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ABSTRACT1

The purpose of this study is to compare optimal network loadings related to network equilibria. The2

direct comparison of path flows or trajectory patterns is hard to achieve so here we propose a more3

aggregate approach based on the comparison of demand level breakpoints. A breakpoint occurs at4

a particular demand level when after this level, the pattern of the path flow loading is changed or5

the set of active alternatives with at least one assigned user is modified. In the following context,6

the structure of the demand is given, but the level of demand increases. We focus on discrete7

demand formulation and choices and use a trip-based simulator.8

This study analyzes the breakpoints for the solution of three popular equilibrium condi-9

tions: User equilibrium (UE), System optimum (SO) and Boundary Rational User Equilibrium10

(BRUE). First, we investigate breakpoints on a well-known network (Braess) in the static case in11

order to better define this concept. Second, breakpoints are investigated on a real network (Lyon,12

France) and travel times are calculated by microscopic traffic simulator. Our ultimate goal is to13

find, at each level of demand, the critical set of users that can be made to change paths in order14

to move the system from demander side (UE and BRUE) to supplier side (SO). The network con-15

trollers can guide users to change path, or they can manage the price of paths or can ban some16

paths. The numerical results show that our approach can help identify such sets of users.17

Keywords: Trip-based traffic assignment, user equilibrium, system optimum, boundary rational18

user equilibrium, variational demand, switch equilibrium19
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INTRODUCTION1

Traffic assignment problem has been studied for more than five decades and a large variety of2

analytical and simulation-based models and/or algorithms have been developed to find network3

equilibria. Cost can be expressed as a function of time or money or a combination of both. When4

all users realize the minimum possible path cost according to the network constraints and other5

user path choice, the solution is called User Equilibrium (UE). Transportation engineers aim to6

minimize the sum of all user costs. The solution, in this case, is called System Optimum (SO)7

(Patriksson, 1). Path costs can be estimated based on models or simulators. Traffic assignment can8

be classified into three main groups: Static Traffic Assignment (STA), semi-dynamic and Dynamic9

Traffic Assignment (DTA) (Bliemer et al., 2). Since the 1950s there is much research about finding10

the assignment solutions for UE and SO. In this paper, based on the review of Szeto and Wong11

(3) and following Mahmassani (4), a simulation based approach is preferred in this paper, which is12

well-understood, the results of which are easy to interpret and which are relatively close to reality.13

In the real network, if users know all the information about the network, the network works14

in UE condition. If all users follow the command aiming to optimize the system, the network15

is loaded by SO path assignment pattern. In practice, both cases are not realistic. The "optimal16

command" situation does not exist as we are not able to define the optimal command in practice.17

Further users they never fully comply to system guidances even in the hypothetic case where18

optimal command could be defined. In uncontrolled networks, users are not perfectly rational even19

if perfectly informed, so UE is not necessarily achieved.20

The main point is that all users try to minimize their own cost. Therefore, the network21

moves towards UE (Ehrgott et al., 5). We consider the travel time as the cost function. By looking22

at the user behavior, we can find other equilibria which exist in the network. The boundary rational23

model is one behavioral model used to relax the perfect rational hypothesis in the definition of UE.24

Boundary Rational User Equilibrium (BRUE) can be considered as a relaxation of UE where users25

are satisfied with a solution that is close to the optimum. Equilibrium is achieved when all user26

costs are within the boundary around the UE solution (Di and Liu, Han et al., 6, 7). In fact, in the27

real world, we would have a mixed equilibrium because some users push the network towards UE,28

some users push it towards BRUE, and possibly the system controllers will want to meet the SO29

conditions and other conditions (Yang et al., 8).30

In this paper, we consider UE, SO and BRUE independently and try to investigate the31

relation between these three equilibria for different demand levels. To the best of our knowledge32

the studies in the literature focus mainly on finding the path flow distributions over the global33

network related to each equilibrium. Here, we would like to go further and cross-compare the trip34

patterns. This can help in the future to design new traffic management methods based on the idea35

of incenting users to change paths, so that the network gets closer to SO. The questions are which36

users should be switched from one route to another and which routes should be promoted by the37

route guidances. We will not directly answer these questions but we aim to move one step in this38

direction by studying demand level breakpoints. A breakpoint is characterized by the fact that39

one element of the optimal assignment pattern (including path set and path flow structure) changes40

when the demand level increases from less to more than the breakpoint level.41

Generally, the travel demand is not fixed even in the short term. There are few studies that42

focus on the impact of different level of demand on the UE (see e.g. Wie et al., Szeto and Lo, Han43

et al., Han et al., 9, 10, 11, 12). First we define breakpoints and analyze them. Then, for each44

level of demand, and given a fixed active paths set, we try to analyze how we can determine the45
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critical users for rerouting. Critical users are the users who, when they change their path, have1

more impact than others on moving the equilibrium towards SO conditions. There are two main2

points that we aim at investigating:3

• The impact of one origin-destination demand level on the network equilibria.4

• Critical users who can have maximum impact on transforming UE and BRUE to SO by5

change their path.6

The next section "Breakpoint definition" presents the definition of the breakpoint and solves7

a simple static traffic model to define the breakpoints in the Braess network. In the section "Break-8

points calculation in the dynamic case", the trip-based simulator is presented first. Second, we9

explain the dynamic equilibrium model and how we calculate the breakpoints for DTA. The net-10

work for numerical experiments and the simulation based optimization process are presented in11

the section "Numerical experiment". The obtained results are discussed in section "Numerical12

results". Finally, we state concluding remarks and introduce future directions of work in the Con-13

clusion section.14

BREAKPOINT DEFINITION15

The assignment pattern determines how many users take each possible path from origins to desti-16

nations. There is a path set which contains all the active paths from origin to destination. The path17

which is chosen by at least one user is an active path. The optimal path set is a component of the18

optimal assignment pattern defined for each equilibrium: UE, SO and BRUE. For a given origin19

and destination pair w, it is of common knowledge that the active path set for a given equilibrium20

can be the same for different levels of demand. We define the breakpoints as demand levels where21

we observe a modification of the active path set (e.g. one new path in or/and one current path out).22

We will first study the breakpoints in the static case on the classical Braess network (Braess et al.,23

13), because the Braess paradox is induced by different breakpoint values between UE and SO.24

This will help to introduce the concept in a more intuitive way and to show why breakpoints are25

key factors to define management strategies able to get the system closer to SO.26

The classic Braess network with linear cost functions in the static case is shown is figure 1.27

There are five links with cost functions ti j for the link i j connecting node i to node j. The flow of28

the link i j is fi j and there are 3 alternative paths from origin node 1 to destination node 4: path29

1 (1-3-4), path 2 (1-2-4) and path 3 (1-3-2-4). Therefore the cost functions (Ck) of paths k are as30

follow:31

C1(π1) = t13 + t34 (1)

32

C2(π2) = t12 + t24 (2)

33

C3(π3) = t13 + t32 + t24 (3)

Where πk is the flow of path k.34

The two assumptions in figure 1 (α1 ≥ α2, β1 > β2) guarantee that by increasing the de-35

mand, there exist three cases of UE (see e.g. Pas and Principio, 14). They also ensure that the36

path 3 is the cheapest free flow path, due to lower coefficients (α2, β2) in the path cost function.37

The different demand levels will be defined in relation with the structure of the equilibrium (active38
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FIGURE 1 Classic Braess network with the link cost functions and assumptions

paths). Consequently, for UE we will have three scenarios. According to the definition of the UE,1

the conditions of static UE can be stated mathematically as follows:2

Cp −Cw
∗ ≥ 0 ;∀p ∈ Pw (4)

3

πp(Cp −Cw
∗) = 0 ;∀p ∈ Pw (5)

4

πp ≥ 0 ;∀p ∈ Pw (6)

Where Cw
∗ is the minimum travel cost for origin-destination pair w and Pw is the set of possible5

paths for w. In these conditions, there is an assumption that each traveler is perfectly rational and6

chooses a path that minimizes his travel general cost.7

The assignment pattern is a [1× 3] vector π that contains the flow value for three paths.8

Note that the feasible path flow vector, which is part of the assignment pattern in this context, is to9

assign the traffic demand onto the possible path for w: Π ≜ {π : π ≥ 0, ∑p∈Pw πp = Dw}.10

The assignment pattern for UE is a function UE(D) of demand level D and it is defined as follow:11

UE(D) =


[0, 0, D] 0 ≤ D < α1−α2

β1+β2
,

[−α1+α2+(β1+β2)D
β1+3β2

, −α1+α2+(β1+β2)D
β1+3β2

, 2(α1−α2)−(β1−β2)D
β1+3β2

] α1−α2
β1+β2

≤ D < 2(α1−α2)
β1−β2

,

[D
2 ,

D
2 , 0] D ≥ 2(α1−α2)

β1−β2
(7)

Consequently, there are two breakpoints for UE: α1−α2
β1+β2

and 2(α1−α2)
β1−β2

.12

There are two main differences in the definition of breakpoints between the BRUE and UE:13
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• The assignment pattern for BRUE not only depends on the demand level, it also depends1

on the ε value of the indifference band for this origin and destination pair.2

• The assignment pattern is not unique in some scenarios, so for the Braess network there3

are two convex sets (simplices) of flow vectors ϕ1 and ϕ2 which can satisfy the conditions4

of BRUE:5

ϕ1 = {π ≥ 0 : Ci(π)−C j(π)≤ ε; i, j ∈ {1, 2}, i ̸= j} (8)

6

ϕ2 = {π ≥ 0 : Ci(π)−C j(π)≤ ε; i, j ∈ {1, 2, 3}, i ̸= j} (9)

In equation 9, ϕ2 can be a set that all three paths are active. If the indifference band is equal to7

zero (ε = 0) the BRUE and UE assignment are the same. Due to the non-uniqueness of the BRUE,8

for a given ε , an active path has a cost lower or equal to the minimum travel cost path plus ε . The9

ε-BRUE path flow pattern is defined as:10

πp > 0 →Cp −Cw
∗ ≤ ε ;∀p ∈ Pw (10)

The assignment pattern for BRUE is a function of demand level and band value BRUE(D, ε) is:11

BRUE(D, ε) =


[0, 0, D] 0 ≤ D < α1−α2

β1+β2
− ε

β1+β2
,

ϕ1 ∪ϕ2 D > 2(α1−α2)
β1−β2

+ ε
β1−β2

,

ϕ2 o.w.

(11)

For a detailed calculation of equation 11 readers can refer to Di et al. (15). Therefore, there are12

two breakpoints but they exist based on the ε value: α1−α2
β1+β2

− ε
β1+β2

and 2(α1−α2)
β1−β2

+ ε
β1−β2

.13

The third considered equilibria is SO. The SO assignment pattern is based on second prin-14

ciple of Wardrop (16), for minimizing the total travel cost. Therefore, mathematically the goal is15

to minimize the total travel cost as a function of demand and flow vector:16

min T (D, π) = ∑
p∈Pw

πpCp (12)

According to coefficients assumptions for the Braess network (figure 1) and the three sce-17

narios that can happen like the UE case the objective function is:18

T (D) =


(2β1 +β2)D2 +α2D2 if only path 3 used,
(β1 +β2)(π1

2 +π2
2)+α1D if path 1 and 2 used,

(β1 +2β2)(π1
2 +π2

2)+ [α1 −α2 −2(β1 +β2)D](π1 +π2) if all paths used
+2β2π1π2 +(2β1 +β1)D2 +α2D

(13)
Therefore and mathematically, the assignment pattern for SO is defined as follow:19

SO(D) =


[0, 0, D] 0 ≤ D < α1−α2

2(β1+β2)
,

[
−α1+α2

2 +(β1+β2)D
β1+3β2

,
−α1+α2

2 +(β1+β2)D
β1+3β2

, (α1−α2)−(β1−β2)D
β1+3β2

] α1−α2
2(β1+β2)

≤ D < α1−α2
β1−β2

,

[D
2 ,

D
2 , 0] D ≥ α1−α2

β1−β2
(14)
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There are two breakpoints for SO: α1−α2
2(β1+β2)

and α1−α2
β1−β2

.1

As aforementioned, existing studies usually finish the breakpoints analysis here (finding the as-2

signment pattern for equilibria). We are now going to analyze the equilibria based on breakpoints.3

Analysis based on breakpoints4

The flow diagram for UE, SO and BRUE is shown in figure 2 to present the optimal path set of two5

different types of paths in the Braess network. It is not easy to present the BRUE in flow diagram6

because the ε allowance for cost implies that for each path there is a set of possible flow values7

in the BRUE assignment pattern around the UE flow value. Thus in figures 2(a) and 2(b), we8

represent the BRUE solution in terms of the maximum range of flows at equilibrium. Figure 2(a)9

presents the demand-flow diagram for path 1 and 2 in UE, SO and BRUE situations. Breakpoints10

are shown on the demand axis. (a↔b) presents the active path set for UE and SO and also possible11

active path set for BRUE depending on the value of ε . The same demand-flow diagram for path 312

is shown in figure 2(b). Note that the breakpoints of BRUE, α1−α2
β1+β2

− ε
β1+β2

and 2(α1−α2)
β1−β2

+ ε
β1−β2

,13

are equal to UE breakpoints when ε = 0. Figure 2 can help to design control strategies to push14

the network toward SO. First, we discuss the UE-SO breakpoints. Then we explain the BRUE-15

SO breakpoints based on ε . Finally, the mathematical formulas for assignment patterns for the16

3 equilibria (UE, SO and BRUE) are shown in table 1. This table is obtained by merging the17

equations 7, 11 and 14 to jointly investigate the breakpoints when demand is increasing.18

The first breakpoint occurs when D = α1−α2
2(β1+β2)

for analyzing the UE solution and SO. From19

the first breakpoint to the second one the flow is distributed differently for UE and SO. For UE20

all users are still taking the third path but for SO some of them start to take the paths 1 and 2 to21

minimize the total travel time. It means that for demand level higher than the first breakpoint, Path22

1 and 2 will be added to the active path set in SO solution. Therefore, the network controller can23

promote certain number of users to travel by path 1 or 2. These users are critical for an efficient24

strategy that should guide them to take paths 1 and 2 when the demand level is α1−α2
2(β1+β2)

≤ D <25

α1−α2
β1+β2

.26

The active path set is the same for UE and SO when the demand level is α1−α2
β1+β2

≤D< α1−α2
β1−β2

.27

So the system controllers only need to promote the critical users. The interval between the third and28

fourth breakpoints has different active path sets for equilibria (UE) and (SO). Path 3 is not in the29

active path set for SO when α1−α2
β1−β2

≤ D < 2(α1−α2)
β1−β2

. In this demand interval the system controller30

can ban path 3 or design a control strategy to prevent users to travel on path 3 (e.g. increasing the31

path toll with pricing strategies). In Braess network, after the last breakpoint, D ≥ 2(α1−α2)
β1−β2

, the32

UE and SO assignment pattern will be the same.33

In general, the BRUE assignment pattern is close to UE but the solution is not symmetric34

with respect to paths 1 and 2 as in SO and UE. In BRUE-SO analysis, D = α1−α2
2(β1+β2)

is the first35

breakpoint like UE-SO only if ε ≤ α1−α2
2 . Because if ε > α1−α2

2 , the first breakpoint is located in36

the lower demand level of the first SO breakpoint. Path 1 and(or) path 2 are added to the path set37

after the first breakpoint. For higher demand level, by taking to account ε , the control strategies38

is same as UE-SO breakpoints until the last breakpoint, when path 3 exits the active path set. If39

D ≥ 2(α1−α2)
β1−β2

, the BRUE and SO assignment pattern will be the same only if ε = 0. It means, for40

ε > 0, the last breakpoint will be 2(α1−α2)
β1−β2

+ ε
β1−β2

. All paths are active for BRUE and path 3 is41
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not active for SO while 2(α1−α2)
β1−β2

≤ D < 2(α1−α2)
β1−β2

+ ε
β1−β2

. Consequently, the assignment pattern is1

the same for BRUE and SO when D ≥ 2(α1−α2)
β1−β2

+ ε
β1−β2

. Note that BRUE accepts 3 non zero path-2

flows for values of D< α1−α2
β1+β2

− ε
β1+β2

when ε >α1−α2. Moreover, if ε ≤ α1−α2
2 and D< α1−α2

2(β1+β2)
,3

the solution is the same for all 3 equilibria.4

In urban networks, transportation system controllers can guide (e.g. by Advanced Traveler5

Information System (ATIS)) the limited number of users that are equipped. Generally, it will be6

useful to know how many users need to change their path to push the network from one equilibrium7

in the user side (UE or BRUE) to one equilibrium in the system side (SO). By the development of8

the controlling facilities in the network, this idea can improve the system objectives. This part of9

the study has attempted to explain the assignment pattern breakpoints concept and to define them10

in a simple manner using the static assignment on the Braess network. In the following parts of11

the paper, we present the dynamic trip-based framework to find the breakpoints and identify the12

critical user(s) for rerouting and critical path(s) for banning.13
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𝑃𝑆𝑂 = {1, 2, 3}
𝑃𝐵𝑅𝑈𝐸 = {1, 2, 3}
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𝑃𝑆𝑂 = {1, 2}
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FIGURE 2 (a): Path 1 or Path 2 flow-demand diagram for UE, SO and BRUE. (a↔b):
Possible path set of optimal solution [Px = Possible path set of optimal solution for x]. Note
that for BRUE, it depends on the ε . (b): Path 3 flow-demand diagram for UE, SO and BRUE.
Red dash lines in figures (a) and (b) presents the value of breakpoints in BRUE assignment
pattern based on the given ε . It can change in ranges that are specified by the red arrows.
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BREAKPOINTS CALCULATION IN THE DYNAMIC CASE1

In this work, we use Symuvia as a trip-based simulator for calculating the needed variables in the2

network. Symuvia has been developed by the LICIT laboratory in IFSTTAR. It is a microscopic3

simulator based on the Lagrangian resolution of the LWR model (Leclercq et al. (17)). It has a4

simulation time-step equal to 1 second and obtains the information at the link level every 1 minute.5

[Note that Symuvia is an open source simulator that will be available starting winter 2018.]6

Consider a network G(N, A) with a finite set of nodes N and a finite set of directed links7

A. The demand is time-dependent. The period of interest (planning horizon) of duration H is8

discretized into a set of small time intervals indexed by τ (τ ∈ T = {τ0, τ0 +σ , τ0 + 2σ , ..., τ0 +9

Mσ} and τ0 +Mσ = H). σ is the duration of the time intervals. In an interval τ , travel time and10

traffic conditions do not change. The important notations to introduce the dynamic equilibrium11

model are as follows:12

W : OD pairs, subset of origin × destination nodes, W ⊂ N ×N.13

a: index of link, a ∈ A.14

w: index of origin and destination pair, w ∈W .15

Pw,τ : set of paths for w in departure time τ .16

P∗
w,τ : set of shortest paths for w in departure time interval τ .17

p: index of path, p ∈ Pw,τ .18

p∗: index of shortest path, p∗ ∈ P∗
w,τ .19

Dw: total demand for w pair.20

Cp,τ : travel cost of path p in departure time τ .21

C∗
w,τ : minimum travel cost of OD pair w in departure time τ .22

Ĉp,τ : marginal travel cost of path p in departure time τ .23

Ĉ∗
w,τ : minimum marginal travel cost of OD w in departure time τ .24

According to the definition of the time interval in DTA and based on the study of (Sbayti et al.,25

18), the conditions of dynamic UE can be mathematically restated from equations 4, 5 and 6:26

Cp,τ −C∗
w,τ ≥ 0 ;∀w ∈W, p ∈ Pw,τ , τ ∈ T (15)

27

πp,τ(Cp,τ −C∗
w,τ) = 0 ;∀w ∈W, p ∈ Pw,τ , τ ∈ T (16)

28

πp,τ ≥ 0 ;∀p ∈ Pw,τ , τ ∈ T (17)

If we violate the assumption that each traveler is perfectly rational, we can rewrite the equation 1029

for BRUE:30

πp,τ > 0 →Cp,τ −Cw,τ
∗ ≤ ε ;∀p ∈ Pw,τ (18)

The SO conditions in the dynamic case mathematically stated in equations 19, 20 and 21. These31

conditions are presented based on marginal travel time and they state that if the path flow is positive,32

then the experienced path marginal travel time should be equal to the minimum path marginal travel33

times.34

Ĉp,τ −Ĉ∗
w,τ ≥ 0 ;∀w ∈W, p ∈ Pw,τ , τ ∈ T (19)

35

πp,τ(Ĉp,τ −Ĉ∗
w,τ) = 0 ;∀w ∈W, p ∈ Pw,τ , τ ∈ T (20)
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1

πp,τ ≥ 0 ;∀p ∈ Pw,τ , τ ∈ T (21)

Computing the path marginal travel time analytically is very costly. In Leclercq et al. (19) it has2

been shown that using the simulation-based approach to compute the path marginals is also very3

costly, even in a simple grid network. Therefore, we use the simulator to compute a surrogate4

model for the marginal travel time. The simulator updates the marginal of a link every time a5

vehicle is exiting the link by calculating the marginal variation since the last exit the link. Finally,6

link marginal are averaged using the 1 minute window. Consequently, the path marginal travel7

time can obtained by:8

Ĉp,τ = ∑
a∈Ap

[
∑τ+σ

t=τ Ĉa, t

σ
] (22)

Where Ĉa,τ is the marginal travel time of link a at second t, σ is the length of each time interval9

and Ap is the subset of link set A which defines path p. In fact, the surrogate function by Peeta and10

Mahmassani (20) consider the sum of links marginal travel time as the actual function. In the SO11

problem, we are looking for minimizing equation 22 for all users.12

NUMERICAL EXPERIMENTS13

In this section, we could consider the Braess network with a flow-based dynamic model and draw14

the flow demand diagram with breakpoints as a function of the demand level. But the goal of this15

paper is to consider the trip-based DTA on an urban network and to find the breakpoints for the16

three equilibrium conditions as a function of the demand level. As mentioned earlier, we use a17

sub-area of the Lyon full regional network. It is a network of the Lyon 6 district (figures 3(a) and18

3(b)). We are looking for the breakpoints of different demand level and a specific OD pair that19

correspond to travel from the west (Quai de Serbie) to the east of the network (6 Avenue Verguin)20

when the network is loaded by the travelers of other ODs to represent the peak half an hour of the21

network based on study of Krug et al. (21). We consider various levels of demand. The simulation22

and optimization are carried out for each level of demand with a 30 minutes horizon. The demand23

pattern has been set up to adjust the regular level observed in this area during the peak hour. We24

select the 3 most likely routes from the origin to destination to define the set of paths candidates.25

They are shown in figures 3(c) and 3(d). The network of Lyon 6 has:26

• 430 nodes27

• 786 links28

• 26 origins and 24 destinations29

• 6405 trips for ODs without the demand of Quai de Serbie to 6 Avenue Verguin30

We search for the three equilibria in the complete network. It means that the optimization process is31

executed for all ODs and users in the network and we try to analyze the breakpoints by increasing32

the demand level on one specific OD. A simulation-based DTA is used to find the UE, SO and33

BRUE at every level of the demand on the three predefined paths. The departure time for the test34

users is spread uniformly in the 30 minutes duration of the horizon. Moreover, the users with35

other ODs travel with fixed departure time. According to the scale of the network, for calculating36
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the BRUE assignment, we consider ε = 0.1Cp,τ . It means users will be satisfied if they perceive1

maximum ten percent more than shortest path cost.2

• 430 nodes  
• 786 links 
• 26 origins and 24 destinations 
• 6405 trips for ODs without the demand of “Quai de Serbie” to “6 Avenue Verguin” 

                      (a)                                 (b) 

 

                          (c)                                               (d) 

 
Figure 3: (a) Network of Lyon 6: Satellite view of Lyon 6, France (© Google Maps) (b) Lyon 6 network consider by this study  

(c) Origin, destination and paths by Google map (d) The paths on the network of this study 

We search for 3 equilibria in the complete network, it means that the optimization process is executed for 
all ODs and users in the network and we try to analyze the breakpoint by increasing the demand level of 
one travel from west to east. Simulation-based DTA is used to finding the UE, SO and BRUE in every level 
of the demand with 3 predefined paths. The departure time for the test users is determined by uniformly 
function in one hour. Moreover, the users who have the different OD, travel with the fixed departure time. 
The time interval j can be redefined here as the index of departure time interval τ ∈ [, where [ is a set of 
departure time intervals. The important notations to introduce the optimization process are as flow:   
à: 	iteration number in optimization process 
â: subset of origin and destination nodes, W ⊂4 g 
o: index of link, a ∈ h 
!: index of origin and destination pair, w ∈ â 
B<,z	: set of paths for ! in departure time j 
B<,z∗ : set of shortest path paths for ! in departure time j 

FIGURE 3 (a) Network of Lyon 6: Satellite view of Lyon 6, France (Mapping data ©Google
2017) (b) Lyon 6 network consider by this study (c) Origin, destination and paths (Mapping
data ©Google 2017) (d) The paths on the network of this study.
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Optimization process1

The Method of Successive Average (MSA) has been presented for the first time by Robbins and2

Monro (22). In this study, we use the modified MSA in simulation-based DTA. Consider i as an3

index of iteration in the optimization process and π i
p,τ is the number of users on path p in departure4

interval τ and iteration i of the optimization. In iteration i, MSA swaps a fraction 1
i+1 of users on5

each path with higher cost value than the lowest cost path, to the lowest cost path(s). The direction6

of the optimization process is defined by an all-or-nothing assignment vector (yi
p,τ ) for each OD at7

departure interval τ . With this step size, path assignments π i
p,τ at iteration i are updated in order to8

obtain the path assignments π i+1
p,τ for iteration (i+1) as follows:9

π i+1
p,τ =

i
i+1

π i
p,τ +

1
i+1

yi
p,τ ;∀p ∈ Pw,τ (23)

The main drawback of MSA is that it swaps users from all non-lowest cost paths without consid-10

ering the gap between path costs. In fact, there is no priority for expensive paths to swap more11

users. In this study, we use MSA ranking by (18) to remove this drawback for trip-based DTA. The12

idea of MSA ranking is first, rank the users by the experienced travel time then swap a maximum13

number of users based on MSA method. Maximum of number of swaps NSi is observed when we14

have an empty lowest cost path for swapping. It means:15

NSi =
1

i+1
Dw (24)

This method swaps the user from most expensive paths so it accelerates convergence and provides16

the best quality solution for the trip-based problem. With a large number of users traveling between17

many ODs and with many paths per OD, ranking the users is very costly and has no justification18

in a large-scale problem. But here with the sub-area network it is efficient to find the UE, SO and19

BRUE with this ranking method.20

NUMERICAL RESULTS21

As mentioned earlier, we focus on travels from one specific OD pair. We solve the problem with22

different demand levels. Demand is increased from one user to 1400 users over the simulation time23

horizon = 30 min. The departure time is fixed for all users who do not travel between this OD pair.24

The distribution of departure time for this OD is uniform. The optimization process has been done25

for all three equilibria and the full network. All experiments for UE and SO are reproducible and26

lead to a unique solution but for BRUE the solution depends on the first network initialization and27

the value of ε . In each experiment, each equilibrium is measured and the breakpoint occurs when28

new active path(s) appear or when the assignment pattern is changed. Changes in slope (derivative29

of path flow with respect of demand) are also indicators of breakpoints. These changes in slope30

are connected to changes in active path sets. The results of breakpoint detection for UE and SO31

are presented in table 2. Also, we present the BRUE assignment plan of breakpoints with all-or-32

nothing initialization and ε = 0.1Cp,τ in this figure. The solution space is not continuous because33

of the trip-based simulation (flows have integer values). Therefore, for each experiment, we have34

three integer numbers as the flow on each path in the vector of assignment.35

To represent and analyze the breakpoints in continuous space we draw the flow diagram by36

the integer data with linear regression method with R2 < 0.95 and the breakpoints are the boundary37
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of the regression lines. The demand-flow diagram for each path is presented in figure 4. The idea1

of moving from one equilibrium to another is applied between 2 breakpoints when the assignment2

patterns are different. When both equilibria have the same path set but different flows, we need3

to design a strategy to reroute the critical users. The number of critical users, in this case, is the4

difference between the two flow values of the paths. We present the swap matrix to determine the5

number of users needed to swap from one path to another. It is a n×n matrix where n is the number6

of the paths (in this case, n = 3). Element i j of this matrix demonstrates how many users should7

swap from path i to path j in order to move the system from UE to SO. This matrix is presented8

in table 2 for these experiments. For instance, in this network, the pattern of each equilibrium is9

constant between two breakpoints. The traffic management system can induce a change of path of10

the critical users. Also, when the difference in flow is high for two equilibria, then promoting users11

to use one specific path may also be efficient.12

On the other hand, if the path set is not the same for the two equilibria (paths used in UE13

which are not used in SO), the system can ban some paths (unused in SO) through routing advises.14

In this experiments, when the demand level exceeds 593, the SO flow for the first path is zero15

(figure 4(a)) so the system can ban some links in order to prevent users to take the first path to16

reach the SO.17
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TABLE 2 Assignment pattern of three paths for UE, SO on Lyon 6 traffic network
Demand level(D) User Equilibrium (UE) System Optimum (SO) Critical user swap matrix

1 [0, 1, 0] [0, 1, 0] –

8 [0, 5, 3] [1, 5, 2]
[ − 0 0

0 − 0
1 0 −

]
14 [0, 5, 9] [3, 5, 6]

[ − 0 0
0 − 0
3 0 −

]
90 [0, 30, 60] [11, 56, 23]

[ − 0 0
0 − 0
11 26 −

]

143 [0, 48, 95] [4, 63, 76]
[ − 0 0

0 − 0
4 15 −

]
179 [24, 53, 102] [0, 84, 95]

[ − 24 0
0 − 0
0 7 −

]
440 [59, 131, 250] [0, 221, 219]

[ − 59 0
0 − 0
0 31 −

]
449 [60, 134, 255] [84, 134, 231]

[ − 0 0
0 − 0

24 0 −

]
452 [60, 137, 255] [127, 99, 226]

[ − 0 0
38 − 0
29 0 −

]
575 [66, 253, 256] [156, 177, 242]

[ − 0 0
76 − 0
14 0 −

]

593 [67, 256, 270] [0, 298, 295]
[ − 42 25

0 − 0
0 0 −

]

719 [73, 396, 250] [0, 635, 84]
[ − 73 0

0 − 0
0 166 −

]
899 [83, 565, 251] [0, 553, 346]

[ − 0 83
0 − 12
0 0 −

]
999 [82, 561, 356] [0, 665, 334]

[ − 82 0
0 − 0
0 22 −

]
1259 [146, 813, 300] [0, 958, 301]

[ − 145 1
0 − 0
0 0 −

]

1400 [176, 950, 274] [0, 417, 983]
[ − 0 176

0 − 533
0 0 −

]
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FIGURE 4 (a) Path 1 flow-demand diagram for UE and SO. (b) Path 2 flow-demand diagram
for UE and SO. (c) Path 3 flow-demand diagram for UE and SO.
Breakpoints are presented by black vertical dash lines on total demand axis.
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Figure 5 presents the total travel time of the breakpoints in UE and SO. We present it here in order1

to show that optimizing the surrogate model (equation 22) instead of the actual value of the path2

marginal yields a better total travel time than UE and BRUE.3
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FIGURE 5 Total travel time for each level of demand for UE and SO

CONCLUSION4

This paper considers static and dynamic traffic assignment in order to study the impact of different5

demand levels on three equilibria (User Equilibrium, System Optimum and Boundary Rational6

User Equilibrium). It attempts to find the breakpoints and to investigate the possibility to move7

from one equilibrium to another. At any level of demand we define a critical user set as a sub-set8

of all users. The critical user has more impact than others on the assignment solution. In fact, the9

system controller can design a strategy to reroute the critical users in order to move the network10

from a UE or BRUE situation towards a SO flow pattern. Also at some level of demand when11

the active path sets are different for UE/BRUE and SO, we can ban/promote some paths in order12

to achieve the SO. This paper proposes a novel approach to analyze network DTA equilibrium13

as a function of demand level. The potential implications of this approach for network suppliers14

concern the analysis of the network status and the design of rerouting strategies (e.g. with the15

communication devices) in order to move from an initial UE or BRUE situation towards SO.16

The numerical experiments were conducted on a static classic Braess network and on a17

dynamic real sub network (Lyon 6) to examine the equilibrium patterns at different demand levels.18

In the dynamic network, we consider the full network equilibrium and analyze the pattern when19

the demand of one origin-destination pair is changed. Note that the experiments of this study20

have been carried out with homogeneous users. The approach in this paper can be carried over to21

heterogeneous users and can consider the profile of each user, which allows the study to consider22

the BRUE in the stable form. It is also found that using the surrogate model instead of analytical23

path marginal cost is feasable, improves equilibrium but it can lead to sub-optimal SO equilibria.24

This may be the cause of the shape and change of pattern of the path flow between breakpoints25

143 to 440 in figure 4. Therefore, the authors plan to improve the calculation method for SO26

to investigate if what we observe here is caused by a non-optimal solution or related to network27
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effects (e.g. correlations of the effects between multiple ODs). Finally, the results of this study1

shows the existence of the breakpoints, which is to be expected from the static case but has not2

been analyzed in the dynamic case before. For future work, the authors are looking for the impact3

of initialization on the equilibrium in different demand level and also apply the breakpoint analysis4

process to more than one ODs with considering of correlation between paths.5
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