results. We
evaluate the relevancy of the 3D approach for dense urban areas by consid-
ering the following question: for which building height does it make sense to
model the interference process as a 3D PPP? Indeed, in reality, the nodes will
be spread within a finite height because of the limited height of the buildings,
so a border effect may appear compared to the theoretical model.

The simulation setup is as follows: the point process is generated in a
box of 200m× 200m×Z with Z ∈ 10m, 50m, 100m. The 3D intensity of the
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Figure 5: Capacity as a function of the node intensity for 2D and 3D PPP interference

process is calculated based on the 2D intensity: ρ = λ
Z

. The reason for this
is that in the 2D all the points have to lie on a plane, the intensity is thus
maximal. In the 3D case, the points are also spread along the z axis. Then for
each realization of the PPP, the SIR is computed at the origin (the center of
the aforementioned box) thanks to equation (1). The simulation and model
parameters are the following: λ = 1.51× 10−2 (we keep the values from the
example of Section 1), β = 10 and α = 4. The emitter-receiver distance d
varies from 0 to 10 meters. For the PPP case, the actual placement of the
emitter does not matter, we only need to have the received signal strength
computed with the emission power and random attenuation (numerator of
Equation 1). Intuitively, this is because the emitter does not influence the
interference as in the MMP case.

Fig. 6 depicts the comparison of the probability of coverage Pc between
simulation and theoretical results for different building heights (parameter
Z) as a function of the emitter-receiver distance. For each simulation point,
104 PPP realizations are produced. The 95% confidence interval is plotted,
but is barely visible (it is very small). The 2D model corresponds to the
solid curve, we observe that it underestimates the probability of coverage
compared to 3D models and simulations. The three dashed and dotted curves
correspond to the 3D theoretical models. They are obtained from expression
(6) with ρ = λ

Z
and Z ∈ 10m, 50m, 100m. We observe, as expected, that

the probability of coverage is higher when the considered height Z is greater
because the nodes are more spread, and thus the distances to the interferers
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Figure 6: Comparison of theoretical and simulation results for PPP interference

are larger on average. For Z = 50m and Z = 100m the simulation matches
the theoretical prediction very well. Nevertheless, a tiny deviation can be
noticed at the tail of the curves. This deviation is larger for Z = 50m than
for Z = 100m. In the Z = 10m case, the deviation of the theoretical model
from the simulations is very significant. We can interpret these deviations
as a border effect when the height of the box is reduced: the 3D theoretical
model assumes no limits on the x, y and z axis. We also observe that even
when the height of the box is reduced to Z = 10m the 2D theoretical model
is not a good representation of the simulation data either. In this case, we
note that the 3D model is a better match for the start of the curve and the
2D model is better for the tail of the curve.

We conclude that the 3D model seems to be accurate enough when the
box height is sufficiently large to avoid border effect. Moreover, even when
the height is small (the Z = 10m case) 3D model still provides a good
representation of the probability of coverage close to the emitter because the
border effect is larger for longer emitter-receiver distances.

4.2. 3D Modified Matern Process

In this part, we present the results for the MMP model.

4.2.1. Numerical results

Fig. 7 depicts the probability of coverage for the 2D and 3D cases for
the MMP. P csma

c (Equation (15)) is given as a function of rio, the emitter-
receiver distance. The curves are plotted with the values Pt = 100mW,
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Figure 7: Probability of coverage for 2D and 3D MMP

Td = −76dBm, β = 10, α = 4, µ = 1, εd = 10−6, εv = 10−2, and ρ and λ
from Section 1. First we have to note that in this case, the communication
range is more realistic (even if in reality in dense urban environments, we
may encounter pathloss exponents greater than 4). We observe that, with
the aforementioned parameter values, the probability of coverage is strictly
higher in the 2D case for emitter-receiver distances greater than 50m. We
can interpret this result as follows: for the PPP in Section 3.1, we remarked
that the 3D probability of coverage tends to drop later than the 2D, but then
the slope is steeper. For the MMP model, the difference in the drop position
is suppressed by the contention mechanism (it avoids close interferers), but
the difference in the slopes remains.

As described in Section 3.2.3, the intensity ρcsma of the point process
representing the transmitters (the MMP) is different from the underlying
PPP intensity ρ. Fig. 8 depicts the value of ρcsma as a function of ρ (it
corresponds to equation (13)), we observe that the value of ρcsma converges
toward a maximum value: lim

ρ→∞
ρcsma = 1

(4/3)πr3
dPd

. It means that, when

the intensity of nodes increases, the intensity of interferers converges. In
the remainder of the paper, we call this situation saturated condition. The
convergence implies that even in the 2D case where all the nodes lie on
the Euclidean plane, the intensity of interferers will not grow as much as
in the PPP case. This implies that the probability of coverage as defined
in Equation (15) does not varies as a function of the intensity when we are
in saturated condition. Intuitively, this can be understood because of the
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Figure 8: Intensity of the MMP as a function of the intensity of the underlying PPP

guard distance induced by the CSMA mechanism around the emitter which
prevents close interferers even when the network is dense.
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Figure 9: Capacity as a function of the underlying 2D and 3D PPP intensity for CSMA

Fig. 9 is a plot of the capacity as a function of the intensity of the
process. Equation (19) is used with SIRmin = β and B = 20MHz, PCSMA

c is
computed at 50m from the emitter. We use the same relation between λ and
ρ as in Figs. 4 and 5 (20m building height). In this case, we observe that the
capacity in 3D drops more rapidly than 2D when the number of nodes per
measure unit increases. This is coherent with the interpretation of Fig. 7.
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4.2.2. Comparison with simulation results

In this section, we compare the 3D theoretical model with the 2D theo-
retical model and with simulation results. The goal, as in Section 4.1.2, is to
evaluate the adequacy of 2D and 3D models to represent the probability of
coverage for different node parameters and building heights. In this section,
we experiment with two simulation setups: the first with 802.11 node pa-
rameters, and the second with node parameters representing 802.15.4 radios.

The first simulation setup is as follows: the underlying PPP is generated
in a box of 2000m × 2000m × Z with Z ∈ 20m, 200m, 2000m. We use a
larger box than for the PPP case, because otherwise we do not have enough
nodes in the MMP after the thinning of the PPP through the contention
process. The contention process consists in nodes picking a random mark
uniformly in [0, 1]. Then each node checks if it can detect neighbors with a
lower mark. A node is detected if the signal received is above a threshold
(the signal strength depends on the transmission power, the distance, and on
a fading random variable). If no detectable neighbor has a lower mark, the
node is kept in the MMP.

Figure 10: Comparison of theoretical and simulation results for the MMP model for Z =
2000m

As in Section 4.1.2, the 3D intensity of the process is calculated based
on the 2D intensity: ρ = λ

Z
. In this case, we take λ = 7 × 10−5 so that we

have enough nodes in the box and the thinning process is not too long (it is
notably very long for the parameters considered in Section 1). We will see
that this value is important only if we are not in saturated condition (see
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the comment on Fig. 8 in the previous section). For each realization of the
MMP, we select the closest node to the center of the box to be the emitter,
we then compute the SIR at rio meters from the emitter (in direction of the
center of the box) and check if it is over or below the reception threshold.
We repeat this process 103 times for every rio. The parameters of the node
and the channel are as follows: Pt = 100mW, Td = −76dBm, β = 10, α = 4,
and µ = 1.

Fig. 10 depicts the simulation results with Z = 2000m and 2D (solid
curve) and 3D (dashed curved) model predictions for the probability of cov-
erage. In this case, the 3D model is not in saturated condition. We observe
that the 2D and 3D models yield very close values. Nevertheless, the simu-
lation results closely follow the 3D model predictions.

(a) Z = 200m (b) Z = 20m

Figure 11: Comparison of theoretical and simulation results for the MMP model for Td =
−76dBm

Figs. 11a and 11b present the same comparison as Fig. 10 but for more
reasonable simulated Z: 200m and 20m. In these cases, the 3D model is
in saturated condition and we observe as in Fig. 7, that the theoretical
predictions of the 2D and 3D models differ. Interestingly, for both Z =
200m and Z = 20m the simulation results are closer to the 2D theoretical
predictions. We note that for Z = 20m the match with the 2D model is
better than for Z = 200m, notably for the tail of the curve. These results
can be explained by the protection radius granted to the emitter thanks to
the contention process. Indeed, with the considered parameters, the average

23



detection range is 251m. Interferers are thus very rarely situated above
or below the receiver in this context (building heights are Z = 200m and
Z = 20m) and so the vertical distances do not have a significant impact on
the probability of coverage. We believe this account for the better match
of the 2D model. This aspect is explicated in more details with the second
simulation setup further in this section.

The second simulation setup is similar to the first except for Td = −60dBm
and Pt = 1mW (realistic for a typical WSN low power radio [24]) and the sim-
ulation box size is reduced to 200m×200m×Z with Z ∈ 20m, 50m, 75m, 100m,
200m.

Figure 12: Comparison of theoretical and simulation results for the MMP model for Td =
−60dBm

Fig. 12 shows a comparison of the simulation results with 2D and 3D
models for the second simulation setup. We are, again, in saturated con-
ditions. In this case, we observe that the simulation results are distributed
between the 2D and 3D theoretical models. When Z increases the 3D model
is a better match for the simulations results, while the 2D is better for smaller
Z.

Intuitively this result can be understood because the CSMA detection
radius (carrier sense mechanism) impede transmitter nodes to lie above one
another when the building size is comparable to the size of the detection
zone. If transmitters cannot be one above another, the 3D model is not able
to accurately model the interference. In Fig. 13, we plot the positions of
transmitters in one simulation instance with their average detection zone for
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different building sizes. We observe that the transmitters are approximately
on a plane for a small building height (Z=20m), whereas they are more
distributed along the z axis for larger building sizes.

In order to gain insight on this result, let us consider the probability for
a node A, selected for transmission (in Φm) in the building, to have a node
B, also selected for transmission, at distance r. For the coexistence of these
two nodes, two cases are possible: either A has the smallest mark and B does
not detect A, or B has the smallest mark and A does not detect B:

P (|AB| = r) =P (PthABr
−α < Td)P (mA < mB)

+ P (PthBAr
−α < Td)P (mB < mA)

=1− e−µTdrα/Pt , (20)

with hBA and hAB both exponentially distributed with parameter µ and
are independent, and P (mA < mB) = P (mB < mA) = 1

2
. Equation (20)

is plotted in Fig. 14 with the same parameter values as the simulations
in Fig. 12. We observe that it is very unlikely that two nodes selected for
transmissions in CSMA can be at less than 20 meters. In fact, we can see that
nodes are not likely to lie closer to each others than their average detection
distance, which is 32m in this case. If the building height is 20 meters, then
we cannot have one node above another node and thus the 2D model is more
relevant. When the building height increases, it becomes possible to have
nodes above/under others, and thus we have multiple layers of nodes (as can
be observed in Figs. 13b and 13c). In order for the 3D model to become
really relevant, we need to have interferers above the nodes as well as under.
In order to have this, we need the building to be high enough so that the
probability of having three layers of nodes is not too low. We see in Fig.
13b, that for 75m it does not happen. In fact, we would need a building
height of more than 3 times the average detection radius to be confident in
having 3 layers. In that case, nodes in the middle layer would experience
3D interference. Consequently, for heights from 2 to 3 times the average
detection radius, the results lie between 2D and 3D models as can be seen in
Fig. 12.

In this section, we highlighted the fact that in the CSMA case, the model
has to be chosen carefully. Indeed, the 3D model seems to be relevant only if
the average detection radius is much smaller than the building height which
is not the case for 802.11. Nevertheless, this model is satisfying for low power
low range communications for which the detection range is much smaller.
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5. Conclusion and future works

In this paper, we investigate the probability of coverage in the 3D case
for two models: PPP and MMP. We show that abusively considering 2D net-
works when they are 3D can lead to either overestimating or underestimating
the probability of coverage depending on the model parameters. We also no-
tice interesting differences in the integral forms of the expressions when going
from 2D to 3D which notably affect their tractability.

By comparing the models with simulations, we observe that the 3D model
is relevant in the PPP case even if the height of the simulation box is small
compared to its length and width. In the MMP case for the modeling of
CSMA, it depends on the detection radius. If the detection radius is larger
than the building height, the 2D model is closer to the simulations, otherwise,
the 3D model is more relevant.

Beside the results on stochastic geometry, this work can be seen as an
incentive to use 3D model and 3D simulation layouts for the design and
evaluation of protocol which is seldom done in reality. Section 4.2.2 suggests
that it is especially important for the design of low range IoT protocols in
dense urban areas.

In the future, we plan to compare the model with traces collected in dense
urban areas in order to validate our theoretical predictions and simulations.
A comparison with large scale realistic simulations (notably including a more
realistic propagation model) would also be useful to the community. Up to
our knowledge, no study comparing high fidelity simulation or experimental
results to stochastic geometry models are available.

Moreover, it would be interesting to develop the 3D models by introducing
a fourth dimension in the process in order to account for the packet arrivals
which are spread in time.
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(c) Z = 200m

Figure 13: Instances of Φm for different building heights with the average detection zone
represented as a sphere (32m radius)
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Figure 14: P (|AB| = r) with µ = 1, Pt = 1mW , and Td = −60dBm
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Appendix A. Derivation of equation (10)

Pcsma =
+∞∑
k=0

+∞∑
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1
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(
n

k

)
P k
d (1− Pd)n−k

=
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k=0
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1

1 + k
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k!(n− k)!
P k
d (1− Pd)n−k

=
+∞∑
k=0

+∞∑
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1

(1 + k)!

Kne−K

n!
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(n− k)!
(1− Pd)n−k

(∗)
=

e−K
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(KPd)
k+1
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+∞∑
m=0

Km

(m)!
(1− Pd)m

=
1− e−KPd
KPd

,

at step (*) we let m = n−k. The differences with the 2D case [13, 14] are to
be found in the expression of K = ρ(4/3)πr3

d and Pd given by Equation (11).
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Appendix B. Derivation of equation (15)

P csma
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at step (*) we let m = n − k. The differences with the 2D case [14] are to
be found in the expression of Kcsma = ρcsma(4/3)πr3

v, Pd′ and Pβ given by
Equations (16) and (18).

Appendix C. MMP: the 2D case

In this appendix we give the results which allow to plot P csma
c for the 2D

case in Section 4. In the 2D case:

P csma
c = e−KcsmaPβ(1−Pd′ ),

with Kcsma = λcsmaπr
2
v (see [13] for the derivation of λcsma), rv is given by

Equation (14). For α = 4, Pβ is given by:

Pβ =
r2
io

r2
v

β1/2 arctan

(
r2
v

r2
ioβ

1/2

)
.
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Pd′ is as follows:

Pd′ =

√
πerf

(
(rv

2 − 2riorv + r2
io)
√

µTd
Pt

)
2r2

v

√
µTd
Pt

+

∫ rv+rio

rv−rio

 rij
rv2
−

2 · rij · asin
(
rio

2−rv2

2rijrio
+

rij
2rio

)
πrv2

 e
−
µrij

aTd
Pt drij,

rio is the emitter-receiver distance, rij defined as in Equation (16). As men-
tioned in Section 3.2.5, to the best of our knowledge, numerical integration
has to be used for the second term of Pd′ in the 2D case.
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