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ABSTRACT1

In this work, we introduce a novel simulation game platform to study the route choice behaviour of2

travellers. A unique feature of this game is that it interacts with a microscopic simulator, which is3

in charge of reproducing the traffic conditions over real road networks, such as Lyon-Villeurbanne4

(36km2 and 3,222 nodes). Multiple OD pairs can be assigned to players during one game session.5

The participants play trips changing their departure times and routes, and thus modifying the orig-6

inal assignment of the simulation in real-time. Thus, the simulation game permits to investigate7

not only the determinants of player decisions (travel time, characteristics of the alternatives, traf-8

fic information), but also how concomitant decisions from multiple players impact the network.9

The later approach is common when considering a network loading, such as a dynamic traffic10

assignment (DTA) problem.11

The results of a first experiment using the simulation game are presented. The main aspect12

that we focus on is the influence that the travel time, the length, the number of intersections, and the13

provision of traffic information have on the route behaviour of travellers. The question of whether14

travellers are travel time minimizers is also addressed. The modelling approach that we use to15

investigate the route decision of the travellers is the multinomial logit model, and its predictive16

accuracy is assessed. We found that travellers do not behave as travel time minimizers when the17

travel times between the alternatives are small, and that the length and number of intersections per18

kilometer, did not improved the predictions of the model. A preference for peripheral route and19

directness was found. We discuss the possible causes of the poor predictive performance of the20

model in our data.21

Keywords: route choice, travellers’ behaviour, computer-based experiment, multinomial logit22
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INTRODUCTION1

One of the several decisions that travellers make when travelling within a city is the route choice.2

At an aggregated level, the individual route choices of the travellers shape the states of a network.3

But, at the same time, the characteristics and states of the network influence the travellers decisions.4

This mechanism is not easy to understand because of the continuous feedback between the states of5

the network and the choices of travellers. Yet, understanding the route choice behaviour of travelers6

is fundamental to predict the states of a transportation network, and to forecast the behaviour of7

travellers under hypothetical scenarios. In this work, we introduce a new framework based on a8

simulation game to study the route choice behaviour of travellers, in particular, the motives of their9

choices related to the characteristics and traffic conditions of the network.10

The study of human choices belongs to the decision theory field. Several theories of hu-11

man choice have been proposed, being Expected Utility Theory the starting point. Proposed first12

by Bernoulli (1) and later endowed with an axiomatic basis by Neumann and Morgenstern (2),13

EUT allows an ordering of preferences over alternatives with uncertain outcomes. Although, from14

an individual perspective the EUT constitutes a well defined framework for decision making, it is15

limited when the choices are studied by an external observer. This is because neither the utilities16

that individuals get from the outcomes, nor the subjective probabilities that they assign to them, can17

be observed by the researcher. The impossibility of observing the utilities that individuals obtain18

from alternatives is the assumption of Random Utility Theory (3), where the utilities are modelled19

as random variables. Because of their ability to relate the choices with the attributes of the individ-20

uals and alternatives, as well as their flexibility in allowing different distributional assumptions on21

the distribution of the utilities, the RUM models are broadly used in the transportation field.22

Three methods are often found in the economic field literature to collect data on human be-23

havior: stated preference (SP), revealed preference (RP) and experimental economics (EE). In the24

SP method, choices of individuals in hypothetical situations are collected through surveys, whereas25

in the RP method the actual choices of individuals are observed in their natural environment (4, 5).26

The EE method consists in laboratory controlled experiments in which the participants are faced27

with simulated decision problems that resemble real-life situations. By resembling real-life situa-28

tions, EE exploits the advantages of the RP method. Moreover, since the researcher can control the29

situations in which the experiment takes place, some of the limitations of the RP are overcome. In30

this sense, EE experiments lie between the SP and the RP techniques.31

EE experiments based in computer travel simulators have been extensively used to col-32

lect data on travellers’ route choice behaviour. In these experiments, particular attention has been33

paid to the study of learning from experience, (6, 7, 8); the impact of advanced travel information34

systems (ATIS) (9, 10, 11, 12); and the effect of travel time variability and risk attitudes in the trav-35

ellers choices (13, 14). However, as these experiments are designed to study specific behavioural36

traits, they are based on simple scenarios: single OD connected by two or three routes, and a basic37

representation of the network and traffic information. Thus, the impact of other attributes that are38

believed to influence the route choice decision (15), are not investigated in this studies. Moreover,39

these experiments follow different methodologies. As a consequence, there is no common ground40

to test different modelling approaches.41

The mobility decision game (MDG), which belongs to the EE methods, is the approach of42

the LICIT laboratory to investigate travellers’ decisions in transportation networks at large scale.43

The network description in the MDG is based on the full map of a real road network, such as Lyon-44

Villeurbanne (36km2 and 3,222 nodes) in our experiment. In the MDG, the players’ decisions are45
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send to a microscopic traffic simulator environment, which is in charge of reproducing the traffic1

conditions in the network. Multiple OD pairs can be assigned simultaneously to players during one2

game session. Thus, the MDG permits to investigate not only the determinants of player decisions3

(travel time, network characteristics), but also how concomitant decisions from multiple players4

may impact the network, and the interactions between travellers. During the game, players may get5

traffic information from congestion map or as travel time estimates for the different route options.6

In this work we present the results of a first experiment using the simulation game. The7

objective is to gain insight into the route choice behaviour of the travellers under different traffic8

conditions and traffic information scenarios. In particular, we are interested in the role that (i)9

the travel time, (ii) the characteristics of the alternative set, and (iii) the traffic information have10

in explaining the decisions of the travellers. The question of whether travellers are travel time11

minimizers is central in our investigation. This is possible because with the MDG we can define12

routes connecting the origins and destinations of different OD pairs with distinct characteristics;13

provide traffic information (in the form of congestion maps and travel times) during a session, and,14

since the traffic conditions in the scenarios are generated by a microscopic simulator, it is possible15

to study the decision of travellers in a dynamically changing scenario. The modelling approach16

that we adopt to investigate points (i) and (ii) is the multinomial logit model, as it represents the17

starting point in our investigation. The three exogenous variables that we consider for this model18

are the travel time, the length of the route, and the number of intersection per kilometer. The19

adequacy of the model is assessed by means of its prediction accuracy in subsamples of the data.20

Section 2 presents the DMG tool and the experimental set-up. The general results of the21

experiment, including an statistical analysis of the impact of ATIS, travel time minimization, and22

relation of attributes with the route choices are presented in section 3. In section 4, we fit a multi-23

nomial logit model to our data, and its prediction accuracy is assessed. We discuss the possible24

causes of the poor performance of the model in our data at the end of this section. Finally, we25

discuss our findings and the next steps in section 5.26

MOBILITY DECISION GAME27

From the users’ point of view, the MDG consists in playing missions, which corresponds to trips28

with a given purpose. When a player selects a mission, the target arrival time of the trip is dis-29

played. Then, the player chooses the departure time and route to complete the trip. Once the30

trip has started, the participants can re-route at predefined points. A mission is finished when the31

destination is reached before the target arrival time or when the target arrival time is not accom-32

plished. After a mission is finished, the participants may play another one. In figure 1, we show33

the gameplay of the DMG.34

To generate the scenarios in which the missions are placed, the MDG interacts in real-time35

with a microscopic simulator, which is in charge of generating all the trips that populate the net-36

work. The trips on predefined OD pairs are those that the participants can play as missions, chang-37

ing their departure times and routes, and thus modifying the original assignment of the simulation.38

Since multiple players play in the same simulation, their decisions affect the others. Moreover,39

in the MDG all the trips are clearly identified, i.e., the position of all vehicles can be known at40

any time, thus, the correlations between the different routes at a link level can be computed. This,41

together with the fact that the MDG can be configured so that multiple OD pairs can be played42

simultaneously, will allow us in the future to calibrate and test different assignment models. In43

addition to the real-time interaction with a microscopic simulator, the MDG can be configured to44
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Gonzalez et al. 4

FIGURE 1 MDG gameplay. (a) selection of a mission; (b) the objective of the mission is
informed; (c) the route and travel time choice; (d) the score earned after a mission is
finished; (e) re-route point; and (f) congestion map and travel time.

simulate traffic conditions with different demand levels, and to show traffic information in the form1

of congestion maps and/or travel time estimates.2

Case study3

A first experiment with the MDG consisted in 202 participants that were divided in four groups of4

approximately 50 people. Two sessions, one with 2 OD pairs and one with 3 OD pairs, were as-5

signed to each group and the participants were assigned into three different information treatments.6

In total, 8 sessions, each lasting 20 minutes were played. The sessions were placed in a simulated7

environment of the city of Lyon-Villeurbanne (36km2 and 3,222 nodes), between 7:00 and 8:00 in8
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the morning. The purpose of all the missions in the game was commuting to work, and the objec-1

tive was to complete the trip before a given time. After a mission is selected, participants choose2

among three alternative routes to complete the trip, and once the trip has started, participants were3

be able to re-route at predefined points (see figure 1). The demand levels, the OD pairs, and the4

information that the participants received are detailed in the rest of this section. A total number of5

724 choices from the participants were recorded.6

Demand level7

Two demand scenarios were considered for the simulation game sessions, D1 and D2. In D1, the8

global demand in the network is maintained constant, d1 = 5770veh/h, during the first part of the9

experiment; then, at 7:20am, it rises its level to d2 = 6950veh/h. In D2 the demand starts at level10

d2 = 6950veh/h and then decreases to d1 = 5770veh/h at 7:20am. Note that when the global11

demand level is increased (or decreased) during a simulation, a transition period is needed for the12

network to reach its new traffic state. These transition period allow us to investigate the travellers13

choices under different traffic conditions.14

OD pairs and routes15

Each group of participants plays two sessions that differ in the number of OD pairs where missions16

are assigned. Two OD pairs considered in the first session of each group have the same destination,17

but have a slightly different origin. Paths from this origins to this destination share most of their18

links. We denote these two OD pairs as OD1 and OD′1 (see figure 2). In the second session played19

by each group a third OD is added, denoted by OD2. The corresponding number of missions for20

each of the three OD pairs, OD1, OD′1 and OD2, was 260, 258, and 206, respectively. The three21

OD pairs, as well as the routes connecting them are shown in figure 2. Their characteristics are22

shown in table 1.23

OD Route Length No. intersections / km

OD1

R_test1_2 5,562 12.40
R_test1 7,589 5.54

R_test1_3 6,160 12.01

OD′1

R_test2_2 8,110 6.41
R_test2_3 5,140 12.26
R_test2 5,398 11.86

OD2

R_N1 3,237 13.60
R_N2 3,123 14.09
R_N3 3,248 14.47

TABLE 1 Attributes of the routes in the OD pairs.

Information treatments24

The participants in the experiment are divided into treatment groups according to the travel time25

information that they can consult. Three information treatments are considered in the experiment:26

not informed (NI), congestion map information (CMI) and travel time information (TTI). The num-27

ber of missions played in each treatment was 211 in the NI treatment, 188 in the CMI treatment,28

and 325 in the TTI treatment. A description of the treatment groups is presented below.29
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FIGURE 2 OD pairs and routes considered for players in the experiment.

• Not informed treatment (NI). These participants don’t receive any kind of information1

regarding the traffic conditions. This group acts as a control group.2

• Congestion map information (CMI). The congestion map information is provided as3

printed maps with colors depicting the congestion in the network roads for periods of 304

minutes. No travel time information is provided. The congestion maps in this treatment5

are obtained from a prior simulation of the network. Therefore, the traffic information6

depicted in the maps is not exact.7

• Travel time information (TTI). This treatment receives real-time information, computed8

in the last 15 minutes of the current game. The information provided consists in a con-9

gestion map and the travel time estimation, both accessed through the interface of the10

game.11

GLOBAL ANALYSIS OF THE MDG RESULTS12

In this section, we analyze the results of a first route choice experiment using the MDG. First, we13

show the route choice distributions and provide a qualitative analysis of the results. Second, we14

study the impact of the traffic information by comparing the choice distributions between the three15
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information treatments. Third, we investigate if participants behave as travel time minimizers, and1

if traffic information help them to minimize their travel times.2

Route choice distributions3

In figure 3, it can be seen that for OD1 and treatment NI, the participants have a strong preference4

for the R_test1_2 route; which is the peripheral route and also the longest in distance. Apparently,5

travellers perceive the peripheral routes, which are often longer in distance, to be faster; avoiding6

the inter-urban routes. However, this preference for the peripheral route is less evident for the OD′1,7

where R_test2_2 is similar to R_test1_2, except in the initial part. The change in preference, due8

to a small change in the origin, might be explained because in R_test2_2 one must move away9

from the destination in order to take the peripheral route, making it less preferable (see figure 2).10

The same conduct can also explain the low preference for the R_N3 route in OD2, which is only11

12 meters longer than the most preferred one, R_N1. This behaviour can be observed in the three12

information treatments.

FIGURE 3 Route choice distribution for each OD pair disaggregated by treatment.
13

Influence of traffic information in route choice14

Since the traffic information received by the participants in the experiment differs across the treat-15

ments, we expect the choices to be different as well. To corroborate this hypothesis, we performed16

chi-square tests to the choice distributions of the treatments NI vs CMI, NI vs TTI, and CMI vs17

TTI, reporting p-values of 0.0057, 0.0178, and 0.0148, respectively. From these results we can18

conclude that there is strong evidence that points towards the expected result: the choice distribu-19

tions are different across treatments. Furthermore, the fact that the choice distributions are not the20

same for the informed treatments, CMI and TTI, implies that the manner in which traffic infor-21

mation is presented leads to different route choices. This is evident in the case of the R_test1_222

route, which is the preferred in both NI and TTI treatments, but that in treatment CMI is not more23

preferred to the rest of the alternatives: the choice distribution of OD1 in the CMI treatment is24

not significantly different from a uniform distribution (chi-squared test with p-value of 0.7676).25

This can be explained because in the congestion maps a large contiguous section of the peripheral26

route is shown as congested; however, the congested sections in the rest of the alternatives, while27
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representing a larger portion of the total length, are not contiguous. This may be perceived by1

participants as bad traffic conditions on the route and, thus, they tend to avoid it.2

Travel time minimization3

To see if the information leads to better choices, in terms of travel time, we investigate the travel4

time minimization rate of participants, i.e., the proportion of times in which the fastest route was5

chosen. Since the experiment is dynamic, the travel time on each route depends on the demand6

level, as well as on the decisions of other participants. Thus, the fastest alternative (in mean travel7

time) is not always the same during a session. Therefore, we restrict the computation of the mean8

travel time for the alternative j at the moment in which decision i was made. If we let ti be the9

moment at which decision i was made, then the mean travel time of j is the mean travel time of all10

trips in j that started in the time interval [ti−h, ti). We denote the mean travel time obtained in this11

manner as ¯tt i
j. For each decision i, we can now order the three alternatives according to ¯tt i

j, and12

obtain the proportion of times that the fastest, second fastest and slow alternatives were chosen.13

The results are presented in table 2.

OD Treat No. Total Perc. Fast Perc. Med Perc. Slow

OD1

NI 76 0.539 0.316 0.145
CMI 72 0.417 0.292 0.292
TTI 112 0.607 0.277 0.116

OD′1

NI 67 0.284 0.493 0.224
CMI 69 0.319 0.319 0.362
TTI 122 0.352 0.361 0.287

OD2

NI 68 0.368 0.324 0.309
CMI 47 0.404 0.468 0.128
TTI 91 0.418 0.462 0.121

TABLE 2 Proportion of times that the fastest, medium and slowest routes were chosen.
14

The results show that the travel time minimization rate depends on both the OD pair and15

the information that the participants received. Between treatments, we observe that the participants16

in the TTI treatment were better in identifying the fastest alternative; behaviour expected from17

the most informed treatment. However, within the TTI treatment, we observe that for the OD′118

and OD2, the second fastest route was chosen more. This result is not in agreement with the19

expected behaviour that travellers are travel time minimizers. To further investigate this unexpected20

behaviour, we compute the difference ¯tt i
(1)−

¯tt i
(2) and ¯tt i

(2)−
¯tt i
(3), i.e., the difference of the mean21

travel times between the fastest and the second fastest alternatives, and the difference of mean22

travel times between the second fastest and the slow alternatives (see figure 4). We observe that in23

the case of the OD′1 and OD2, the mean travel time difference is small compared to that of OD1:24

62 and 67 seconds for OD′1 and OD2, and 160 seconds for OD1. A similar result can be found for25

the difference in mean travel times of the second fastest and the slow alternatives in OD′1, which26

explains the more uniform choices of fastest, second fastest and slow routes in the TTI treatment27

group. This is not the case in OD2, where the difference between the second fastest and the slow28

routes is not as small as for the fastest and second fastest routes and, thus, the slow route is chosen29

less. We conjecture that the travellers are indifferent between alternatives with similar travel times,30
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and thus other route attributes weight more in the route choice. We will investigate this conjecture1

in section 4, where a multinomial logit model is fitted considering not only the travel time, but also2

the length of the route and the number of intersections per kilometer.

FIGURE 4 Difference in mean travel times between the fastest and second fastest
alternatives (left), and the second fastest and slow alternatives (right).

3

MULTINOMIAL LOGIT MODELLING4

In this section, we expand the analysis of Section 3.3 by fitting two multinomial logit models5

to each of the OD pairs. First, we investigate the route choice as a response to the mean travel6

time and the information treatment, formalizing the analysis in the previous section. Then, in a7

tentative to investigate if other route attributes can explain that the participants are not travel time8

minimizers, we include the length and the number of intersections per kilometer in our analysis.9

Route choice as a response to the mean travel time and information treatments10

We fit a multinomial logit model to each of the OD pairs. The specification of the model is11

MODEL 1: Vi j = ∑
T∈{NI,CMI,T T I}

[
α

T
j +β

T ¯tt i
j

]
IT (T REATi), (1)

where ¯tt i
j is the mean travel time in route j at the moment of the decision i (obtained as in section12

3.3), T REATi is the treatment to which the decision maker i belongs, and IT is the indicator function13

that takes the value 1 when T REATi = T .14

The estimated coefficients of this model are shown in the Table 3. In the case of the OD1,15

the estimated coefficient β̂ T is significant only for the TTI treatment. This result is expected,16

because the participants in the TTI treatment were the only ones with information about the travel17

time. Moreover, β̂ T T I < 0, which means that the higher the travel time, the less desirable the route18

is. For the NI treatment α̂NI
j is significant only for j =R_test1_2, which is the peripheral route.19

The fact that α̂NI
j is significant for this route, and that the coefficient for the travel time is not,20

implies that the preference for the peripheral route in this treatment is not related to the travel time.21

Moreover, α̂T T I
j for the same route, R_test1_2, is significant and has the same magnitude, but with22

contrary sign (-0.8532), meaning that in the TTI treatment the preference for the peripheral route23

comes from the travel times estimates that the participants received. In the case of the of the OD′1,24

the estimated coefficient β̂ T is significant only for the NI treatment. This result is contradictory, as25

these participants received no information regarding the travel time; we regard it as an artefact in26
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the experiment. The peripheral route in this case has estimated coefficients that are not significant.1

Finally, in the case of the OD2, none of the estimated coefficients of the travel time are significant.2

The estimated constant terms α̂NI
j and α̂T T I

j of the R_N3 route are significant and negative, which3

shows a dislike for this route.4

Route choice as a response to the mean travel time, the length of the route and the number5

of intersections per kilometer6

The specification of the multinomial logit model that we use in this section is7

MODEL 2: Vi j = β1LEN j +β2INT ER j +β3
¯tt i

j, (2)

where LEN j and INT ER j are the length and the number of intersections per kilometer, and ¯tt i
j is8

the mean travel time in route j at the moment of the decision i (see section 3.3).9

The model was estimated for the three OD pairs considering only participants in the TTI10

treatment. We focus only on participants in the TTI treatment, assuming that theay are the most11

responsive to travel times. The estimated coefficients are exhibited in the table 3. The results12

show that for OD1 the ¯tt i
j is the only significant variable, with estimated coefficient β̂3 < 0, which13

implies that the more the mean travel time, the less desirable the route is. For the rest of the14

OD pairs, OD′1 and OD2, the opposite is found: ¯tt i
j is not significant, whereas LEN j and INT ER j15

are. This result points in the same direction of our previous conjecture, that when the differences in16

mean travel time are small, the route choices of the travellers are driven by other factors, rather than17

the travel time. The estimated coefficient for the INT ER j variable, β̂2, is negative for both OD′118

and OD2, which implies that attractiveness for a route decreases with the number of intersections19

per kilometer. However, the estimated coefficient of the length of the route, β̂1 is negative in the20

case of the OD′1, but positive in the case of OD2.21

The prediction accuracy of the models, removing the not significant explanatory variables,22

was assessed by means of bootstrapping, leaving out at each iteration 20% of the data in the fitting23

process. In each iteration, the choice probabilities of the held out sample were predicted, and their24

mean compared, using the chi-square distance, to the actual choice distribution. This distance is a25

measure of the prediction error and it is a measure of how well the model generalizes to scenarios26

that have not been seen. In this work, the bootstrapping was iterated 1,000 times and the mean of27

the predicted errors reported and compared to that of the null model. For the OD1, the prediction28

mean error of the null model is 0.1233, while the mean error including the ¯tt i
j variable is 0.1001.29

This represents an improvement of 18.8%. In the case of the OD′1 and OD2, both the null model30

and the model including the LEN j and INT ER j variables have the same prediction errors: 0.122031

for OD′1 and 0.1581 for OD2. Meaning no improvement.32

We investigate the possible causes of the failure of the multinomial logit model to predict33

the behaviour of the participants in the case of the OD′1 and OD2. In section 3.3 we conjectured34

that the travellers are indifferent between alternatives with similar travel times and, thus, other35

route attributes weight more in the route choice. However, in the results of the above analysis,36

the length of the route and the number of intersections are not explaining the choice of travellers37

either. This result suggests that there may be other variables, that we are not observing, but that38

participants rely on when making their decisions. If this is the case, a violation of the IIA as-39

sumption could explain the poor performance of the above models. To show this, note that if two40

alternatives, j and k have similar attributes, then their systematic part of the utility will be similar,41
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i.e., V (X j,θi) ≈ V (Xk,θi). Because of the IIA assumption in the multinomial logit models, this1

implies that the probability of individual i choosing either of the alternatives, j or k, will also be2

similar: Pi(C = j|X j,θi) ≈ Pi(C = k|Xk,θi). Therefore, the aggregated observations will also be3

EΘ

[
Pi(C = j|X j,θi)

]
≈ EΘ [Pi(C = k|Xk,θi)]. However, this is not the case for the OD2, in which4

the alternatives R_N1 and R_N3 have similar length, number of intersections per kilometer, and5

travel time, but still a strong preference towards the route R_N1 is observed. The aggregated prob-6

ability for the former being equal to 0.7473 and for the later 0.1319 (see figure 3). In the case of7

the OD′1, the travel time, the length and the number of intersections are similar for the R_test2 and8

R_test2_3 routes. Their aggregated probabilities are, respectively, 0.2458 and 0.3814. The result9

is not as extreme as for the case of OD2, but may have the same explanation.10
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Model OD Coefficients Estimate Std. Error t-value Pr(> |t|)

MODEL 1

OD1

αNI
j , j =R_test1_2 (intercept) 0.8602 0.4054 2.1216 0.0339 *

αNI
j , j =R_test1_3 (intercept) -0.3686 0.5728 -0.6435 0.5199

αCMI
j , j =R_test1_2 -0.5470 (+0.8602) 0.5428 -1.0078 0.3135

αCMI
j , j =R_test1_3 0.1145 (-0.3686) 0.7224 0.1585 0.8741

αT T I
j , j =R_test1_2 -0.8532 (+0.8602) 0.5095 -1.6744 0.0940 .

αT T I
j , j =R_test1_3 0.1537 (-0.3686) 0.7278 0.2113 0.8327

β̂ NI -0.0441 0.1132 -0.3893 0.6971
β̂CMI 0.0509 0.0990 0.5143 0.6070
β̂ T T I -0.2839 0.0960 -2.9571 0.0031 **

Log-Likelihood: -239.59

OD′1

αNI
j , j =R_test1_2 (intercept) -0.0373 0.3264 -0.1143 0.9090

αNI
j , j =R_test1_3 (intercept) -0.4640 0.3550 -1.3071 0.1912

αCMI
j , j =R_test1_2 0.1062 (-0.0373) 0.4807 0.2209 0.8252

αCMI
j , j =R_test1_3 1.1834 (-0.4640) 0.4762 2.4850 0.0130 *

αT T I
j , j =R_test1_2 0.4615 (-0.0373) 0.4051 1.1394 0.2545

αT T I
j , j =R_test1_3 0.8686 (-0.4640) 0.4300 2.0199 0.0434 *

β̂ NI -0.2893 0.1152 -2.5115 0.0120 *
β̂CMI 0.0984 0.1030 0.9554 0.3394
β̂ T T I -0.0609 0.0855 -0.7121 0.4764

Log-Likelihood: -257.16

OD2

αNI
j , j =R_N2 (intercept) 0.2814 0.6411 0.4389 0.6607

αNI
j , j =R_N3 (intercept) -0.8416 0.3207 -2.6246 0.0087 **

αCMI
j , j =R_N2 -2.1969 (0.2814) 1.0642 -2.0644 0.0390 *

αCMI
j , j =R_N3 -0.1828 (-0.8416) 0.4805 -0.3805 0.7036

αT T I
j , j =R_N2 -2.3707 (0.2814) 0.9236 -2.5669 0.0103 *

αT T I
j , j =R_N3 -0.9149 (-0.8416) 0.4519 -2.0246 0.0430 *

β̂ NI -0.2172 0.1728 -1.2564 0.2090
β̂CMI 0.0963 0.2251 0.4277 0.6688
β̂ T T I 0.0780 0.1670 0.4672 0.6404

Log-Likelihood: -178.81

MODEL 2

OD1

β̂1 -0.0005 0.0010 -0.4751 0.6347
β̂2 -0.1327 0.2922 -0.4542 0.6497
β̂3 -0.2839 0.0960 -2.9571 0.0031**

Log-Likelihood: -95.804

OD′1

β̂1 -0.0075 0.0043 -1.7199 0.0855 .
β̂2 -3.7883 2.1853 -1.7335 0.0830 .
β̂3 -0.0609 0.0855 -0.7121 0.4764

Log-Likelihood: -127.23

OD2

β̂1 0.0092 0.0054 1.6970 0.0897 .
β̂2 -2.1247 0.3670 -5.7897 7.049e-09 ***
β̂3 0.0780 0.1670 0.4672 0.6404

Log-Likelihood: -67.2583
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

TABLE 3 Estimated coefficients for the multinomial logit models MODEL 1 and MODEL
2.

DISCUSSION AND FUTURE WORK1

In this paper, we introduced the mobility decision game platform that is being developed in the2

LICIT laboratory to study the behaviour of travellers at a network level. The platform was used in3

a first case study about route choice behaviour, and the relevance of the multinomial logit model4

to predict the observed route choices was assessed. In the results of the experiment, we found5

that participants are not travel time minimizers. In the two OD pairs in which participants were6

not travel time minimizeres, OD′1 and OD2, the difference in mean travel time between the fastest7

and second fastest route was small. We conjectured that, when travel times are close, other route8

attributes weight more in the route decision. Two route attributes, the length and the number of9
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intersections per kilometer, were included in a multinomial logit model to test this conjecture.1

However, adding this two attributes in the model did not produce significantly better results. We2

found that the reason of the poor performance of the multinomial logit model in predicting the route3

choices is that the IIA property is not satisfied: in our data we observe routes with similar measured4

attributes having different choice probabilities. This implies that there are other attributes that we5

have not yet identified, but that participants took into account when making their decisions. We6

speculate that the directness of the route may be one of the attributes responsible of this behaviour.7

Nonetheless, we also found that travellers preferred the peripheral route. This observation is in8

line with the results in Lotan (10), where travellers that are unfamiliar with the network showed9

a preference for the freeway, which is a peripheral route. A preference for the peripheral route,10

which resulted to be amongst the least reliable, is also found in a RP experiment in Ramos (16),11

but in the later, the travellers were familiar with the network. As peripheral routes are often longer12

and less direct, they may not be comparable with the inter-city alternatives. This suggests that13

peripheral routes should be treated as a different category in the modelling. A nested logit model14

is suitable for this kind of data.15

In this paper we focused on the individual route choices of travellers one OD pair at a16

time. Thus, path flow estimation is done using a partially myopic vision of the interaction between17

players at the network level. Interactions are considered through the consequences of travellers’18

decisions in terms of travel time over the different alternatives, but not as a joint process over all19

OD pairs. The later approach is common when considering a network loading, such as a dynamic20

traffic assignment (DTA) problem. A promising property of the MDG platform is that it allows to21

study the impact of individual decisions at the network level. This can be done because in the MDG22

the position of all trips at a certain time are known, thus the relation between the travel times and23

the flows, as well as the correlations between the flows in different routes can be computed. The24

MDG can thus be used to calibrate or design new DTA models based on behavioural observations25

and not an equilibrium statement. Figure 5 shows a premise of what can be observed with the26

DMG in this sense.27

Figure 5 depicts the aggregated flows and travel time distributions on the played routes in28

one of the experiment sessions. The path flows and travel times of the played session are compared29

with a base scenario, which is a simulation without players. Compared to the base scenario, the30

route choices of the participants changed the flow and, as a consequence, the travel times. If31

analysis were done at an OD level, we would expect an increase (decrease) in the flow path on one32

route to cause an increase (decrease) in the travel times in that route. However, this is not what we33

observe in the figure 5, where the routes R_N1 and R_test1_2 increased their flow in the played34

session, but have smaller travel times. The reason of this behaviour is because the interactions with35

the routes in other OD pairs are not being considered. This shows how the MDG can be used for36

the research on the global analysis of a transportation network.37

Although the findings on travellers route choices in this paper are not new, they reinforce38

our confidence in the MDG as a reliable tool for data collection on travellers behaviour. Moreover,39

the findings provide a path for the design of forthcoming experiments. Future plans include new40

experiments to investigate other route attributes that may influence the decisions of travellers; the41

comparison between different choice models in predicting the route decisions; and the study of the42

relevance of different DTA models to reproduce the flow patterns obtained with the MDG.43
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FIGURE 5 Path flows (top), and travel time distributions (bottom) in the played routes.
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