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Abstract: Melanoma is one the most increasing cancers since past decades. For accurate detection and classification,
discriminative features are required to distinguish between benign and malignant cases. In this study, the authors introduce a
fusion of structural and textural features from two descriptors. The structural features are extracted from wavelet and curvelet
transforms, whereas the textural features are extracted from different variants of local binary pattern operator. The proposed
method is implemented on 200 images from PH2 dermoscopy database including 160 non-melanoma and 40 melanoma images,
where a rigorous statistical analysis for the database is performed. Using support vector machine (SVM) classifier with random
sampling cross-validation method between the three cases of skin lesions given in the database, the validated results showed a
very encouraging performance with a sensitivity of 78.93%, a specificity of 93.25% and an accuracy of 86.07%. The proposed
approach outperforms the existing methods on the PH2 database.

1 Introduction
Melanoma is amongst one of the most dangerous cancers. An
estimated 2–3 million people suffer from non-melanoma, and
around 132,000 of melanoma cases are diagnosed globally every
year [1–3]. Skin cancer represents ∼1.6% of the total number of
cancer worldwide [3, 4]. Its treatment needs chemotherapy and
radiotherapy such as other cancers types such as breast cancer,
blood cancer, brain tumour or lung cancer when reached in
metastasis state [3, 5]. To avoid these painful procedures, and for a
successful treatment, early detection is one of the most reliable
solutions.

Skin cancer detection has been an attractive topic to researchers
since 1984 in computerised analysis of pigment skin lesions
(PSLs). A survey by Korotkov and Garcia [6] summarise the issues
in dermoscopic and clinical images of PSL. Their work provides
good background information on the nature of skin lesions,
imaging modalities and techniques, procedures for clinical
diagnosis and automated melanoma diagnosis systems. Over the
years, many researchers have proposed various methods/techniques
in computer-aided diagnosis (CAD) systems to improve the
performance metrics such as accuracy, sensitivity and specificity,
area under curve and/or receiver operator curve (ROC) as
explained and detailed by Celebi et al. [7]. Like all other CAD
systems in medical image analysis, the skin images also undergo
image acquisition, preprocessing, segmentation, feature extraction
and finally, classification step.

In the current work, we explore a new approach for
discrimination of melanoma lesions using multiresolution analysis
such as wavelet and curvelet coefficients, combined with local
binary pattern (LBP) operator applied on dermoscopic images. The
developed approach uses the fusion of different features extracted
from various operators. The structural features are obtained from
multiresolution analyses (wavelet and curvelet coefficients) which
are used to discriminate the structures as borders, dots and streaks.
On the other side, the textural features computed by LBP operator
are used to discriminate the local variation of colours, the pigment
network etc. Later, these features are fused in multiple
combinations to investigate the influence of each combination in
the performance of melanoma detection.

In this paper, we also investigate a deep statistical
representativeness and the inference representation of the database
used, which is important for the confidence of the obtained results.
We also applied Dullrazor [8] software as a preprocessing step to
remove hairs.

The rest of this paper is organised as follows: Section 2 presents
a brief literature review of the methods used in skin cancer
recognition for each step of CAD system. Section 3 provides the
mathematical background of wavelet and curvelet transforms, and
the LBP operator. Section 4 presents the proposed method of
feature extraction. The used database is presented and statistically
analysed in Section 5. Section 6 presents the experimental works
and the details of features used followed by the experimental
results Section 7, where the results of each configuration are
presented and the analysis of the results discussed. Finally, the
conclusion is depicted in Section 8.

2 Literature review
In the literature, several researchers have focused on developing
CAD systems for skin cancer detection. In hospitals, to detect the
melanoma tissues, patients generally undergo a skin examination
using the skin surface microscopy techniques commonly known as
dermoscopy [9]. To measure the severity of skin deformation,
physicians often use scoring methods such as the ABCD rule [10]
or the 7-point checklist [11] for diagnosis and detection of
melanoma. As Image processing techniques, the contributions of
different papers in the literature are in image preprocessing,
segmentation, feature extraction and/or classification.

For preprocessing of melanoma images, many methods
proposed in the literature focused on hair removing and contrast
enhancement. Once such methods, named Dullrazor, was
introduced by Lee et al. [8] to remove hair and image artefacts. It is
one of the most widely known software in dermoscopic images [6].
With a similar objective, Abbas et al. [12] proposed a matched
filtering with first derivative-of-Gaussian method for hair
detection. This method shows accurate results, but the multitude of
parameters complicates its implementation. Applied on 100
dermoscopic images, the method shows a detection accuracy of
93.3%. Barata et al. [13] used a bank of directional filters and
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Partial Differential Equation (PDE)-based interpolation for hair
detection and inpainting, respectively. Then, the authors applied a
bank of directional filters and connected component analysis to
detect the lines of pigment network. Recently, Koehoorn et al. [14]
proposed a new approach based on thresholding set decomposition
and morphological analysis using gap-detection by multi-scale
skeletons. They applied their method on more than 300 skin images
and compared visually their results to the literature. They also
compared the execution time of these methods. Mirzaalian et al.
[15] proposed an alternative approach to detect hair in dermoscopic
images using the measurement of turbulence quaternion [16] and
dual matched filters for hair detection and suppression. On a
database of 40 dermoscopic images and 94 synthetic images, the
results obtained are, for segmentation, 86 and 85% of accuracy for
dermoscopic and synthetic images, respectively.

Once the preprocessing step is completed, the next challenging
task is the segmentation of melanocytic lesions from the processed
images. It refers to separate an image into disjoint homogeneous
regions respecting some properties such as luminance, colour and
texture. This procedure is detailed in Celebi et al. [17] and
completed in [7], where the authors classified several methods of
image segmentation explored in the literature into different
categories such as histogram thresholding, clustering, edge based
etc. They also compared the recent border detection methods (50
methods), and concluded that half (25/50) of them use smoothing
filters, and those based on thresholding are inherently robust
against noises. The authors noted that two methods, clustering
(19/50) and thresholding (18/50), are the most popular
segmentation methods. Previously, Celebi et al. [18] used the Otsu
thresholding method for lesion localisation. In Capdehourat et al.
[19], Colour-based Otsu method was also used, which is simpler
and significantly faster for some cases. Safi et al. [20] used a total
variation method developed by Li et al. [21], which is the
generalisation of Chan and Vese model [22]. The main idea is to
minimise the convex energy of the image. The results of these
methods are very encouraging. In a similar kind of study, an
extension of Chan and Vese model to differentiate the melanoma
and non-melanoma cases in skin cancer images is explored and
presented in [23].

The feature extraction step plays a crucial role in CAD systems,
because the classification and diagnosis depends on the types of
features extracted and their discriminating power. There are several
feature extraction methods in skin cancer research as in [20], where
the authors used the idea of the Asymmetry, Border, Color,
Diameter, Evolving (ABCDE) rule for extracting the image's
features from the regions of interest (ROIs). In this rule, A is
asymmetry, B is border, C stands for colour, D is diameter and E is

elevation or evolving (less used in clinical treatment). A set of
features are extracted by Celebi et al. [18] from multiple operators
describing the shape such as asymmetry and compactness of the
lesions, and colour features computing several statistical measures
over channels and colour spaces. They also used textural features,
where grey-level co-occurrence was employed. Multi-scale
roughness descriptors were used by Clawson et al. [24],
Capdehourat et al. [19] and Arroyo and Zapirain [4], where the
authors computed important statistical features as variance,
Hessian matrix and entropy. In [4], they extracted Gaussian
features using different values of σ and spectral texture features. To
select the best features, a decision tree by means rule was
implemented to obtain the 23 most significant features from a total
of 80 extracted features. Similarly, Barata et al. [9] compared the
global/local texture and colour features to classify skin lesion. For
smart-phone-based real-time systems, Abuzaghleh et al. [25]
proposed fast Fourier transform (FFT) mixed with discrete cosine
transform (DCT) applied on colour and shape for feature
extraction.

Classification is the last step in the typical work-flow for the
computerised analysis PSL images. The classification performance
is often measured in terms of accuracy, sensitivity and specificity.
The computation of these metrics is mostly used to compare the
results. The most used classification and often explored by
radiologist on ABCD criteria is scoring system by thresholds [6,
19], where the score is computed following the value and the
weight attributed to each feature (see Table 1). They also used a 7-
point checklist, which is another scoring system. The scores were
divided into two parts, i.e. major criteria (atypical pigment
network, blue-whitish veil and atypical vascular pattern) and minor
criteria (irregular streaks, irregular pigmentation, irregular dots/
globules and regression structures). The major criteria received two
points and those lying under minor criteria were awarded one point
[6, 19]. The classification is also done by thresholding for 7-point
checklist. 

In the literature, Maglogiannis and Doukas [26] enumerate
many classifiers explored in different classification methods used
in dermoscopy such as Support Vector Machine (SVM), artificial
neural network, K-nearest neighbours, discriminant analysis),
decisions trees, K-means, Bayesian classifiers and regression
analysis. Celebi et al. [18] used SVM classifier on a database of
564 images, with a proportion of 15.6% melanoma and 84.4%
benign, an area under the ROC of 0.9662 is obtained as results.
Capdehourat et al. [19] applied their approach on 655 images of
melanocytic lesions: 544 benign lesion and 111 malignant
melanoma. The result obtained is 89% of specificity and 95% of
sensitivity using AdaBoost/C5.4 approach. They compared their

Table 1 Summary of the characteristics of PH2 database
Database characteristics Common Nevus (80) Atypical Nevus (80) Melanoma (40)

asymmetry fully symmetric 96.25% (77) 43.75% (35) 12.5% (5)
symmetric in one axis 2.5% (2) 33.75% (27) 5% (2)

fully asymmetric 1.25% (1) 22.5% (18) 82.5% (33)
pigment network typical 100% (80) 3.75% (3) 2.5% (1)

atypical 0% (0) 96.25% (77) 97.5% (39)
dots/globules absent 36.25% (29) 50% (40) 45% (18)

typical 57.5% (46) 10% (8) 0% (0)
atypical 6.25% (5) 40% (32) 55% (22)

streaks absent 98.75% (79) 80% (64) 67.5% (27)
present 1.25% (1) 20% (16) 32.5% (13)

regression area absent 100% (80) 95% (76) 47.5% (19)
present 0% (0) 5% (4) 52.5% (21)

blue-whitish veil absent 100% (80) 92.5% (74) 25% (10)
present 0% (0) 7.5% (6) 75% (30)

colour one colour 42.5% (34) 25% (20) 0% (0)
two colours 53.75% (43) 63.75% (51) 32.5% (13)

three colours 3.75% (3) 11.25% (9) 27.5% (11)
four colours 0% (0) 0% (0) 32.5% (13)
five colours 0% (0) 0% (0) 7.5% (3)
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method with ABCD rule and 7-point checklist. The objective of
Arroyo and Zapirain [4] is to detect typical and atypical networks,
using high-level design which is composed of two main blocks, the
machine learning process and the searching of pattern structures.
They used C4.5 algorithm on 220 images (120 without reticular
pattern and 100 with such structure), the sensitivity is 86% and the
specificity is 81.67%.

Recently, Codella et al. [27] combine deep learning, sparse
coding and SVM learning algorithms. On a database of 2624 skin
images from International Skin Imaging Collaboration (ISIC)
archive database, a two-fold cross-validation is applied for
classification. The result obtained shows 93.1% of accuracy, 94.9%
of sensitivity and 92.2% of specificity. One of the drawbacks of
Codella et al. [27] study is that they chose a particular set of
lesions for their approach which can be considered as statistically
biased. Barata et al. [28] used four algorithms to extract colour
constancy (Gray World, max-Red Green Blue (RGB) color model,
Shady of Gray and General Gray World). SVM classifier with the
χ2 kernel is used for classification on two different databases, PH2

and Interactive Atlas of Dermoscopy (Skin Database) (EDRA).
The results obtained show the best performance on PH2 database,
with an accuracy of 84.3%, a sensitivity of 92.5% and a specificity
of 76.3%. Abuzaghleh et al. [25] used colour and shape geometry
features using FFT and DCT. SVM classifier is used on PH2

database for 75% for training and 25% for test. The results showed
an accuracy of 90.6%.

From the aforementioned methods, most of the developed
methods consider only local or global features [4, 18, 24], and in
other cases the authors used some special descriptors such as
colour [28], pigment network and border irregularities [19]. In
addition to that the majority of developed methods are based on
ABCD rule or 7-point checklist methods, which are more visual
scoring system than CAD system. For a fair comparison amongst
the studies the database should be the same, which is not the case
for many of these studies. Thus, from the literature, we suggest,
three main items to aid the comparison of different proposed
methods:

(i) The use of public databases, which could in addition to their
private database.
(ii) The highlighting of all parameter details.
(iii) The results validation using statistical methods such as cross-
validation.

Despite the several developed approaches, to our knowledge,
there is no CAD system available for medical doctors that can
perfectly discriminate melanoma. Thus, there is a need to explore
new directions in skin cancer detection. In the current paper, we
explore a set of features describing the local characteristics such as
dots and network pigments, using LBP operator and global
characteristics such as border irregularities and asymmetry,
exploring multiresolution analysis using wavelet and curvelet
transforms.

As evident from the literature, the detection of melanoma is a
very challenging task in dermoscopic images. Thus, in the current
paper, we present an approach to distinguish between the benign
and malignant lesions. Multiresolution techniques, e.g. wavelet and
curvelet provide shape representation of lesions by finding the
borders and streaks in skin cancer image, while LBP operator is
proposed to find all the local variations in colour and skin
pigments. This paper presents an automatic set of features
describing benign and malignant lesions. It aims at performing also
between common, atypical and melanoma cases. The approach is
performed and validated on a free public dataset of 200
dermoscopic images and all details are highlighted. Two
comparisons are done, intermediary one which is performed
between different combinations of textural and structural features,
then, we compared the obtained results to the ones achieved in the
literature using the same public database.

3 Mathematical tools

Sections 3.1–3.3 introduce the mathematical background of
wavelet, curvelet transforms and LBP operator, respectively, which
are implemented in the current study for the extraction of features.

3.1 Wavelet transform

Wavelet transform (WT) was introduced by Grossmann and Morlet
[29] using translation and dilations on square integrable function
ψ ∈ L2(ℝ). The WT is defined by the following formula:

ψa, b(x) = 1
a

ψ t − b
a (1)

where a > 0 defines the scale and b the shift parameter.
A multiresolution approximation of L2(ℝ) is a sequence (V j) j ∈ ℤ

of closed subspaces of L2(ℝ), such that:
{0} ⊂ ⋯ ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ ⋯ ⊂ L2(ℝ) where {ϕj} is the
orthonormal basis of V j [30] with

ϕj, k(x) = 2 jϕ(2 jx − k) k ∈ ℤ (2)

The subspaces …, W1, W0, W−1, … design the orthogonal
complements of the subspaces …, V1, V0, V−1, … defined above,
such that: Vm ⊕ Wm = Vm − 1.

In multiresolution analysis, the subspaces V j are generated by
the function (ϕj, k)k ∈ ℤ and W j are generated by (ψ j, k)k ∈ ℤ. Then, the
subspace V j represents the large scale (approximations) and W j
represents the small scale (details).

Let f(x) be a one-dimensional (1D) discrete function as
sequence of numbers, the discrete WT (DWT) coefficients are
defined as

Wϕ( j0, k) = 1
M ∑

x = 0

M − 1
f (x)ϕj0, k(x) (3)

Wψ( j, k) = 1
M ∑

x = 0

M − 1
f (x)ψ j, k(x) (4)

where j > j0, M is power of 2 which ranges from 2 to j − 1 and
Wϕ( j0, k), Wψ( j, k) are the approximation coefficient and details
coefficients, respectively. Using these coefficients, the signal
function f(x) can be reconstructed as

f (x) = 1
M ∑

k
Wϕ( j0, k)ϕj0, k(x)

+ 1
M ∑

j = j0

∞
∑

k
Wψ( j, k)ψ j, k(x)

(5)

The implementation of WT was presented by Mallat [30]
introducing a set of filters (hl)l ∈ ℤ and (gl)l ∈ ℤ where

ϕj, k = ∑
l

hlϕj + 1, 2k + l (6)

ψ j, k = ∑
l

hlψ j + 1, 2k + l (7)

and

hl = ( − 1)ng1 − l (8)

Therefore, the approximation and details coefficients are
computed.

In a 2D case, we have a scaling function ϕ(x, y) and three
directional wavelets defined below:
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ϕ(x, y) = ϕ(x)ϕ(y)
ψH(x, y) = ψ(x)ϕ(y)
ψV(x, y) = ϕ(x)ψ(y)
ψD(x, y) = ψ(x)ψ(y)

(9)

where ψH, ψV and ψD measure the horizontal, vertical and diagonal
variation, respectively.

Finally, the wavelet coefficients of a given image I (M × N) are
computed using the following formulas:

Wϕ( j, k) = 1
MN ∑

x = 0

M − 1
∑
y = 0

N − 1
I(x, y)ϕj, k(x, y) (10)

Wψ
H( j, k) = 1

MN ∑
x = 0

M − 1
∑
y = 0

N − 1
I(x, y)ψ jk

H(x, y) (11)

Wψ
V( j, k) = 1

MN ∑
x = 0

M − 1
∑
y = 0

N − 1
I(x, y)ψ jk

V(x, y) (12)

Wψ
D( j, k) = 1

MN ∑
x = 0

M − 1
∑
y = 0

N − 1
I(x, y)ψ jk

D(x, y) (13)

The potential of wavelet representation has had a wide impact in
theory and in practise. It is used for non-linear approximation,
compression and image denoising on different databases.

3.2 Curvelet transform

Curvelet transform is an extension of WT and it was introduced in
2000 by Candes and Donoho [31]. The same authors presented the
second generation of curvelet [32], known as the fast digital
curvelet transform (FDCT), which is less redundant, and has better
performances than its predecessor. Curvelets have the capability of
detecting the finest edges, those that can present more details in
curvelet coefficients [31]. The application of curvelet can be found
in many fields such as face detection [33], mammogram
classification [34] and various other medical image classifications
[35].

In a 2D space R2 with a spatial variable x and frequency-domain
variable w, the polar coordinates of the frequency-domain are r and
θ. Curvelet transforms are defined by two windows, W(r) and V(t),
called radial window and angular window, respectively [32]. These
windows will always obey the following admissibility conditions:

∑
j = − ∞

∞
W2(2 jr) = 1 r ∈ (3/4, 3/2) (14)

∑
l = ∞

∞
V2(t − l) = 1 t ∈ ( − 1/2, 1/2) (15)

The frequency window U j, in Fourier domain given by (16),
represents a polar wedge supported by W(t) and V(t)

U j(r, θ) = 2−3 j/4(2− jr)V 2⌊ j/2⌋

2π (16)

At scale 2− j, orientation θl and position xk( j, l), the curvelet
transform function of {x = (x1, x2)} is given by (17)

φj, l, k(x) = φj Rθl x − xk
( j, l) (17)

where Rθ is the rotation in radians and φj is the waveform and its
Fourier transform is φ^ (w) = U j(w). It is considered as mother
curvelet in the sense that all curvelets are calculated by rotations
and translations of φj [32].

Then, the curvelet coefficient, c given in (18), is obtained by the
inner product between the element f ∈ L2(R2) and the curvelet
transform φj, k, l

c( j, k, l) = ∫
R2

f (x)φj, k, l(x) dx . (18)

There are two implementations of curvelet transforms, namely:
unequispaced FFT and FDCT via wrapping (FDCT via wrapping).
In the current paper, FDCT via wrapping has been implemented
and a brief introduction is presented in Section 3.2.1

3.2.1 FDCTs via wrapping: FCDT via wrapping was introduced
by Candes et al. [32] in their second generation of curvelet. This
implementation is based on wrapping of Fourier samples with 2D
image as input in Cartesian array form f[m,n], where 0 ≤ m ≤ M,
0 ≤ n ≤ N, M and N are the dimensions of the array (image). Then,
the discrete coefficients of FCDT are given below:

cD( j, l, k1, k2) = ∑
0 ≤ m ≤ M, 0 ≤ n ≤ N

f [m, n]φj, l, k1, k2[m, n] (19)

Equation (19) defines the digital curvelet coefficients.
cD( j, l, k1, k2) is indexed by a scale j, an orientation l and the
spatial location parameters k1 and k2, where φj, l, k1, k2

D  is the digital
waveform.

Fig. 1 illustrates the advantages of curvelet transform in curve
detection compared with WT [35]. It can be seen that for the same
curve, curvelet transform needs less coefficients to fit widely the
curve than WT. However, when the image has more dot
singularities, the WT could give more performances. 

3.3 LBP histogram features

LBPs operator is used for texture description. It is one of the best
performing texture descriptors and it has been widely used in
multiple applications [36, 37]. This operator was developed by
Ojala et al. [38, 39]. Many variants of LBP were developed, for
example, Heikkilä et al. [40] proposed centre-symmetric LBP,
then, Zhang et al. [41] developed a new approach replacing the
neighbour pixels by the mean of the neighbours’ blocks, and Wolf
et al. [42] proposed novel patches based LBP, where they explored
the similarities between neighbouring patches of pixels. The
majority of these developments is applied in face detection and
recognition.

The LBP operator attributes for each pixel of the image a new
value from 0 to 255 depending on its neighbourhood as explained
below.

Let the image I(x,y) and gc denotes the grey level of an arbitrary
pixel (x,y), i.e.gc = I(x, y). Moreover, let gp denote the grey value
of a sampling point in a circular neighbourhood space P and radius
R around the point (x,y)

gp = I(xp, yp) p = 0, …, P − 1
xp = x + R cos(2πp/P)
yp = y − R sin(2πp/P)

Fig. 1  Comparison between
(a) Wavelet and (b) Curvelet [35]
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Assuming that the local texture of the image I(x,y) is characterised
by the joint distribution t(.) of grey values of P + 1 (P > 0) pixels

T = t(gc, g0, g1, …, gP − 1) . (20)

Without loss of information, the centre pixel value can be
subtracted from the neighbourhood pixel values and (20) can be
written as the following formula:

T = t(gc, g0 − gc, g1 − gc, …, gP − 1 − gc) . (21)

Assuming that the centre pixel is statistically independent to the
differences, (21) is approximated by

T ≃ t(gc)t(g0 − gc, g1 − gc, …, gP − 1 − gc) . (22)

The important information is given by the differences distribution
part i.e.t(g0 − gc, g1 − gc, …, gP − 1 − gc). However, the estimation of
this distribution from image data is difficult. Ojala et al. [38]
proposed to apply vector quantisation given by the following
formula:

t(s(g0 − gc), s(g1 − gc), …, s(gP − 1 − gc)) . (23)

where s(z)

s(z) = 1 z ≥ 0
0 z < 0. (24)

Then, we can define the generic LBPs operator [43]

LBPP, R(xc, yc) = ∑
p = 0

P − 1
s(gp − gc)2p (25)

According to Adjed et al. [44], the choices of P = 8 and R = 1 are
the best cases for melanoma description.

Ojala et al. [39] introduced uniform pattern and invariant
rotation LBP. Three variants were added, the first variant called
uniform pattern indexed by LBPu2 keeps only the pattern
containing a maximum of two transitions 0/1 and/or 1/0, this
variant contains 59 combinations. The second is the invariant
rotation pattern indexed by LBPir; it has the same configuration for
all rotations, and it contains 36 combinations. The third variant is
the invariant rotation uniform pattern indexed by LBPiru2; it
contains only the uniform patterns in the invariant rotation variant,
indeed, it keeps only nine combinations.

4 Proposed method
The multitude of skin cancer lesions, benign and malignant,
complicates the recognition of skin cancer. In addition to that,
melanoma is developing randomly in different directions. Finding
the best descriptor to discriminate melanoma is one of the
challenging tasks in medical image processing. In the current
paper, we present a set of discriminating features obtained from
different descriptors to distinguish between benign and malignant
cases as detailed in experimental work (Section 6). A detailed
statistical analysis of the used database is also reported. The
flowchart of the proposed feature extraction and fusion method is
illustrated in Fig. 2. The methodology can be divided into two
stages, i.e. computation of features (structural and texture) and
fusion of features. 

5 Database
PH2 database was introduced in 2013 by Mendonca et al. [45] and
more detailed in 2015 by the same authors [46]. PH2 is a public and
free database, built to perform and compare the evaluation of
several systems. The database was built up through the joint
collaboration between Universidade do Porto, Técnico Lisboa and
the Dermatology service of Hospital Pedro Hispano in Matosinhos,
Portugal. The acquisition of images was obtained under the same
conditions. They are 8 bit RGB colour images with a resolution of
768 × 560 pixels.

The database contains a total of 200 dermoscopic images
divided into 160 benign lesions and 40 melanomas. The benign
lesions contain 80 common nevi and 80 atypical nevi. The quality,
resolution and dermoscopic features of images are highlighted in
the current database. Every image was segmented manually and
diagnosed by several dermatologists. It contains also the clinical
diagnosis and dermoscopic criteria such as asymmetry, colour and
the presence of typical and atypical structures.

Table 2 summarises all the given characteristics in PH2

database. It shows the percentage of the presence/absence of each
characteristic. For each percentage, the number of images is noted
between brackets. This table is to be read by columns, thus, for
example, the common nevus is 96.25% fully symmetric, 2.5% is
symmetric in one axis and only 1.25% is fully asymmetric and
melanoma is 12.5% fully symmetric, 5% symmetric in one axis
and 82.5% fully asymmetric. This table shows the dominant
characteristics for each feature. 

On the basis of the given features in Table 2, intuitively, the
most difficult is to recognise the atypical nevus. Thus, for example,
the asymmetry feature makes a real border between common nevus
and melanoma only. The pigment network feature separates more
common nevus with a total absence of pigment network to atypical
and melanoma. However, the dots/globules features are not
descriptive between the three cases. We can observe also that
streaks and regression area features are more common in common
nevus and atypical nevus than melanoma. Blue-whitish veil
discriminates better between benign and malignant compared with
other features. Finally, the colour increases gradually from
common nevus to melanoma.

Another way of reading Table 2 is horizontally. Indeed, it shows
the influence of each sub-feature. For example, the typical dot/
globules feature is more frequently in common nevus than atypical

Fig. 2  Main steps of the proposed method
 

Table 2 Scoring system evaluation of ABCD rule [19]
Feature Points (pi) Weight factor

(wi)
Sub-scoring range

asymmetry 0–2 1.3 0–2.6
border 0–8 0.1 0–0.8
colour 1–6 0.5 0.5–3
dermoscopic
structures

1–5 0.5 0.5–2.5

total 1–8.9
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nevus and almost inexistent in melanoma case. However, the
atypical dot/globules feature shows an opposite behaviour with a
high presence in melanoma, less in atypical nevus and rarely
present in common nevus. A statistical analysis of the database is
performed and compared with a based scoring system used in the
hospitals in the next section.

5.1 Significance of the database

The informations given by the PH2 database used in this paper
contain all ABCD rules, except border irregularity scores,
developed by Stolz et al. [10] and used for comparison by
Capdehourat et al. [19] and Dolianitis et al. [47].

The PH2 database quantifies each pigment following ABCD
rule, excepting border irregularities. According to Capdehourat et
al. [19], the evaluation of ABCD rule follows the scores
summarised in Table 1, where dermoscopic structures contain
pigment network, structures ares, dots, globules and branched
streaks. The authors added to these features blue-whitish veil
which is a major criteria of the 7-point checklist system [19].

Table 1 describes the Stolz's ABCD rule scoring system; it
specifies a list of visual features associated with malignant lesions.
Thus, the evaluation and the classification are done following the
score value S attributed to each image, then it is classified as
benign if (S < 4.75), clinical doubt lesion if 4.75 ≤ S ≤ 5.45, or
malignant if (S > 5.45). The function S is given by the following
formula:

S = ∑
i = 0

4
piwi (26)

where pi and wi are the point value and the weight factor given in
Table 1. This scoring system applied to the features described in
Table 2 is same as used by Capdehourat et al. [19] where:

• Asymmetry is evaluated from 0 to 2, with 0 being fully
symmetric, 1 for symmetric in one axis and 2 for fully
asymmetric. It has the highest weight factor of 1.3.

• Border is evaluated with score from 0 to 8, drawing eight
segments; one point is given for each abrupt pigment cutoff with
a weight factor of 0.1.

• Colour is evaluated from 1 to 6, attributing one point for each
colour with a weight factor of 0.5. Colours considered are white,
red, black, light brown, dark brown and blue-grey.

• Dermoscopic structures encompass five structures which are:
pigment network, structureless area, dots, globules and branched
streaks. One point per structure with a weight factor of 0.5.

We note that there are some differences between extracted
features in PH2 database and ABCD rule. Therefore, the threshold
of the scoring system is adapted removing the contribution of
border irregularities. Then, the S score value of the function given
in (26) is evaluated as follows: benign: if the score is S < 4.50;
clinical doubt: lesion if the score lies between 4.50 ≤ S ≤ 5.20;
malignant: if the score is S > 5.20. There are other characteristic
explored in the database such as blue-whitish veil, not used in
ABCD rule, but used in another scoring system which is 7-points
checklist [19]. However, the objective evaluation is difficult to be
achieved due to the visual features characterised depending only on
the decision of absence or presence of each characteristic.

The results reported by Dolianitis et al. are presented in Table 3.
They are compared with the results obtained from PH2 database
applying ABCD rule. These results show a similar behaviour and
equivalent results for the three performance metrics which are
sensitivity, specificity and accuracy. As mentioned above, the
threshold of ABCD rule, given in Table 1, applied on PH2 database
was adapted taking in consideration the missing values of border
irregularities. Then, the value of the threshold is reduced to 4.5 and
5.20 instead of 4.75 and 5.45, respectively. 

Analysis of variance is implemented on the vector obtained by
ABCD rule by testing the H0 (same population) against H1
(different classes). The P-value obtained is <0.01, then, the
hypothesis H0 is significantly rejected with risk of 5%. Thus, the
database presents significantly heterogeneous population (more
than two classes).

The box plot in Fig. 3 illustrates graphically the variability of
each group and deduces three different classes in the population.
Fig. 4 describes the results of ABCD rule (blue) of the whole
database and the mean of each class (red). Descriptively, using
ABCD rule results, the graph shows more stability in common
nevus lesion than the two other cases (atypical nevus and
melanoma). 

6 Experimental work
The proposed method detailed in Section 4 is applied on the 200
dermoscopic images from PH2 database [46]. This database
contains 160 non-melanoma (benign) and 40 melanoma
(malignant) images. The classification is performed using SVM
classifier with the linear kernel, 70% of the database is used for
training and 30% for test. A random sampling cross-validation
method is applied to validate the obtained results, where a thousand
(1000) combinations of training and test sets are chosen randomly
from the database. Thus, each image is used in average 700 times
for training and 300 times for tests. An unbiased standard deviation
(Std) for the thousand combinations is also computed for the three
performance metrics (sensitivity, specificity and accuracy) detailed
in the next section.

Table 3 Result of ABCD rule obtained from PH2 database
Diagnositic parameter Doliantilis et al., % PH2 database, %
sensitivity 77.5 77.5
specificity 80.4 97.5
accuracy 73.2 87.5

 

Fig. 3  Variability of the three classes of the PH2 database: (i) common
nevus, (ii) atypical nevus, and (iii) melanoma

 

Fig. 4  Results of ABCD rule system applied on PH2 database
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6.1 Hair removing

To preprocess and enhance the image quality in the current paper,
Dullrazor [Dullrazor software is available on http://
www.dermweb.com/dull_razor/.] software is used for hair
removing; it was applied on all the visible hairs as illustrated in
Fig. 5. The statistical validity of dataset and robustness of the
proposed approach is also explored in this paper. 

6.2 Feature extraction

i. First, the structural features are extracted using wavelet and
curvelet coefficients. Two-level decompositions of DWT and
FDCT via warping (see Section 3.2.1) are applied on the
melanoma ROIs. For each coefficient matrix, seven statistical
features were computed, namely: energy, entropy, mean, Std,
maximum, moment and homogeneity.

ii. Second, a set of textural features using different variants of
LBP, i.e. rotationally invariant, uniform and non-uniform
rotationally invariant distinct texture features are extracted.

iii. A feature fusion of structural and textural features is done.
iv. Finally, SVM classifier is used for classification and diagnosis.

Then, 1000-random sampling cross-validation is explored to
validate the obtained results.

• For wavelet, we used Daubechies 4 waveform, then eight
coefficient matrices are computed, four from the first level
and four from the second level (one approximation
coefficient matrix and three detailed coefficient matrices)
using (10)–(13). In total, we extracted 64 features from
WTs.

• For two levels of curvelet decomposition nine curvelet
coefficient matrices were obtained for each image, i.e. one
matrix from the first level and eight matrices from the
second level. These matrices are built using (19) detailed in
the next section. Thus for each level, seven statistical
features were computed. Thus, a total of 63 features from
curvelet two-level decomposition were obtained.

For textural features, LBP operator is used to extract local textural
variations. Thus, depending on the variant of LBP operator as
detailed in Section 3.3, three LBP variants are explored in the
current work. Therefore, we have:

• 59 textural features from LBPu2 (uniform pattern).
• 36 from LBPri (invariant rotation).
• 9 from LBPriu2 (invariant rotation uniform pattern).

Indeed, we used only radius R = 1 and eight neighbourhood
pixels (P = 8), this choice is concluded from our previous work
[44], where the results obtained showed a better performance for R 
= 1 and P = 8. Here, it is worth mentioning that all the features
were normalised to the range [0–1] and their influence before and
after fusion can be recorded in validation performances.

7 Experimental results
The evaluation of the proposed method is measured using three
performance metrics which are sensitivity (sen), specificity (spe)
and accuracy (acc) [7], as given in (27)–(29)

sen = TP
TP + FN (27)

spe = TN
TN + FP (28)

acc = TP + TN
TP + FN + TN + FP (29)

where true positives (TPs) define the melanoma classified as
melanoma, true negatives (TNs) defines the non-melanoma
classified as non-melanoma, false positives (FPs) and false
negatives (FNs) are the melanoma and non-melanoma which are
not classified on the right set, respectively.

Equation (29) depends on the number of benign and malignant
lesions. To remove this dependence, we estimate the accuracy in
the following way:

ac^c = αTP + TN
αTP + αFN + TN + FP (30)

The parameter α is added to compensate the difference of images
number in the accuracy performance. This parameter is obtained by
the following formula:

α = #Benign
#Malignant (31)

where #Benign and #Malignant design the number of benign and
malignant images, respectively. Therefore, α = 2 for the first and
second classifications (melanoma versus atypical and melanoma
versus common nevus) and α = 4 for the last classification
(malignant and benign lesions). The performance results are
computed also by accuracy given by (30). Equation (30) can be
also used with different values of the parameter α to give more
weight for FNs or FPs to tolerate or reject some special situations
such as let cancerous patients without treatment which are FNs. In
our case, the α chosen is used just to regulate the difference
between benign and malignant lesions. This formulation is
equivalent to (sen + spe)/2 used in Barata et al. [28]. In the next
section, the results show a significant difference between the two
metrics.

Fig. 6a presents the evolution of the modified accuracy (ac^c)
depending on different values of α, from 0.1 to 5, fixing others
variables (sensitivity, specificity, malignant number and benign
number), whereas Fig. 6b illustrates the dependence of the
accuracy metric (29) on malignant and benign numbers, presented
by the dark curve. By varying the β value from 0.1 to 5 in M = βB,
where M is the malignant number, B is the benign number, we can
see easily that the accuracy (acc) is strongly dependent on those
quantities. The blue colour line presents the modified accuracy
(ac^c), with α = 1/β, to compensate the difference between
malignant and benign numbers. 

Knowing that the database is presented in three different
classes: common nevus, atypical nevus and melanoma. Then, to
have a representative training set, 70% of each class (common and
atypical) is taken for training and the other 30% for test. This
choice guarantees the representativeness of atypical and common
nevus in training and test sets.

Fig. 5  Hair removing with DullRazor software examples, applied on all
images containing hairs
(a) Original atypical nevus: IMD305 image, (b) Hair removing for IMD305 image, (c)
Original common nevus: IMD003 image, (d) Hair removing for IMD003 image
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To detect melanoma lesions, the results are classified into three
cases. First, we explored the classification between melanoma and
atypical nevus. Second, we explored classification performance
between melanoma and common nevus and finally we performed
the classification between melanoma and the whole benign lesions.
Three performance metrics, i.e. sensitivity, specificity and
accuracy/modified accuracy given by the (27)–(30) are computed.
For each performance, we compute also 1000-random
combinations for the choice of the training and test sets. In the
result Tables 4–6, Validation Performance (VP) defines the
validation performance and Std represents the standard deviation of

the thousand combinations used for validation. The results are
divided into three categories which are textural features using LBP
operator, structural features using wavelet and curvelet coefficients
and finally the mixture of textural and structural features. 

7.1 Melanoma versus atypical nevus

In this section, the classification is focused on the detection and the
recognition of melanoma mixed only with atypical nevus, those
presented by the second and the third columns in Table 2. The
results obtained are given in Table 4. Therefore, for textural
features, the best performances are obtained by LBPu2 followed by
the LBPir, and the worst result is obtained by the LBPriu2. For
structural features, wavelet shows better results than curvelet for all
metrics performances used. The fusion of textural and structural
features gives better results in wavelet coefficients with LBP
operator and it shows a smallest Std for the variability of validation
results expressed by the variable Std. Wavelet with LBPu2 improves
the three metrics used and gives the best results compared with all
the methods studied. The fusion of curvelet coefficients with LBP
operator improves the specificity metric compared with curvelet
and LBP separately.

7.2 Melanoma versus common nevus

As mentioned above, the second classification is done only
between melanoma and common nevus lesions. Table 5 shows the
performance validation of sensitivity, specificity and accuracies
metrics. For textural features, LBPri and LBPu2 show a higher
performance than LBPriu2, and we can see that LBPri is more
sensitive and less specific than LBPu2. The textural features
performances show that wavelet coefficients discriminate
melanoma better than curvelet coefficients and the fusion LBP
operator contributes in the reduction of the variability between
different combinations in validation step.

It can be seen that the best results validation are performed
using wavelet and the fusion of wavelet with different variants of
LBP. The fusion of wavelet and LBPu2 is the most stable operator
showing the smallest Std value for the three metrics.

7.3 Melanoma versus atypical and common nevus

In this section, the classification is performed between malignant
and benign (atypical and common nevus) lesions. The results are
presented in Table 5. Thus, for textural features, we can see that
LBPri is more sensitive and more accurate than LBPriu2 and LBPu2.
The opposite results are obtained for specificity, where LBPu2 gives
the highest value and the smallest variation compared with the
other variants of LBP. The accuracy obtained from the validation
results is higher than 81% for both LBPri and LBPu2 variants.

Fig. 6  Illustration of the modified accuracy effect's on the obtained result
using the formula given by (30)
(a) Modified accuracy (aĉc) in function of α, presented by blue colour, (b) Accuracy
(acc) depending on the number of malignant and benign lesions, presented by the dark
colour

 

Table 4 Results obtained for melanoma versus atypical nevus giving performance validation VP and the Std for 1000-random-
cross-validation under SVM classifier

Performances metrics Sensitivity (sen) Specificity (spe) Accuracy (acc) Accuracy (ac~c)
Features Methods VP, % Std VP, % Std VP, % Std VP, % Std
textural features LBPri 77.44 11.88 81.97 8.04 80.46 5.82 79.70 6.30

LBPriu2 74.17 12.09 73.19 9.29 73.51 6.77 73.68 6.83

LBPu2 76.55 12.32 85.15 7.35 82.28 5.56 80.85 6.31

structural features wavelet 79.47 12.93 88.99 7.10 85.79 6.07 84.23 6.84
curvelet 73.10 13.56 82.01 7.56 79.04 6.14 77.56 6.85

fusion of structural and textural features wavelet + LBPri 78.13 12.08 88.63 6.90 85.11 5.49 83.38 6.42

wavelet + LBPriu2 77.51 12.37 88.22 5.80 84.62 5.80 82.86 6.81

wavelet + LBPu2 81.84 11.29 88.57 6.80 86.31 5.48 85.20 6.24

curvelet + LBPri 79.08 12.50 85.69 7.34 83.49 5.72 82.38 6.08

Curvelet + LBPriu2 76.15 13.31 82.84 7.66 80.61 6.25 79.49 6.83

curvelet + LBPu2 78.75 11.89 86.83 6.89 84.14 5.51 82.79 6.30

wavelet + curvelet 78.97 12.84 85.51 7.14 83.98 6.01 82.24 6.87
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For structural features, in our case, the wavelet coefficient
shows a better performance compared with curvelet coefficients
with an accuracy performance of 85.54 and 79.85%.

The fusion of the wavelet and LBPu2 increases considerably the
specificity and the accuracy performances as shown in Table 6.
However, the fusion does not show any significant effect on
sensitivity performance.

The best results for all the performances metrics validation is
obtained by the fusion of wavelet coefficients and LBPu2 with
78.93% of sensitivity validation, 93.25 of specificity validation and
86.07% of accuracy validation.

7.4 Results analysis

From Tables 4–6, we can deduce by using the two sets of features
(textural and structural) that the detection of melanoma mixed with
common nevus is easier as compared with melanoma mixed with
atypical nevus, which is expected as the class overlap between
melanoma and common nevus is less than that between melanoma
and atypical nevus. Thus, the stability of common nevus is
illustrated in Fig. 4 and presented by the result obtained in Table 5
with a highest accuracy of 90%. We can conclude that the detection
and the recognition performances of melanoma depends on the
kind of the benign lesions used for computation.

The fusion of wavelet and LBPu2 outperforms all the tested
methods in the current work, as it can be seen from the results in
Tables 4–6. In general, curvelets have better performances than
wavelets. However, in our case, the results obtained show better
performances from wavelet coefficients compared with curvelet

coefficients in the three tables. These results can be explained by
the multitude of singularity points coming from the random
development of skin cancer lesions. It could also be expressed by
the redundancy of curvelet coefficients which represent the double
of the redundancy of wavelet coefficients [48].

As detailed in Sections 3.1 and 3.2, the wavelet is efficient for
singularity points and curvelet is more efficient for the detection or
characterisation of curves. Therefore, we also evaluate a fusion
between the two sets of coefficients as Li et al. [49] used for image
compression. Thus, the results obtained are not showing any
significant improvement in the detection.

Table 7 presents a comparison of the proposed method with
recent works on classification and recognition of melanoma using
the same database PH2. Our proposed method shows the highest
performance in terms of specificity and accuracy compared with
Barata et al. [28], showing a validated result of 93 and 86%,
respectively. Although accuracy is higher for Abuzaghleh et al.
proposition [25], they did not perform any validation comparing
neither the current work validated by n-random sampling cross-
validation, nor k-fold cross-validation used by Barata et al. In
addition to this, the authors used 75% of the database for training
in place of 70% frequently used in the literature. The authors used
the fusion of FFT with DCT, and their results are still less efficient
than the proposed method (see Table 7), because the authors did
not present sensitivity and specificity performances, and no
information on training and test sets is presented. Therefore, it is
difficult to reproduce the same result for comparison. Furthermore,
knowing that the benign lesions are heterogeneous [3], then, if we
choose some special configurations of training and test sets we

Table 5 Results obtained for melanoma versus common nevus giving performance validation VP and the Std for the 100-
random-cross-validation under SVM classifier

Performances metrics Sensitivity (sen) Specificity (spe) Accuracy (acc) Accuracy (ac~c)
Features Methods VP, % Std VP, % Std VP, % Std VP, % Std
textural features LBPri 82.28 11.11 84.29 7.71 83.62 5.72 83.29 5.88

LBPriu2 78.92 12.07 77.68 8.35 78.09 6.16 78.30 6.40

LBPu2 80.82 12.56 87.80 6.78 85.47 5.74 84.31 6.70

structural features wavelet 88.47 10.36 91.99 5.67 90.81 5.23 90.23 5.65
curvelet 80.80 12.25 84.53 7.63 83.29 6.20 82.66 6.58

fusion of structural and textural features wavelet + LBPri 88.82 9.44 90.95 5.93 90.24 4.97 89.88 5.15

wavelet + LBPriu2 88.91 10.06 91.45 5.85 90.60 4.99 90.17 5.54

wavelet + LBPu2 89.25 9.26 90.80 5.59 90.28 4.76 90.02 4.92

curvelet + LBPri 81.25 11.36 85.68 7.30 84.20 5.76 83.47 5.25

curvelet + LBPriu2 81.64 11.93 85.34 7.40 84.11 6.23 83.49 6.53

curvelet + LBPu2 82.86 11.12 87.17 6.86 85.73 5.48 85.02 6.03

wavelet + curvelet 87.73 10.57 90.40 6.99 89.51 5.68 89.06 6.19
 

Table 6 Results obtained for melanoma versus atypical and common nevus giving performance validation VP and the Std for
the 100-random-cross-validation under SVM classifier

Performances metrics Sensitivity (sen) Specificity (spe) Accuracy (acc) Accuracy (ac~c)
Features Methods VP, % Std VP, % Std VP, % Std VP, % Std
textural features LBPri 78.07 12.35 86.14 4.80 84.53 3.89 82.10 5.90

LBPriu2 77.74 11.29 75.95 5.92 76.31 4.67 76.84 6.02

LBPu2 74.13 13.01 89.40 4.52 86.34 3.82 81.76 6.28

structural features wavelet 77.56 13.17 93.50 3.48 90.31 3.44 85.54 6.54
curvelet 70.42 14.50 89.29 4.91 85.52 4.41 79.85 7.18

fusion of structural and textural features wavelet + LBPri 75.42 13.68 93.46 3.65 89.85 3.52 84.41 6.79

wavelet + LBPriu2 76.73 13.49 93.47 3.59 90.12 3.44 85.08 6.67

wavelet + LBPu2 78.93 11.95 93.25 3.61 90.34 3.27 86.07 6.32

curvelet + LBPri 72.35 13.34 90.56 4.41 86.92 3.81 81.46 6.55

curvelet + LBPriu2 70.30 14.76 89.19 4.72 85.38 4.24 79.74 7.13

curvelet + LBPu2 72.67 12.88 91.09 3.99 87.40 3.61 81.88 6.46

wavelet + curvelet 76.16 14.11 93.13 3.68 89.74 3.95 84.64 6.99
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could present higher results than those presented in Tables 4–6.
Thus, the validation result step is crucial for the adaptability of the
proposed method.

The known ABCD rule, often used in hospitals manually, has
achieved an accuracy of 87.5% as in Table 3. In this work, the
proposed automation of the ABCD rule achieved an accuracy of
86.07% as in Table 7, which is fairly comparable with the result
obtained manually. This achievement shows a great potential of
developing CAD system for melanoma detection.

8 Conclusion
In this paper, fusion of structural and textural features is explored
for melanoma recognition. The structural features are obtained
from the first and second levels of wavelet and curvelet
coefficients, and the textural features are obtained from the
different variants of LBP operator. The best results are performed
by the fusion of wavelet coefficients and LBPu2. The obtained
results are also validated using random sampling cross-validation
under SVM classifier with linear kernel on PH2 dermoscopy
database. The proposed methods show great potential results in
terms of sensitivity, specificity and accuracy metrics.

As suggested in the literature [50], it is important to provide the
necessary details of the methods presented, for example, the
configuration parameters and algorithms. In addition, a random
sampling cross-validation is performed using 1000-random
combinations of training and test sets from the database. The
validation step is necessary and important for robustness of the
proposed method.

For a systematic comparison between research methods, the use
of a free public database is required. Therefore, we used the first,
unique and complete public database published by Mendonça et al.
[46]. Another huge public database is available (but still under
development) proposed in ISIC archive [51], the clinical
informations and the border segmentation lesions are not yet
completely available.
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