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Résumé
We present a method for computing high order derivatives on a smooth surface S at a point p by analyzing the
vibrations of the surface along circles in the tangent plane, centered at p. By computing the Discrete Fourier
Transform of the deviation of S from the tangent plane restricted to those circles, a linear relation between the
Fourier coefficients and the derivatives can be expressed. Thus, given a smooth scalar field defined on the surface,
all its derivatives at p can be computed simultaneously. The originality of this method is that no direct derivation
process is applied to the data. Instead, integration is performed through the Discrete Fourier Transform, and the
result is expressed as a one dimensional polynomial. We derive two applications of our framework namely normal
correction and curvature estimation which we demonstrate on synthetic and real data.

Mots clé : Geometry Processing, Curvature Computation

1. Introduction

Local description of a surface gives important information
that can help measure similarities between surfaces. To do
so, one has to find a way to robustly represent the data. Such
a representation should, for example, be rotational or scale
invariant. One of the simplest representations is a height field
over a tangent plane.

In this paper, we present a novel way to locally represent a
shape, giving links between our representation and the high
order derivatives of the function. The surface is represented
locally as one-dimensional signals corresponding to the sur-
face height over the tangent plane sampled on concentric cir-
cles. This construction shares some properties with Zernike
polynomial introduced in [Zer34], and will allow a harmonic
interpretation of higher order derivatives of two-dimensional
functions.

Contributions To summarize, our contributions are the fol-
lowing:

• A method to estimate derivatives based on the Fourier
Transform of geodesic circles.
• An application to correct normals from an input point set

or estimate the curvatures.

2. Previous work

2.1. Using waves to describe a surface

Some work has already been done in looking on interpreting
surfaces around a point as a vibrating function. [MT98] ex-
pressed the normal curvature as a periodic function depending

on the coefficients of the first fundamental harmonic to de-
sign a measurement of how smooth second order derivatives
field is (which they call second order smoothness). A similar
processing applied to the variation of the normal curvature
yielded a third order smoothness. [JS10] gave an intuitive
interpretation of the behavior of the third order derivative of
a function by splitting its height field as a sum of cosines
and computing its Fourier Transform along a circle around a
point. [JS10] claimed that the same process could be used to
compute higher order derivatives. However, in order to do so,
the Fourier Transform must be computed on multiple concen-
tric circles to extract frequencies evolution with regards to
the radius (which is polynomial). Zernike polynomials form
an orthogonal basis of two-dimensional polynomials in polar
coordinates. They were introduced by [Zer34] to efficiently
correct optical aberrations of lenses. Each Zernike polynomial
is formed as the multiplication of a one-dimensional polyno-
mial of a certain order with the radius as variable, multiplied
by the cosine of the phase a given frequency. Projecting the
height field of the neighborhood of a given point on this basis
gives a rotational invariant descriptor used by [MPVF11].

2.2. Curvature estimation

Curvature estimation by local analysis of neighborhoods has
been studied extensively [CP03]. The major focus is to avoid
the derivation of the surface, since derivation of a noisy mea-
sure leads to instabilities. Instead, the derivatives are esti-
mated by local integration. This process is usually limited
to second order derivatives, yielding the curvature. Integral
invariants, [PWY∗07] and [PWHY09], use local area and
volume computation to estimate the curvature. [PGK02] uses
the local covariance of points to estimate the surface vari-
ation, a curvature-like measure of the surface. [DMSL11]
demonstrated the link between projection on the regression
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Source φ2,0 |φ2,2| |φ3,1| |φ3,3|

Figure 1: Computation of some values of φn,k on a blurred face model of Caesar. |φ2,2| is globally smooth but there remains
some outliers.

plane and mean curvature. However, none of these methods
directly allowed for higher order derivatives computation.

3. Derivative Computation

3.1. Formulation

Let p be a point from a smooth surface S . Given a parame-
terization (x,y) in the tangent plane at point p, the deviation
of S has a Taylor expansion fp(x,y) from the tangent plane
that depends on all the derivatives of fp. For simplification,
let us remove the subscript p in the rest of the article:

f (x,y) =
∞
∑
k=0

k

∑
j=0

fxk− jy j

(k− j)! j!
xk− jy j (1)

Where fxk− jy j is the jth cross derivative of order k of f .
Let us use polar coordinates such that (x,y) = (r cosθ,r sinθ).
Let fr(θ) be the restriction of f along a circle of radius r.
Using trigonometric properties, the periodic function fr(θ)
can be written as follows:

fr(θ) =
∞
∑
n=0
|sr,n( f )|cos(nθ+θr,n( f )) (2)

Where sr,n( f ) ∈ C is related to the nth frequency of the
Discrete Fourier Transform of fr(θ), and where θr,n( f ) is its
phase. One can prove that the expression of s2n(r, f ) (resp.
s2n+1(r, f )) is an even (resp. odd) polynomial of r.

sr,2n( f ) =
∞
∑
k=0

r2k
φ2k,2n( f )

sr,2n+1( f ) =
∞
∑
k=0

r2k+1
φ2k+1,2n+1( f )

(3)

Where φk,n( f )∈C represents the part of sr,n( f ) belonging
to the kth derivative of f . Re(φk,n( f )) (resp. Im(φk,n( f )) is
a linear combinaison of the even (resp. odd) kth order cross-
derivatives of f which can be determined for any k.

Let us evaluate sr,n( f ) for N + 1 different radius ri, lim-
iting the maximum order to 2k + 1 = Norder ≤ N and the
highest frequency to 2n+1 = Nfreq ≤ Norder. Let us write the
following matrices:

• V =
(

r2k
i

)
i,k
∈MN,Norder(R)

• D = diag(ri) ∈MN,N(R)
• S = (sri,n)i,n ∈MN,2Nfreq(C
• Seven =

(
sri,2n

)
i,n ∈MN,Nfreq(C)

• Sodd =
(
sri,2n+1

)
i,n ∈MN,Nfreq(C)

• Φ =
(
φk,n
)

k,n ∈M2Norder,2Nfreq(C)
• Φeven =

(
φ2k,2n

)
k,n ∈MNorder,Nfreq(C)

• Φodd =
(
φ2k+1,2n+1

)
k,n ∈MNorder,Nfreq(C)

Where V is a Vandermonde matrix of the squared radius
andMm,n(K) is the space of matrices of dimension m× n
on a body K. Equation (3) computed with different radius ri
can now be written as the following system of equations:

Seven =V Φeven, Sodd = DV Φodd (4)

Since V and D are invertible by construction if N =
Norder = Nfreq, Φ can be recovered from S. If the equality
N = Norder = Nfreq does not hold, the system is over deter-
mined and the pseudo-inverse of V is computed. Additionally,
one can show that φk,n = 0 if k < n because the linearization
of the power of k of a cosine only contains frequencies n
lower than k, thus Φ is an upper triangular matrix. Some
values of φk,n computed on a shape are shown on figure 1.
Let Φk be the column of Φ representing the kth order of f ,
restricted only to nonzero coefficients (it is then of dimension
Int(k/2)+1). Let us define the vector Xk( f ) as follows:

Xk( f ) =
(

fxk−2 jy2 j

(k-2 j)!(2 j)!
+ iii

fxk−2 j−1y2 j+1

(k-2 j-1)!(2 j+1)!

)
2 j+1≤k

Xk( f ) contains all the cross-derivatives of order k of f . Let
Ak be the complex matrix in which the real (resp. imaginary)
part represents the linear transform between the real (resp.
imaginary) part of Xk and Φk. We can prove that Ak exists, so
we have:

Re(Φk) = Re(Ak)Re(Xk)

Im(Φk) = Im(Ak)Im(Xk)
(5)

Ak has a closed form † . It is also a matrix that is indepen-
dant of f . We have not proved yet that its real and imaginary
parts are invertible for any order k, but in our experiments, we
could successfully compute those inverses for the first terms.

3.2. Computing matrix S

First of all, the input data treated in this paper is a point cloud.
Neighborhoods are computed using a kd-tree representation
of the data.

† https://liris.cnrs.fr/ybearzi/appendix.pdf
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In order to compute Φ at point p on a surface S , the
matrix S is needed. The tangent plane at p is estimated and
points lying on circles centered at p with growing radius are
computed. For those points the height function of the surface
S over the tangent plane must be interpolated.

Let Cri be the sample points to be interpolated on the circle
of radius ri and P = (p`) be the set of points near p used for
interpolating the circles. Let I be the interpolator such that
I(P,Cri) gives the interpolated points along the circle Cri . Let
F be the Discrete Fourier Transform operator extracting only
the coefficient of frequency zero and the double of strictly
positive frequency coefficients. The computation of the ith

line Si of S can be computed as follows:

Si = F (I(P,Cri)) (6)

In the experimental results, the interpolation method used
is Kriging, which is a geostatistical method developed in
[Mat60] to interpolate the concentration of precious rocks
in an area given known concentration on certain locations.
Kriging interpolation computes the height of a point at posi-
tion (x,y) in the tangent plane as a linear combination of the
heights of the sample data. Importantly enough, the weights
in the linear combination sum to 1 but are not necessarily
nonnegative. Kriging extracts the weights so the variance
of the estimated values with regards to the sample data is
minimal. It needs a semivariogram model that we set to be
quadratic.

4. Interpretation

In the previous section, we showed a relationship between
the coefficients of the Discrete Fourier Transform applied to
restrictions of f along concentric circles and its kth ordered
derivatives. Each kth order derivative of f can be interpreted
as a vibration of the surface around p which has at most
k zeros. Each kth coefficient, supported by a monomial of
order k, is linearly blended in the coefficients of the Fourier
series of the height field at constant radius from p due to De
Moivre’s formulas. The decomposition to Φeven and Φodd
respectively splits the signal around p into symmetric and
antisymmetric parts.

Hence, we can now interpret the kth order cross derivatives
as the sum of cosines of frequencies sharing the same parity
as k. The linear combination of those cosines will define the
principal directions of the kth order derivative, which are at
most k and located at the maxima of the vibrating signal. The
coefficients of high order derivatives can be put into symmet-
ric supermatrices like proposed by [Qi07]. Supermatrices are
an extension of matrices to higher dimensions. The principal
directions of order k are equal to the Z-eigenvectors (for real
eigenvectors) of the symmetric supermatrix coefficient of
order k which are discussed in [Qi07]. Principal directions of
high order then have some properties linked to the behavior of
Z-eigenvectors, and more generally E-eigenvectors (includ-
ing complex eigenvectors called recession vectors). Finding
the maxima of the linear combination of cosines related to
order k is equivalent to finding the Z-eigenvectors of order k.

5. Applications

5.1. Estimation of the kth order derivatives of a scalar
function g on a surface S

The computation of Φ was given in the context of estimat-
ing the geometric properties of S at point p, studying the
deviation f from the tangent plane of S around p. Given a
smooth scalar function g lying on S , Φ(g) can be computed
as well, giving an estimation of all the kth order derivatives
of g at point p.

5.2. Curvature computation

The Gaussian curvature K and the mean curvature H can be
computed directly from Φ. For this purpose, the relationship
between Φ1 and (gx,gy) and the relationship between Φ2 and
(gxx,gxy,gyy) must be known:

gx = Re(φ1,1(g)), gy = Im(φ1,1(g)) (7)

gxx = 2(φ2,0(g)+Re(φ2,2(g)))

gxy = 2Im(φ2,2(g))

gyy = 2(φ2,0(g)−Re(φ2,2(g)))

(8)

The computation of H and K is then straightforward:

K(g) =
gxxgyy−g2

xy

(1+g2
x +g2

y)2

K = 4×
φ

2
2,0−

∣∣φ2,2
∣∣2(

1+
∣∣φ1,1

∣∣)2

(9)

Since φ1,1( f ) = 0:

K( f ) = 4
(

φ2,0( f )2−
∣∣φ2,2( f )

∣∣2) (10)

Similarly, the mean curvature has the following form:

H(g) =

(
1+g2

x

)
gxx +

(
1+g2

y

)
gyy−2gxgygyy

2
(
1+g2

x +g2
y
) 3

2

H = 2×
φ2,0

(
1+
∣∣φ1,1

∣∣2)+Re
(
φ2,2φ1,1

)
(

1+
∣∣φ1,1

∣∣2) 3
2

= 2×
φ2,0 +

∣∣φ1,1
∣∣2 (φ2,0 + |φ2,2|cos(2ϕ1,1−ϕ2,2)

)
(

1+
∣∣φ1,1

∣∣2) 3
2

(11)

Where ϕk,n is the phase of φk,n. In the case g = f , equation
(11) becomes:

H( f ) = 2φ2,0( f ) (12)

5.3. Normal correction

Since φ1,1 gives an estimate of the first derivatives of f , it
should be equal to zero since f lies in the tangent plane.
Having φ1,1 6= 0 implies that the current normal nnn at point
p is incorrect. Figure 2 illustrates the fact that noisy nor-
mals mainly influence φ1,1 opposed to φk,n, showing that our
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computation separates different orders well. Using the local-
ization of the noise in φ1,1, we propose a normal correction
algorithm. The frame used to describe f (x,y) isR= (x,y,nnn).
To correct the false normal nnn to the correct normal ñnn, one
needs a rotation matrix Rβ,uuu of axis uuu and angle β such that:

ñnn = Rβ,uuunnn (13)

Since φ1,1 = fx+ iii fy, the module of φ1,1 gives information
about the angle error and its phase gives information about
the axis of rotation. uuu and β have the following relationship
with φ1,1:

β = tan−1 |φ1,1|

uuu =
1
|φ1,1|

R×
(
−Im(φ1,1),Re(φ1,1),0

)T (14)

In table 1 is displayed the mean error of the corrected
normal on a cylinder with its theoritical normal.

noise std π

45
π

18
π

9
error 0.067 deg 0.076 deg 0.1 deg

Table 1: Mean error after normal correction with different
input normal noises.

(a) |φ1,1|

(b) |φ3,1|

Figure 2: |φ1,1| and |φ3,1| computed on a cylinder of radius
10 with added gaussian noise on the normal direction (stan-
dard deviation of π

45 .)

6. Conclusion

We presented a method to simultaneously extract all kth order
derivatives of a surface S or any smooth scalar field defined

on S at a point p. To do so, we showed a link between a
radial vibration interpretation of S around a point p and its
derivatives at p. Each kth order derivative of S can be seen
as a sum of vibrating modes of frequencies n≤ k sharing the
parity of k. A direct application of this work is to estimate
Gaussian and Mean curvatures and correct a poor normal
estimation.

In the future, we plan to extend this result to position noise
instead of pure normal noise.
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