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I. INTRODUCTION AND RESULTS

Nature is Quantum. That means that the real and complete laws of nature are those of quantum physics. Classical behaviours and domains are particular cases, limiting situations or approximations. Classical gravity, and thus successful General Relativity are incomplete (non quantum) theories and must be considered as a particular approximation from a more complete theory yet to achieve.

A complete quantum theory should include and account for the physics at the Planck scale and domain. As is known, the task to complete such a theory is far from being easy and follows in summary at least two different paths: (i) Starting from gravity, that is General Relativity and quantizing it (by applying the different quantization -perturbative and non perturbative-procedures, with the by now well known shortcomings and developpements and its rich bibliography -is not our aim here to review it-: canonical (hamiltonian) quantization, Wheeler-de Witt formalisms, path integral (euclidean) gravity, loop gravity, string theory....).

(ii) Starting from Quantum theory and trying to extend it to the Planck scale domain.

(instead of going from classical gravity to quantum gravity). Of course, in constructing the road (ii) many of the lessons from road (i) are most useful. One tractable and well posed piece of work is semiclassical gravity, in its several degrees of quantization: QFT in curved backgrounds and its (perturbative and non perturbative) back reaction (semiclassical Einstein Equations), and the path integral approach. Examples are the Hawking radiation, the early universe inflation and the primordial quantum fluctuations, seeds of the structure in the Universe imprinted in the CMB temperature anisotropies and polarization. Moreover, the expanding quantum cosmological vacuum could be the source of the present acceleration of the universe (dark energy) compatible with a cosmological constant.

Let us recall that one of the starting milestones of quantum theory is the concept of classical-quantum (wave-particle) duality. In ref [1] we extended this concept to include the quantum gravity domain, ie wave-particle-gravity duality. We had set up the relevant scales characteristic of the classical gravity regime and related it to the semiclassical and quantum gravity regimes (being QFT or strings) refs [1], [2]. The quantum (Compton) wave length

L Q = M c , (1.1) 
in the presence of gravity means

L Q = l 2 P L G , (L G = G c 2 M ) (1.2) 
L G and l P being the gravitational length and Planck scale length respectively. As the quantum behaviour is dual of the classical behaviour (through , c), the dual of the classical gravity regime is the quantum gravity regime (through , G, c), (in string theory, this classical-quantum duality is through , α ′ , c) refs [1], [2].

The quantum mass scale is the dual mass

M Q = m 2 P M ,
(m P being the Planck mass).

(

Its corresponding temperature scale (energy in units of Boltzmann's constant) is precisely the Hawking temperature

T eQ = 1 2πk B M Q c 2 , (1.4)
which is a quantum temperature, mesure of the Compton length (in units of k B ). The set of quantities O G = (L G , M, K G , T e ) characteristic of the classical gravity regime, (here denoting for instance size, mass, surface gravity (or gravity acceleration), usual temperature respectively), and the corresponding set of quantities in the quantum regime

O Q = (L Q , M Q , K Q , T eQ
) are dual of each other, (in the precise sense of the wave-particle duality), ie:

O G = o 2 P O -1 Q (1.5)
This relation holding for each quantity in the set. O G and O Q are the same conceptual physical quantities in the different (classical/semiclassical and quantum) gravity regimes respectively . o P being the corresponding quantity at the Planck scale purely depending of ( , c, G). O Q standing for the concepts of quantum size L Q , quantum mass M Q , quantum acceleration K Q = c 2 /L Q , and quantum temperature T eQ for instance. This is not an assumed or conjectured duality. As the wave-particle duality, this classical/semiclassical-quantum gravity duality does not relate to the number of dimensions, nor to a particular or imposed symmetry of the background manifold or space-time.

These duality relations extend too to the microscopic density of states and entropies (ρ, S)

ref [1].

[For the sake of completeness, (although we will not do string theory here) we recall that for strings we found similarly

O s = o 2 s O -1 Q with α ′ instead of G/c 2 and o 2 s purely depending on ( , α ′ , c) . O s = (L s , M s , K s , T es )
denoting here the characteristic string size, string mass, string surface gravity or acceleration and string temperature of the system under consideration, (T s = 1 2πk B M s c 2 ), which are in general different from the usual flat space string expressions, (in particular they can be equal), refs [1], [2], [3][START_REF]String Theory in Curved Space Times[END_REF][START_REF] Vega | String Gravity and Physics at the Planck Energy Scale[END_REF][6]. Again, this is not an assumed or conjectured duality or a at priori imposed symmetry: The results of QFT and quantum string dynamics in curved backgrounds remarkably show these relations refs [1],

[2]- [6].]

In this paper we go further in the classical-quantum duality to include the Planck scale domain. Each of the sides of the duality above described, for ex. Eq (1.5) and previuosly treated accounts for only one domain separately: classical or quantum, O G or O Q but not for both domains together. And the Planck scale o P is just a fixed scale and a appropriate unit, but not a variable. In this paper we define appropriated quantum gravity (QG) variables fully taking into account all domains, classical and quantum including gravity and their duality properties. From the variables (O G , O Q ), we construct QG variables O QG which in units of the corresponding Planck scale magnitude o P simply read:

O QG = 1 2 ( O G + O Q ), O QG o P ≡ O = 1 2 ( x + 1 x ), x = O G o P = o P O Q (1.6)
and which automatically endowe the symmetry: In other words: The quantum domain of elementary particles is dual (in the precise meaning of the classical-quantum duality) of the classical gravity domain. This duality is universal. As the wave-particle duality, it does not relate to the number of dimensions or compactifications, nor to any particular imposed symmetry or manifold /space-time.

O(1/x) = O(x)
Similarly, for the QG momentum P and QG time T we have: theory refs [START_REF] Sanchez | Semiclassical quantum gravity in two and four dimensions[END_REF], [8]. In a different approach, 't Hooft required recently the antipodal identification for the black hole quantum theory and its unitarity refs [8], [9], and our QG results here support such results.

T QG t P ≡ T = 1 2 ( t - 1 t ), t ≡ T G t P (1.
In the interior regions the Planck scale is reached at the loci T 2 -X 2 = ±1 (r = 0) which are bordering the null horizons X = ±T (at 2κr = 1) and asymptotically reaching them for T → ±∞. The quantum region extends beyond the horizons and is delimitated by the Planck scale hyperbolae X 2 -T 2 = ±1 and T 2 -X 2 = ±1. These hyperbolae are acting like a quantum dressing or quantum width for the horizon, let us call it l'horizon habillé (dressed horizon). 1 is here l 2 P . We see that exterior and interior lose its difference near the horizons X = ±T . Although, is possible to use these words in scales larger than the Planck scale.

There are two dual ways of reaching the horizon and the Planck scale: from the exterior (classical/semiclassical) and from the interior (quantum) regions. This appears like a splitting or shifting of the null horizons X = ±T into the hyperbolae X 2 -T 2 = ±1.

We find a similar result and other new related results when promoting (X, T ) to quantum non-commutative coordinates as we do in ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

Let us recall here that quantum field and string dynamics near horizons required quantum shifts or widths of the horizon of the order of the Planck scale, refs [START_REF] Hooft | [END_REF], [12], [13]. In QFT, the horizon shift appears as produced by the non-perturbative back reaction and the dynamics of the ingoing and outgoing modes crossing the horizon ref [START_REF] Hooft | [END_REF]. In string theory the horizon width appears as due to the non-zero (Planck scale) size of the string refs [12], [13]. We find interesting that in a different approach, and solely from our QG variables, a horizon quantum dressing or width does appear (and without searching for it) supporting the quantum nature of this space-time region. The QG variables include naturally the Planck scale. Other related results are reported in ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

Of course, the idea of a continuum space-time is a classical notion but it could be considered as induced from a QG state within the Planck scale domain. The QG variables or coordinates cover all the domains, classical and quantum, with and without gravity. In the classical and semiclassical gravity domains, they can be used directly as space-time variables or coordinates as we do here. In the QG Planck scale domain and beyond they can be considered as expectation values in a quantum state or they can be used to construct quantum operators as we do in ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

By promoting the QG variables to quantum (non conmutative) operators further insight into the quantum space-time structure is obtained and the antipodal identification of the two copies of the Kruskal global manifold is further supported by the quantum theory, ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

QG variables can be also considered in phase-space with their full analytic extension to all values or copies. Comparison of the QG variables with the complete Q-variables of the harmonic oscillator is enlighting. This paper is organized as follows: In Section II we set up the new QG variables for Quantum Gravity which fully take into account the classical-quantum (wave-particle) duality including gravity. Section III deals with the complete analytic extension of the QG variables, and their symmetry properties. Section IV deals with Schwarzschild-Kruskal black hole manifold, its classical-quantum duality properties, symmetries and extensions in this new context. In Section V we present our remarks and conclusions.

II. NEW VARIABLES FOR QUANTUM GRAVITY (QG) AND THEIR DUALITY PROPERTIES

In classical gravity, length and mass are proportional (through G and c), (gravitational length):

L G = G c 2 M (2.1)
In quantum physics, length and mass are inversely proportional (through, and c), (Compton length):

L Q = cM (2.2)
The equality L G = L Q yielding the Planck scale mass m P (and length l P ) which satisfies by

definition l P m P = G c 2 , l P m P = c , (2.3) 
exhibiting the classical -quantum duality between the gravity tension G/c 2 , and the quantum action /c.

Each length separately L G or L Q , (and their respective associated energy scales) accounts only for one physical domain (classical gravity or quantum theory) but not for both of them.

Planck scale l P or m P accounts for the quantum gravity domain but it is just a fixed scale and an appropiated unit, not a variable.

In the known elementary particle physics domain, all masses are too much smaller with respect to the Planck mass m P , which is a enormously heavy mass for a elementary particle, L Q is much larger than l P , but L G is much smaller than l P for the elementary particles although not being quantum gravity objects:

Elementary P articles, L G < L Q : 0 ≤ M < m P , 0 ≤ L G < l P , l P < L Q ≤ ∞ (2.4)
On the other hand, in the classical gravitational domain, masses are much larger than m P which is a ridicously small mass for the macroscopic bodies, L G is larger than l P but their L Q is inside l P , although not being quantum gravitational objects:

Classical Gravity, L G > L Q : m P < M < ∞, l P < L G < ∞, 0 ≤ L Q < l P (2.5)
An appropiated length variable for quantum gravity (QG) fully taking into account both domains, classical and quantum is the following:

L QG = 1 2 (L G + L Q ), that is: L QG l P = 1 2 ( M m P + m P M ) (2.6)
L QG contains both L G and L Q and their duality through the Planck scale:

• For m P < M ≤ ∞: L QG ≃ L G , L G > L Q • For 0 ≤ M < m P : L QG ≃ L Q , L Q > L G • For M = m P : L QG = 1 = L Q = L G = l P
Or, in dimensionless variables:

X = 1 2 (x + 1 x ), X ≡ L QG l P , x ≡ M m P (2.7)
These are pure numbers, all magnitudes are defined with respect to their corresponding Planck scale expressions, and the variable X is invariant under the transformation x → x -1 :

X (x -1 ) = X (x), X (x >> 1) = x, X (x << 1) = x -1 , X (x = 1) = 1 (2.8)
X endowes both the classical (x >> 1) and quantum (x << 1) domains and the Planck domain (x ≈ 1) as well. The physical classical-quantum duality intrinsically manifests in the QG variable X. Similarly, we have for the QG mass variable M QG :

M QG m P = 1 2 ( M m P + m P M ) = 1 2 (x + 1 x ) (2.9)
A full set of QG-variables, as Energy

E QG = M QG c 2 , Temperature T eQG = M QG c 2 /2πk B ,
(k B being the Boltzmann constant), surface gravity (or gravity acceleration) K QG = c 2 /X QG (or other relevant magnitudes) and their corresponding dimensionless expressions follow in analogous way:

L QG l P = M QG m P = K QG k P = T eQG t eP = 1 2 (x + 1 x ) (2.

10)

κ P and t eP being the Planck acceleration (Planck surface gravity) and the Planck temperature respectively:

κ P ≡ c 2 l P , t eP ≡ 1 2πk B m P c 2 (2.11)
Several comments are in order here:

• QG variables contain as limiting cases, the quantum (wave-particle) domain x << 1, the classical/semiclassical gravity (x >> 1) domain and the Planck (x ∼ 1) domain as well.

• QG-variables are more complete than the usual incomplete variables x which only describe one domain (Q or G) and there are two values x ± for each X QG .

The completion of the complete manifold of QG variables requires several patches or analytic extensions to cover the full sets X ≥ 1 or X ≤ 1:

x ± = X ± √ X 2 -1, X ≥ 1; x ± = X ± √ 1 -X 2 , X ≤ 1 (2.12)
The two (X ≥ 1), (X ≤ 1) domains being the classical and quantum domains respectively with their two (±) branches each, and when x + = x -: X = 1, x ± = 1, (Planck scale).

The two domains precisely account for the two different and duals ways of approaching the Planck mass: The elementary particle domain 0 ≤ x ≤ 1, and the macroscopic gravity 

M Q = m 2 P M (2.13)
The elementary particle domain of masses and lengths Eq.(2.4) is mapped respectively through Eq.(1.5) into the macroscopic mass and length domain of classical gravitational objects Eq.(2.5) and conversely. More generically: A set of classical gravitational quantities

O G = (L G , M, K G , T e )
characteristic of the classical gravity regime, (here denoting length, mass, gravity acceleration, temperature respectively), and the corresponding set in the quantum regime

O Q = (L Q , M Q , K Q , T eQ )
are dual of each other (in the precisely sense of the classical-quantum duality), ie quantum magnitudes: quantum size L Q , quantum mass M Q , quantum surface acceleration K Q and quantum temperature T eQ :

O G = o 2 P O -1 Q (2.
T eQ = 1 2πk B M Q c 2
The energy M Q c 2 has naturally associated a quantum temperature (in units of k B ), which is also a measure (in units of k B ) of the quantum length L Q , and

K Q = c 2 /L Q . In particular,
for semiclassical black holes, T eQ is the Hawking temperature, but T eQ is a much more generic concept.

There is thus a duality between the quantum domain of elementary particles (without gravity) and the classical gravity domain of macroscopic masses (without the quantum theory). In other words: The quantum domain of elementary particles (at the level of the set of fundamental variables as masses, lengths, temperatures, acceleration) is dual (in the precise sense of classical-quantum duality) of the classical gravity domain. This is not an assumed or conjectured duality and does not relate to the number of dimensions or spacetime compactification, nor to any imposed symmetry.

III. COMPLETE ANALYTIC EXTENSION OF THE QG VARIABLES

Another QG variable, a time -type variable T QG can be formed from the difference of L G and L Q (and similarly, a QG momentum with M G and M Q ): 

T QG = 1 2 (T G -T Q ), T G = L G c , T Q = L Q c = t 2 P T G (3.1) T = 1 2 (t - 1 
X(x) = X(x -1 ), X(-x) = -X, X(±∞) = ±∞, X(0) = ∞, X(1) = 1 T (t) = -T (t -1 ), T (-t) = -T, T (±∞) = ±∞, T (0) = -∞, T (1) = 0
These properties of the (X, T ) variables are more apparent in terms of the star-coordinates (x * , t * ):

x = exp (κx * ), t = exp (κt * ), which imply X = cosh (κx * ), T = sinh (κt * ).

The parameter κ is a pure number introduced for convenience of the sequel, it plays the role of the dimensionless surface gravity (gravity acceleration) allowed by the mapping. (In particular, at the Planck scale: κ = 1).

This leads us to consider 'null-type' QG variables and a more general exponential mapping yielding the QG variables (X, T ), in terms of (x * , t * ):

X ± T = exp κ(x * ±t * ), U = X -T, V = X + T, (3.2) 
which maps characteristic lines into characteristic lines, ie the null type structure of (X, T ) and (x * , t * ) is preserved, it is analytic and holomorphic if continuated to complex variables.

In the (x, t) variables, this mapping simply reads:

U = x t -1 , V = x t
The QG variables (X, T ) are complete coordinates fully covering the analytic extension of the QG manifold, while (x * , t * ) or (x, t) cover incomplete domains. (X, T ) are Kruskallike variables, while (x * , t * ) or (x, t) are Schwarzschild -like or Rindler -like since they are bounded, local or covering incomplete domains. Still, the comparison with the Schwarzschild r-coordinate is more apparent by singling out the role of x = 1 (Planck scale) in this context:

x * = r + 1 κ log √ 2κr -1, 1 < 2κr ≤ ∞, -∞ ≤ x * ≤ ∞ Thus, x = √ 2κr -1 exp (κr), 0 ≤ x ≤ ∞, and 1 ≤ t ≤ ∞, -∞ ≤ t * ≤ ∞
Four charts I, II, III, IV are necessary to fully describe the complete QG domain. It follows:

X = exp (κx * ) cosh (κt * ) = √ 2κr -1 exp (κr) cosh (κt * ) (3.3) T = exp (κx * ) sinh (κt * ) = √ 2κr -1 exp (κr) sinh (κt * ) (3.4) U V = X 2 -T 2 = e (2κx * ) = (2κr -1) e (2κr) , V U = e (2κt * ) , T X = tanh(κt * )
Or, in terms of the (x, t) variables, these equations read: delimitate the quantum region including the quantum gravity domain (quantum range of masses -as elementary particles-passing by zero to the Planck mass). 1 is here l 2 P . The Planck mass is reached from the classical side of large masses including the largest astronomical objects (region I and its mirror III) and from the quantum side of small masses (regions II and IV), as it must be:

X = x 2 (t + 1 t ), T = x 2 (t - 1 t ) (3.5) U V = x 2 , V U = t 2 , T X = t -t -1 t + t -1 ( 
(classical-quantum duality at work through the Planck scale).

these QG domains, (X, T ) are given by the interior variables, which are the analogues of Eqs (3.3)-(3.4) with X and T interchanged, and x * (or x) given by:

x * = r + 1 κ log √ 1 -2κr, x = √ 1 -2κr exp(κr), 0 ≤ 2κr ≤ 1, 0 ≤ x ≤ 1 X = exp (κx * ) sinh (κt * ) = 1 2 √ 1 -2κr e (κr) (t - 1 t ) (3.7) 
T = exp (κx * ) cosh (κt * ) = 1 2 √ 1 -2κr e (κr) (t + 1 t ) (3.8) U V = T 2 -X 2 = e (2κx * ) = x 2 , V /U = e (2κt * ) = t 2 (3.9) 
The fixed mass values x =const. follow the trajectories X 2 -T 2 = const. The straight lines X = ±T , (U = 0 or V = 0) for x * = -∞ , (that is 2κr = 1) are at the null values x = 0 : L G = 0, M = 0, (null (future or past) horizons: t * = ±∞, (being t = +∞ or 0).

The Planck scale x = 1 (ie M = m P ) corresponds to the hyperbolae T 2 -X 2 = ±1 at r = 0 (ie x * = 0):

x = 1 in the future (+), and past (-) interior regions. The correspondence with the Kruskal manifold is manifest.

IV. CLASSICAL-QUANTUM DUALITY OF THE

SCHWARZSCHILD-KRUSKAL SPACE-TIME

Let us now consider the Schwarzschild black hole: 

dS 2 = -(1 -2κ/r) dt * 2 +(1 -2κ/r) -1 dr 2 + dΩ 2
X ± T = exp κ(x * ± t * ), U = X -T, V = X + T (4.1)
In the interior black hole regions 0 ≤ 2κr ≤ 1:

x * = r + κ -1 log √ 1 -2κr, (X, T ) are
interchanged and are given by Eqs (3.7)-(3.9).

In terms of the (x, t) coordinates, Kruskal (U, V ) coordinates read simply

U = x t -1 , V = x t, U V = x 2 , V U = t 2 (4.2)
As is known, X 2 -T 2 = 0 are the past and future null horizons 2κr = 1, (x * = ∞), here at x = 0. T 2 -X 2 = ±1 are the past (-) and future (+) classical space-time singularities at r = 0, (x * = 0), here at x = 1.

The Kruskal-Schwarzschild manifold is endowed with several discrete symmetries

U → ±V, V → ±U, ie X = -X, T = -T, (4.3) 
which can be accompagnied by corresponding changes in the transverse (angular) coordinates and their antipodal ones

Ω ⊥ → ±Ω ⊥ . (4.4) 
The duality symmetry of the Kruskal space-time (hidden by the usual Schwazrschild coordinates (r, t * )) shows up clearly in the (x, t) variables:

X(t -1 ) = X(t), T (t -1 ) = -T (t) (4.5) 
U (t -1 ) = V (t), V (t -1 ) = U (t) (4.6) 
This duality under t → t -1 means that the time domains: 0 ≤ t ≤ 1 and 1 ≤ t ≤ ∞ are mapped into ∞ ≤ t ≤ 1 and 1 ≤ t ≤ 0 respectively, or equivalently, into -∞ ≤ t * ≤ 0 and 0 ≤ t * ≤ ∞ . Recall here that t is dimensionless (in units of the Planck time t P ) and arises from a physical classical gravitational time T G as in Eq.(3.1), or a classical length L G which is in turn connected to the quantum length L Q and thus to the quantum dual time T Q as given by Eqs(3.1). Thus, in this context, the duality transform t → t -1 changes the classical time t into the quantum time t and the copy III and its corresponding (past) region IV on the other side, are antipodally identical of each other. This supports the antipodal identification of the two worlds ref [START_REF] Sanchez | Semiclassical quantum gravity in two and four dimensions[END_REF],

refs [8], [9]. By promoting the QG variables to quantum (non conmutative) coordinates, further insight into the quantum space-time structure is obtained and the identification of the two Kruskal copies is further supported by the quantum theory ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

In the interior regions the Planck scale is reached at the loci T 2 -X 2 = ±1 (r = 0) which are bordering the null horizons X = ±T (at 2κr = 1) and asymptotically reaching them 1 is here l 2 P . We see that exterior and interior lose its difference near the horizons X = ±T . Although, is possible to use these words in scales larger than the Planck scale.

There are two dual ways of reaching the horizon and the Planck scale: from the exterior (classical/semiclassical) and from the interior (quantum) regions. This appears like a splitting or shifting of the null horizons X = ±T into the hyperbolae X 2 -T 2 = ±1, X = ± √ T 2 ± 1 being 1 the (dimensionless) Planck scale. We find a similar result when promoting (X, T ) to quantum non-commutative coordinates as we do in ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

Let us recall here that quantum field or string dynamics near horizons require quantum shifts or widths of the horizon of the order of the Planck scale, refs [START_REF] Hooft | [END_REF], [12], [13]. For quantum fields, the quantum shift appears as produced by the back reaction and the dynamics of ingoing and outgoing modes crossing the horizon ref [START_REF] Hooft | [END_REF]. For quantum strings, the horizon width is required by the size (of the order of the Planck scale) of the string .

We find interesting that in a different approach, and solely from our QG variables, a horizon quantum dressing or width does appear, (and without searching for it) supporting the quantum nature of this space-time region. The QG variables naturally contain the Planck scale and in some sense the horizon splitting due to the two valued and dual covering (like Kruskal coordinates). Other related results are reported in ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

V. CONCLUDING REMARKS

• We have provided here new quantum gravity (QG) variables which extend the known gravity (G) and quantum (Q) variables and reduce to them in each of the limiting

sectors G >> Q or Q >> G.
The QG variables contain together both classical and quantum domains including quantum gravity and the elementary particle sector passing by the Planck scale. They generalize the gravity (G) and quantum (Q) variables of each classical and quantum domain, and contain their duality properties. They are invariant under the quantum (Q) and gravity (G) duality through the Planck scale: Q → G -1 duality, and conversely

G → Q -1 .
• The dual of classical behaviour is quantum behaviour: de Broglie duality with , Compton duality with and c, our Planck duality with , c and G:

O Q = o 2 P O -1
G , and QG duality here which extends all of them:

O QG (O G ) = O QG (O Q ), ie O G → O Q and conversely. The QG variables O QG = (1/2)(O G + O Q ) naturally contain all the above dualities.
This duality is universal. As the wave-particle duality, it does not relate to the number or the kind of dimensions nor to any imposed symmetry or compactification. QG variables are automatically dual symmetric,

O G → O Q : O QG (1/x) = O QG (x), x = O G /o P = o P /O Q .
• The complete analytic extension of QG variables allowed us to reveal the classicalquantum duality of the space-time.

The regions I and III (Fig • This sheded light on new quantum properties of the Schwarschild-Kruskal black hole structure.

The four Planck scale hyperbolae X 2 -T 2 = ±1, T 2 -X 2 = ±1 (in Planck units) delimitate the quantum gravity region. The horizons X = ±T are now bordered by the four Planck scale hyperbolae which are like a quantum dressing or quantum width for the horizon, l'horizon habillé ( dressed horizon ). 1 is here l 2 P .

The Planck scale is reached from the exterior X 2 -T 2 = ±1 and from the interior:

r = 0 is the Planck scale T 2 -X 2 = ±1.
The exterior and interior regions thus appear dressed and redefined: they acquire a Planck scale structure. Near the horizons X = ±T , exterior and interior lose their difference.

We have already discussed in the Introduction and along the paper the main new features of the paper and will not include all of them again here. We refer to section I for a summary of the results.

• The antipodal identification of space-time ( aist in short) is not the purpose nor the subject of this paper, but as already mentionned, our results here support aist in the quantum theory, and our new quantum space-time structure results ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF] imply it. We include then here some remarks to update the issue given the new context here and the recent refs [8], [9]. In refs [START_REF] Sanchez | Semiclassical quantum gravity in two and four dimensions[END_REF], we investigated aist in a semiclassical QFT description, imposing such a boundary condition to the vacuum in a strong way stressing that it would give a zero norm state in a global spatial section. But in each halve it is perfectly consistent to construct antipodally symmetric (or antipodally antisymmetric) states with non-zero norm. (Also, the classical global Cauchy section would not be such that in full quantum gravity). Importantly, in aist the space-time topology changes and the resulting manifold (coset or quotient space) is projective, another characteristic manifestation (non trivial topology) of quantum gravity. In aist the normalized antipodally symmetric (or antisymmetric) theory has two times more probability than the non aist symmetric theory. These differences of factors two in the aist and non-aist theories are not misleading, they are totally correct and perfectly understandable in the two-fold covering of the global manifolds. The QG variables and QG symmetry encloses all that.

• The size of the black hole is the gravitational length L G in the classical regime, it is the Compton length L Q in the semiclassical regime, it is the Planck size (or the string size L s ) in the full quantum gravity regime. Similarly, the horizon acceleration (surface gravity) of the black hole is the Planck acceleration κ P in the QG regime. The Hawking temperature T eQ (measure of the surface gravity or of the Compton length) becomes the Planck temperature in the full quantum gravity regime. The gravitational thermal features as Hawking radiation are typical of the semiclassical phase. The end of evaporation is non thermal and purely quantum. For masses smaller than the Planck mass the black hole is not anymore a black hole but a elementary particle state.

Moreover, the quantum mass spectrum we found recently for all masses confirms this picture ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

• Space-time can be parametrized by masses ( mass coordinates ), just related to length and time as QG variables, on the same footing of space and time. In Planck units, any of these variables (or another convenient set) can be used. This reveals particularly interesting for mass quantization ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

More generally, other analytic mappings for full analytic extensions in other manifolds could be considered, ref [14]. In QG, functions of the QG variables could satisfy QG duality symmetry: f (x, t) = ± const. f (x -1 , t -1 ) . QG variables can be also considered in phase-space with their full analytic extension to all values or patches.

• In summary, QG variables or coordinates cover all the domains, classical and quantum, with and without gravity. They turn out to be the classical-quantum duals of each other, in the precise sense of the wave-particle duality, here extended to the quantum gravity (Planck) domain: wave-particle-gravity duality: QG duality in short. QG variables can be used directly as space-time variables or coordinates as we do here, they can be considered as the result of expectation values in a quantum state or they can be used to construct appropriate quantum operators as we do in ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].

• The idea of a continuum space-time is a classical (non-quantum) approximation. A step forward in which the space-time itself is quantized confirms the results presented here and yields more radical new results presented in another paper ref [START_REF] Sanchez | The New Quantum Structure of the Space-Time[END_REF].
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  , and O(x = 1) = 1 Planck scale.

Fig 1

 1 Fig 1 shows the QG variable X ≡ L QG /l P against x. For comparison, each of its dual components (L Q and L G ) are included too. The QG variables are complete: they describe both the classical, semiclassical and quantum gravity domains passing by the Plank scale and the elementary particle domain as well. Two values x ± of the usual variables O G or O Q are necessary for each variable QG. The (+) and (-) branches precisely correspond to the two different and dual ways of reaching the Planck scale: from the quantum elementary particle domain (0 ≤ x ≤ 1) on one side and from the classical/semiclassical gravity domain (1 ≤ x ≤ ∞) on the other side. There is thus a duality between the quantum domain of elementary particles (without gravity) and the classical gravity domain of macroscopic masses (without the quantum theory).

7 ) 1 -

 71 which satisfy T (1/t) = -T (t), T (1) = 0 at the Planck scale.(1.8)QG light-cone type variables can be defined and we perform the complete analytic extension of the QG variables through analytic (or holomorphic) mappings which preserve the lightcone type structure. Fig 2 shows the complete QG (X, T ) manifold. Four patches I, II, II, IV are necessary to cover the full manifold QG. The (X, T ) QG variables are Kruskal's type complete coordinates while the (x, t) variables are like the incomplete Schwarzschild's (or Rindler) ones. The analogy is even more manifest in terms of star coordinates x = exp (κx * ) related to the Schwarzschild coordinates (r, t * ) by: x = √ 2κr exp (κr), t = exp (κt * ). This allows us to reveal the classical-quantum duality of the Schwarzschild-Kruskal spacetime. The regions which are exterior to the Planck scale hyperbolae X 2 -T 2 = ±1, (exterior regions I and III), are classical or semiclassical gravity domains while the interior regions are totally quantum, from the Planck scale X 2 -T 2 = ±1 hyperbolae passing the null horizons X = ±T (at x = 0, 2κr = 1), till the Planck scale again (at x = 1, r = 0): T 2 -X 2 = ±1, (regions II and IV). The exterior region I and the interior region II are dual of each other in the precise sense of the classical-quantum duality. This is also reflected in the duality symmetry X(1/t) = X(t), T (1/t) = -T (t) of the Kruskal manifold which shows up here. The classical-quantum duality maps the internal region x ∈ (0, 1) into the external classical domain x ∈ (1, ∞) through the Planck scale (x = 1, t = 1) and conversely. The two identical halves or worlds (I, II) and (III, IV) which are space-time reflections and antipodally symmetric of each other are classical-quantum duals of each other. The QG duality symmetry includes the classical/semiclassical antipodal space-time symmetry and supports the antipodal identification which translates into the PT or CPT invariance of the quantum

domain 1 ≤

 1 x ≤ ∞. These two domains are duals of each other in the precise sense of the classical-quantum duality through the Planck scale duality Eqs (1.5), (1.6). In other words: Quantum theory has L Q >> l P and L G << l P Classical gravity has L Q << l P and L G >> l P Quantum Gravity has L QG and any value of L G and L Q , and the Planck domain as well. This is reflected in the QG duality satisfied intrinsically by the QG variables L QG and M QG as well as in the Planck duality relation E.(1.5) for both Lengths L G and L Q separately and for the dual (quantum) Mass M Q :

FIG. 1 .

 1 FIG.1. The dimensionless QG variable X = (1/2)(x + 1/x), X ≡ L QG /l P and its classical and quantum components against the dimensionless mass x = M/m p (m P and l P stand for the Planck mass and Planck length). For completeness, each component of L QG /l P : the dimensionless classical gravity length L G /l P = x and the quantum length L Q /l P = 1/x are also displayed. X = 1, x = 1 at the Planck scale delimitates the QG Planck scale domain.

3 . 6 )FIG. 2 .

 362 FIG. 2.The complete analytic extension of the QG variables (X, T ). Four regions are needed to cover the full manifold QG. (X, T ) are complete variables covering all the classical and quantum domains and the quantum gravity domain as well, while (x, t) or (x * , t * ) are incomplete variables, covering only one region (classical or quantum) without covering the quantum gravity domain. The four Planck scale hyperbolae X 2 -T 2 = ±1, T 2 -X 2 = ±1 (in Planck units)

⊥

  Here (r, t * ) are the usual Schwarschild space-time coordinates, x * = r + 1 κ log √ 1 -2κr and κ = c 4 /(2r BH ) = c 4 /(4GM BH ), M BH being the black hole mass. The black hole Kruskal mapping is the same as Eq (3.2) and the space-time Kruskal coordinates have identical expressions to Eqs (3.3)-(3.4):

  -1 and conversely, but the Kruskal time T as the quantum gravity (QG) time remains invariant. The external regions (I) and (III) are classical gravity and semiclassical domains while the interior regions are quantum. These regions are dual of each other in the precise sense of the classical-quantum duality. The classical-quantum duality transform in the Kruskal space-time maps the internal quantum region x ∈ (0, 1) into the external classical domain x ∈ (1, ∞) through the Planck scale (x = 1, t = 1) and conversely. The halves (I, II) and (III, IV), ie the classical/semiclassical wedge (I) and its corresponding quantum (future) interior II on one side,

for T → ±∞, Fig 3 .

 3 The quantum region extends beyond the horizons and is delimitated by the Planck scale hyperbolae X 2 -T 2 = ±1. These hyperbolae are acting like a quantum dressing or quantum width for the horizon, let us call it l'horizon habillé (dressed horizon).

  2): exterior to the Planck scale hyperbolae X 2 -T 2 = ±1 contain both classical and semiclassical behaviours, depending on whether the classical or the quantum component or regime dominates, that is whether O G , or O Q are dominant, while the interior regions II and IV (inside the four Planck scale hyperbolae) are totally quantum in the range [0, l P ].
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