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Dual-arm relative tasks performance using sparse kinematic control

Sonny Tarbouriech∗† Benjamin Navarro∗ Philippe Fraisse∗

André Crosnier∗ Andrea Cherubini∗ and Damien Sallé†

Abstract— To make production lines more flexible, dual-arm
robots are good candidates to be deployed in autonomous
assembly units. In this paper, we propose a sparse kinematic
control strategy, that minimizes the number of joints actuated
for a coordinated task between two arms. The control strategy
is based on a hierarchical sparse QP architecture. We present
experimental results that highlight the capability of this archi-
tecture to produce sparser motions (for an assembly task) than
those obtained with standard controllers.

I. INTRODUCTION

The H2020 VERSATILE European Project1 aims at con-
tributing to the development of the “Factory of the Future”.
In particular, flexibility and versatility are enhanced in pro-
duction lines, by integrating dual-arm robotic platforms.

Indeed, using multiple cooperative robotic arms signifi-
cantly increases the potential of manipulators [1]. This type
of structures allows the manipulation of large and heavy
objects [2] as well as the achievement of difficult tasks that
are not feasible with a single arm [3], [4].

However, the resulting system becomes more complex
from a control perspective. Arms synchronization has to be
perfectly managed throughout a cooperative task, while in-
trinsic constraints arising from the dual-arm structure reduce
the solution space, compromising proper task tracking.

Despite the high number of degrees of freedom (DOF), a
dual-arm system is generally “not very redundant”. In fact,
the task is often specified by 12 parameters (6 for the pose
of each end-effector). Manipulators commonly used in the
industry have 6 or 7 DOF, meaning that the overall dual-arm
platform will have 12 or 14 DOF. In such cases, the robot
is not (or slightly) redundant with respect to the task as all
(or almost all) the joints are required to achieve it.

In [5], Chiacchio et al. presented a kinematic represen-
tation for dual-arm systems performing coordinated tasks.
Their idea was to consider the system as a single entity and
to describe the task in terms of cooperative variables, defined
by an absolute frame (computed as a function of the two end-
effector poses, expressed in the world frame) and a relative
frame (expression of one end-effector’s pose with respect to
the other).

Many industrial bimanual applications require the coordi-
nation of the arms’ relative motions without having to specify
the task in the workspace. Notably, this happens when an
object is held by one manipulator while the other realizes a

∗ LIRMM, Université de Montpellier, CNRS, Montpellier, France.
firstname.lastname@lirmm.fr
† Tecnalia Research and Innovation, Industry and Transport Division.
1https://versatile-project.eu/

F1

F2

Fr

Fb

Fig. 1. Representation of the frames related to our dual-arm robot.

manufacturing operation on it with a tool. Examples of such
tasks are assembling [6], sculpting [7] or welding [8].

In this case, the cooperative task space representation
cited above allows to control the relative frame only, so the
variables related to the absolute pose can be removed from
the task specification, adding 6 DOF to the task’s null space.

Exploiting redundancy for dual-arm systems has been the
topic of several studies, in which available DOF were used
for obstacle avoidance [9], to increase manipulability [10]
or to satisfy joint constraints [11], [12]. These approaches
make use of redundancy by defining a hierarchic prioritized
task architecture based on the projection on the null space of
the Jacobian [13]. This method guarantees that the tasks of
lower priority do not affect the performance of the highest
priority task. However, there is no explicit management of
hard constraints, i.e. constraints that must be satisfied all
the time.

A second issue with most approaches is that they impose
the motion of all actuators. In fact, inverse kinematics is
usually solved using the Jacobian pseudo-inverse; yet, on
redundant robots, this solution activates more actuators than
needed by the task, leading to non-economic movements.
This is an undesired behavior in industrial environments, as
it increases the potential risk of collision with unexpected
obstacles. Moreover, this generally results in a motion that
is confusing for an operator working near the robot.

Instead, an approach originally introduced in the signal
processing field [14] aims at generating a sparse, or par-
simonious, solution. In the context of robotics, a sparse
solution is one that activates as few actuators as possible,
reducing the overall motion and, consequently, the risk of
unintended contact with the environment. It has also been
shown that a parsimonious motion provides more natural
human-like movements and is therefore more predictable



from the operator point of view [15], [16].
In this paper, we propose a parsimonious kinematic control

strategy for dual-arm manipulators performing relative tasks
under joint limit constraints. Our approach is based on a
hierarchy of tasks, implemented as a sequence of quadratic
programs (QP) [17]. The main contributions of our frame-
work are:
• The primary task (relative end-effector pose control) is

formulated as an optimization problem which returns a
sparse solution that minimizes the generated motion, in
the actuators’ space.

• A secondary task with lower priority is occasionally
activated to move joints away from their physical limits.

• Strict task priority is handled: lower-priority tasks are
performed as much as possible without producing any
effect on higher-priority tasks. Joint position and veloc-
ity limits are integrated as hard constraints to strictly
respect the robot’s physical capabilities.

The paper is organized as follows. Section II formulates
the kinematic control scheme for dual-arm coordinated mo-
tions. Section III introduces the parsimonious task-solving
approach as an optimization problem. Our strategy to take
into account joint limits is presented in Sect. IV. A descrip-
tion of the developed QP-based hierarchical architecture is
given in Sect. V. Experimental results of a screwing scenario
performed on a real dual-arm platform are reported in VI.
Finally, Sect. VII ends the paper with concluding remarks
and future perspectives.

II. DUAL-ARM KINEMATIC CONTROL LOOP

A. Task representation for coordinated motion

The dual-arm robot that we consider here is depicted in
Fig. 1. For each manipulator (i = 1, 2), pb

i denotes the end-
effector position and Rb

i the rotation matrix, both expressed
in a common base frame (superscript ”b”).

The relative pose corresponds to the coordinates of one
end-effector’s frame with respect to the other. If we consider
F1 as the reference frame, the relative position is given by:

p1
r = p1

2. (1)

Similarly, the relative orientation can be defined with refer-
ence to frame F1 in terms of the rotation matrix

R1
r = R1

2. (2)

B. The relative Jacobian definition

The standard inverse kinematic problem consists in finding
joint velocities q̇ to obtain a desired task space velocity ẋ:

ẋ = Jq̇. (3)

For a two-manipulator system with relative control, the
velocity vectors in the joint and task spaces are defined as:

ẋ =

[
v1
r

ω1
r

]
and q̇ =

[
q̇1

q̇2

]
, (4)

with v1
r , ω1

r respectively the linear and angular velocity of
the task variables.

Solving the inverse kinematic problem using this formal-
ism induces the definition of a relative Jacobian J that
maps the joint velocities of the two robots to their relative
motion in task-space. A first expression was proposed in [18].
Following formulations were derived from the Jacobians
of each manipulator (Jb

1 and Jb
2), leading to simpler and

more efficient implementations [19], [20]. However, these
expressions omit that the rotational velocity of the reference
frame attached to one of the end-effectors can be non-null
[21]. Recent work [22] addressed this issue and proposed:

J =
[
−Ψ1

rΩ
1
bJ

b
1 Ω1

bJ
b
2

]
, (5)

with

Ψ1
r =

[
I −S(p1

r)
0 I

]
, Ω1

b =

[
R1

b 0

0 R1
b

]
. (6)

C. Closed-loop inverse kinematic problem

For closed-loop control, the inverse kinematic problem in
(3) is reformulated as a tracking problem, whose input is the
desired relative task velocity ẋ∗ and whose outputs are the
corresponding joint velocities q̇.

Let e denote the six-dimensional error between the desired
and current task velocities, such as:

ė = ẋ∗ − ẋ. (7)

This vector can be partitioned into a position (subscript “p”)
and an orientation (subscript “o”) part:

e =

[
ep

eo

]
. (8)

The definition of relative position error is straightforward:

ep = p1∗
r − p1

r. (9)

The definition of an orientation error eo was given by Luh
et al. [23] and is expressed here as:

eo =
1

2

(
S
(
n1
r

)
n1∗
r + S

(
s1r
)
s1∗r + S

(
a1
r

)
a1∗
r

)
. (10)

where (n, s,a) and (n∗, s∗,a∗) denote respectively the ac-
tual and desired unit vector triples of the task frame.

Using (3) yields :

ė = ẋ∗ − Jq̇, (11)

where J is defined in (5). To obtain an exponential conver-
gence of the error:

ė = −Ke, K > 0, (12)

plugging (12) into (11) yields the least square solution for
the joint velocity:

q̇ = J+ (ẋ∗ +Ke) . (13)

Here, the inverse kinematic problem has been solved by
computing the pseudoinverse J+ of the Jacobian matrix [24].
Section III will introduce our alternative – parsimonious and
QP-based – method.



III. PARSIMONIOUS TASK-SOLVING APPROACH

When the system is redundant, multiple joint configura-
tions may satisfy the task while creating different behaviors.
An explicit resolution of the inverse kinematic problem,
when no constraint is specified, relies on the pseudoinverse
J+ of the Jacobian, as in (13). It consists in minimizing the
Euclidean norm of (3). However, this often requires restrict-
ing the admissible range of joint velocities. In particular, it
does not account for the physical robot constraints (e.g. joint
limits) nor for safety aspects (e.g. collisions). To consider
these aspects, an optimization problem has to be formulated
and solved by a numerical solver.

A quadratic programming resolution is the usual process
to obtain the desired q̇. It minimizes the same 2-norm as the
pseudoinverse but allows defining a set of constraints to be
satisfied at any time:

min
q̇

‖Jq̇− ẋ‖2

s.t. Aq̇ = b, Cq̇ ≤ d
(14)

where A, C are the linear coefficients matrices and b, d
the constant vectors in the equality and inequality constraints,
respectively. Despite an advanced state of the art in the
field, one drawback with (14) is the generation of joint
velocities for which every component is non-null, regardless
the number of DOF controlled in the task space. This
minimizes the energy dissipated by the system but not the
robot overall displacement.

In non-rigid industrial settings where the robot’s free
space can change, a parsimonious resolution would be more
appropriate. Here, we aim at minimizing the number of joints
involved in the task, thus reducing the robot motion.

The corresponding optimization problem is:

min
q̇

‖q̇‖0

s.t. ẋ = Jq̇,
(15)

with ‖q̇‖0 the number of nonzero components in q̇. This is
a NP-hard problem that requires a combinatorial approach
and dual-arm complexity does not allow to solve it on line.
It has been shown [25] that the sparsest solution can also be
obtained by solving the following equivalent problem:

min
q̇

‖q̇‖1

s.t. ẋ = Jq̇.
(16)

By easily transforming (16) into a linear program, a sparse
solution can be efficiently generated.

Fuchs also proved [26] that a parametrized quadratic
program, known in statistics as the lasso (Least Absolute
Shrinkage and Selection Operator), and expressed as:

min
q̇

1

2
‖Jq̇− ẋ‖22 + λ ‖q̇‖1 , λ > 0 (17)

converges to the same minimum point solution, i.e. having
least l1-norm, when λ = 0+. The advantage of using (17)
instead of (16) is that the kinematic problem is formulated as

a cost function and not as an equality constraint. This leads
to a softer behavior, since a solution is always found. In
fact, the optimization process tries to minimize the tracking
error of the task. If the kinematic problem is undetermined
and several solutions exist, then the sparsest one is returned.
Instead, with (16), no valid solution is computed when ẋ =
Jq̇ cannot be satisfied.

An algorithm for solving this optimization problem, while
also including both equality and inequality constraints, has
been proposed in [27]. The objective is to find a solution to
the constrained lasso problem:

min
q̇

1

2
‖Jq̇− ẋ‖22 + λ ‖q̇‖1 , λ > 0

s.t. Aq̇ = b, Cq̇ ≤ d

(18)

In [27], the problem is reformulated as a standard QP: the
l1 penalty term ‖q̇‖1 can be handled by decomposing q̇ into
its positive and negative parts, such as q̇ = q̇+ − q̇− with
q̇+ ≥ 0, q̇− ≥ 0. Then, plugging ‖q̇‖1 = q̇+ + q̇− in
(18):

min
q̇

1

2

(
q̇+

q̇−

)T (
JTJ −JTJ

−JTJ JTJ

)(
q̇+

q̇−

)
+

(
λ12p −

(
JT ẋ

−JT ẋ

))T (
q̇+

q̇−

)
s.t.

(
A −A

)(q̇+

q̇−

)
= b,

(
C −C

)(q̇+

q̇−

)
≤ d,

q̇+ ≥ 0, q̇− ≥ 0

(19)

which is the formulation of a standard QP of 2p variables,
p being the dimension of q.

IV. CONSIDERATIONS ON THE JOINT CONSTRAINTS

Taking into account joint limit constraints in dual-arm
manipulation has been addressed in [12]. In that paper, joint
limits avoidance is integrated in a prioritized hierarchy of
tasks, with priority depending on whether the system is
redundant or not. However, this architecture is based on the
projection on the null space of higher priority tasks, and does
not handle strict constraints. Moreover, it does not consider
joint velocity limits.

Our approach to address joint limits is twofold:
• setting hard constraints at the joint velocity level for

each task, to remain inside joint position and velocity
ranges at anytime.

• creating a lower priority task in which a repulsive cost
function q̇r pushes joints away from their limits.

A. Joint position and velocity limits

Let us define the lower and upper bounds on joint positions
and velocities as:

q ≤ q ≤ q,

q̇ ≤ q̇ ≤ q̇.
(20)



Since the control variables are joint velocities, we want
to express the position constraint as a velocity constraint. In
a discrete control loop of sampling time T > 0, the joint
velocity remains constant between two iterations. Thus, if k
is the current iteration and the position constraint has to be
satisfied at k + 1, this can be written as:

q ≤ qk + q̇T ≤ q, (21)

which, plugged into (20), gives:

q− qk

T
≤ q̇ ≤ q− qk

T
,

q̇ ≤ q̇ ≤ q̇.
(22)

From (22), we keep the most restrictive condition, to define
the final lower and upper bounds, respectively Q̇ and Q̇:

Q̇ = max

{
q̇,

q− qk

T

}
Q̇ = min

{
q̇,

q− qk

T

}
.

(23)

B. Repulsive cost function for joint limits avoidance

Although a dual-arm robot is highly redundant with re-
spect to a relative cooperative task, reaching joint position
boundaries limits its operational capabilities. This may lead
to suboptimal solutions, due to the reduction of the admissi-
ble solution space. To avoid this, we define a repulsive vector
representing a target velocity for avoiding joint limits.

First, let α ∈ [0, 1] be a tunable parameter that sets the
critical parts of the joint range [q, q] (i.e., the areas in which
the repulsive action should be enabled). This leads to the
definition of lower and upper activation thresholds (shown
for joint i in Fig. 2), respectively:

q∗ = q + α
q− q

2

q∗ = q− α
q− q

2
.

(24)

If a joint position is inside [q∗,q∗], no repulsive action is
applied. In this case, the reference velocity for this joint is 0
(to avoid unnecessary motion). Otherwise, it is defined as a
ratio of the minimum/maximum velocity that can be applied,
depending whether the critical part is near the lower or upper
joint limit. The repulsive value q̇r,i associated to joint i is
depicted in Fig. 2 and computed as:

q̇r,i =


0, qi ∈ ]q∗

i
; q∗i [

(qi−q∗
i
)2

(q
i
−q∗

i
)2 q̇i qi ∈ [q

i
; q∗

i
]

(qi−q∗i )
2

(qi−q∗i )2
q̇
i

qi ∈ [q∗i ; qi].

(25)

q̇r,i

q̇i

q̇
i

0
q
i

q∗
i

q∗i qi

Fig. 2. Evolution of repulsive value associated to joint i with respect to
joint position.

V. HIERARCHICAL SPARSE QUADRATIC PROGRAMMING
ARCHITECTURE

The parsimonious task solving method and joint limits
avoidance strategy are integrated in a hierarchical sparse
quadratic programming framework.

The primary task is to ensure proper trajectory tracking of
the desired ẋ∗, while minimizing the generated motion and
respecting joint limits. We denote as QP1 the corresponding
optimization process and q̇1 the generated solution:

q̇1 ∈ min
q̇

1

2
‖Jq̇− (ẋ∗ +Ke)‖22 + λ ‖q̇‖1 , λ = 0+

s.t. Q̇≤ q̇ ≤ Q̇.
(26)

Here, the l2-norm term solves the closed-loop inverse
kinematic problem presented in Section II-C and boundaries
for q̇ are the ones defined in (23). The l1-norm penalty term
λ is a real parameter such as λ ∈

[
0+, ‖JT (ẋ∗ +Ke)‖∞

]
in order to obtain a sparse solution. By taking λ as small as
possible inside the permissible range provides the sparsest
solution amongst those satisfying the task. Indeed, a greater
value of λ increases the sparsity but also the tracking error.

The secondary task, for joint limits avoidance, is imple-
mented as another QP (referred to as QP2). It provides an
additional joint velocity vector q̇2 solution of:

q̇2 ∈ min
q̇

‖q̇− q̇r‖2

s.t. Q̇− q̇1 ≤ q̇ ≤ Q̇− q̇1,

Jq̇ = 0.

(27)

Adding the equality constraint Jq̇ = 0 restricts the
solution space to the null space of the primary task, and
does not affect its performance. Joint constraints have to be
updated to take into account the velocity generated by q̇1.
Finally, the joint velocity sent to the robot is:

q̇ = q̇1 + q̇2. (28)

The complete Hierarchical Sparse QP control framework
is depicted in Fig. 3.



Trajectory Generator

Task constraints:
Error

Computation
from (9), (10)

Repulsive vector
Computation
from (26)Forward kinematics

p1∗
r , R1∗

r

p1
r , R1

r

Task command
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Fig. 3. The Hierarchical Sparse QP closed-loop kinematic scheme with trajectory generation.

VI. EXPERIMENTAL RESULTS

The efficiency and performance of the presented frame-
work have been tested in simulation and on the real dual-arm
cobot BAZAR designed at LIRMM. BAZAR is equipped
with two 7-DOF Kuka LWR4 arms and an omni-directional
mobile base (fixed in this study).

All experiments are performed on a computer with Intel(R)
Core(TM) i7-6600U CPU running Linux. Our approach has
been implemented in C++ using the Knowbotics framework
developed at LIRMM. Simulation scenarios are performed
on the Virtual Robot Experimentation Platform (V-REP)2.
The Fast Research Interface Library (FRI)3 was used to
communicate with the Kuka arms during the real experiment,
and the controller sample time was set to T = 5ms.

The Reflexxes Motion Library [28] is used as trajectory
generator for x∗ and ẋ∗, given a set of constraints.

We use a gain K = 10 to compensate the tracking error.
The l1-norm penalization factor is set to λ = 1× 10−6, and
α = 0.1 is taken for the repulsive cost function. Joint limits
used are the nominal LWR4 ones.

Video of the experiments is available at http://bit.do/esfyu.

A. Assembly task scenario

Our control scheme has been validated on the real robot
through an assembly task in which a peg-in-hole operation is
simulated. A peg is attached to one arm while a shape with
corresponding hole is fixed to the other. Screwing motion is
also required to realize the insertion. The task is divided into
two parts:
• At the beginning, the two arms are located far from

each other as in Fig. 1. The first relative motion aims
at bringing the objects closer and aligning the peg with
the hole, as shown in the left pictures of Fig. 4.

• then, the screwing operation is performed to insert the
peg in the hole.

2http://www.coppeliarobotics.com/
3https://cs.stanford.edu/people/tkr/fri/html/

The scenario is performed with three different task-solving
configurations: regular QP from (14), sparse QP (QP1), and
hierarchical sparse QP (QP1 + QP2). Hard constraints on
joint limits are integrated in any case.

(a) Standard QP

(b) Sparse QP

(c) Hierarchical Sparse QP

Fig. 4. Initial and final configuration reached during the simulated assembly
task using the different task-solving configurations.

B. Results

From a high-level point of view, initial and final configu-
rations obtained for the screwing task reveal the behavioral
differences between the methods in terms of generated
motions. The screwing operation, that could be intuitively
performed by a simple action, generated a high occupancy of



the workspace using the standard QP (Fig. 4(a)) . Conversely,
the parsimonious solution has resulted in local and economic
movements as demonstrated by Fig. 4(b) that shows similar
intermediate and final configurations, except for the grippers’
orientations. In the last case (Fig. 4(c)), the secondary task
has slightly modified the configurations to avoid limits for
the right shoulder and the wrists.
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Fig. 5. Comparison of joint velocity norms during the assembly task
execution. A threshold value of 1× 10−3 rad s−1 is taken to differentiate
active from inactive joints (l0-norm).

TABLE I
COMPARISON OF THE METHODS DURING THE ASSEMBLY TASKS USING

DIFFERENT METRICS.

Metric Standard QP Sparse QP Hierarchical
Sparse QP∫∞

0 ||q̇||0dt 13.385 4.782 6.311∫∞
0 ||q̇||1dt 0.393 0.308 0.333∫∞
0 ||q̇||2dt 0.133 0.184 0.182

Numerical results from Fig. 5 and I confirm this obser-
vation. The overall number of actuated joints as well as the
sum of absolute joint velocities have been reduced with the
parsimonious approach. Indeed, aligning both end-effectors

from an arbitrary configuration required the use of six joints
for the most part, corresponding to the number of controlled
task variables. Even less joints are needed to execute the
screwing movement, because of the geometric properties of
the operation. As expected, the standard QP approach mini-
mizes the energy consumption during the task. However, this
resolution involves the use of almost every joints, regardless
the geometric complexity of the task. When the joint limits
repulsive cost function is enabled (Hierarchical Sparse QP),
additional joints are temporarily activated to leave critical
parts of position ranges: between 5.4 s and 9 s the right
shoulder approaches a boundary, and from 34 s to the end of
the task, the two wrists reach the repulsive area. However,
as seen in Fig. 5(a) and Fig. 5(b), this feature has only local
effect on the robot’s behavior and the hierarchical sparse QP
still provides much sparser motions than the standard one,
as demonstrated in Table I. Note that the hierarchical sparse
QP may give a smaller number of actuated joints compared
to the sparse QP (as is the case in the middle part of the
task). This is due to the algorithms which are local and do
not ensure global optimality.

VII. CONCLUSION AND FUTURE WORK

This paper presented a new kinematic control strategy for
cooperative dual manipulator robots. Based on a hierarchy of
QP, the obtained solution is one that activates the minimal
number of joints to perform coordinated motions, while
avoiding joint limits. Experiments on a real dual-arm robot
revealed the benefits of our task-solving method compared
to the standard QP. The resulting economic behavior is an
appealing feature for numerous robotic applications.

Future work will focus on addressing parsimony in simul-
taneous local and global manner by mixing kinematic and
impedance control for improving the interaction with human
operator and robot in the collaborative manipulation tasks.
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