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A massively multiplayer simulation game framework to study dynamic route choice behavior
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In this work, we introduce a novel simulation game platform to study the route choice behaviour of travellers. A unique feature of this game is that it interacts with a microscopic simulator, which is in charge of reproducing the traffic conditions over real road networks, such as Lyon-Villeurbanne (36km 2 and 3,222 nodes). Multiple OD pairs can be assigned to players during one game session.

The participants play trips changing their departure times and routes, and thus modifying the original assignment of the simulation in real-time. Thus, the simulation game permits to investigate not only the determinants of player decisions (travel time, characteristics of the alternatives, traffic information), but also how concomitant decisions from multiple players impact the network.

The later approach is common when considering a network loading, such as a dynamic traffic assignment (DTA) problem.

The results of a first experiment using the simulation game are presented. The main aspect that we focus on is the influence that the travel time, the length, the number of intersections, and the provision of traffic information have on the route behaviour of travellers. The question of whether travellers are travel time minimizers is also addressed. The modelling approach that we use to investigate the route decision of the travellers is the multinomial logit model, and its predictive accuracy is assessed. We found that travellers do not behave as travel time minimizers when the travel times between the alternatives are small, and that the length and number of intersections per kilometer, did not improved the predictions of the model. A preference for peripheral route and directness was found. We discuss the possible causes of the poor predictive performance of the model in our data.

INTRODUCTION

One of the several decisions that travellers make when travelling within a city is the route choice.

At an aggregated level, the individual route choices of the travellers shape the states of a network. But, at the same time, the characteristics and states of the network influence the travellers decisions. This mechanism is not easy to understand because of the continuous feedback between the states of the network and the choices of travellers. Yet, understanding the route choice behaviour of travelers is fundamental to predict the states of a transportation network, and to forecast the behaviour of travellers under hypothetical scenarios. In this work, we introduce a new framework based on a simulation game to study the route choice behaviour of travellers, in particular, the motives of their choices related to the characteristics and traffic conditions of the network.

The study of human choices belongs to the decision theory field. Several theories of human choice have been proposed, being Expected Utility Theory the starting point. Proposed first by Bernoulli [START_REF] Bernoulli | Exposition of a New Theory on the Measurement of Risk[END_REF] and later endowed with an axiomatic basis by Neumann and Morgenstern [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF], EUT allows an ordering of preferences over alternatives with uncertain outcomes. Although, from an individual perspective the EUT constitutes a well defined framework for decision making, it is limited when the choices are studied by an external observer. This is because neither the utilities that individuals get from the outcomes, nor the subjective probabilities that they assign to them, can be observed by the researcher. The impossibility of observing the utilities that individuals obtain from alternatives is the assumption of Random Utility Theory [START_REF] Manski | Structural Analysis of Discrete Data with Econometric Applications[END_REF], where the utilities are modelled as random variables. Because of their ability to relate the choices with the attributes of the individuals and alternatives, as well as their flexibility in allowing different distributional assumptions on the distribution of the utilities, the RUM models are broadly used in the transportation field.

Three methods are often found in the economic field literature to collect data on human behavior: stated preference (SP), revealed preference (RP) and experimental economics (EE). In the SP method, choices of individuals in hypothetical situations are collected through surveys, whereas in the RP method the actual choices of individuals are observed in their natural environment [START_REF] Train | Discrete Choice Methods with Simulation[END_REF][START_REF] Kroes | Stated preference methods, an introduction[END_REF].

The EE method consists in laboratory controlled experiments in which the participants are faced with simulated decision problems that resemble real-life situations. By resembling real-life situations, EE exploits the advantages of the RP method. Moreover, since the researcher can control the situations in which the experiment takes place, some of the limitations of the RP are overcome. In this sense, EE experiments lie between the SP and the RP techniques. EE experiments based in computer travel simulators have been extensively used to collect data on travellers' route choice behaviour. In these experiments, particular attention has been paid to the study of learning from experience, [START_REF] Iida | Experimental analysis of dynamic route choice behavior[END_REF][START_REF] Bogers | Joint modeling of ATIS, habit and learning impacts on route choice by laboratory simulator experiments[END_REF][START_REF] Selten | Commuters route choice behaviour[END_REF]; the impact of advanced travel information systems (ATIS) [START_REF] Adler | In-laboratory experiments to investigate driver behavior under advanced traveler information systems[END_REF][START_REF] Lotan | Effects of familiarity on route choice behavior in the presence of information[END_REF][START_REF] Mahmassani | Dynamics of commuting decision behaviour under Advanced Traveller Information Systems[END_REF][START_REF] Ben-Elia | Which road do I take? A learning-based model of route-choice behavior with real-time information[END_REF]; and the effect of travel time variability and risk attitudes in the travellers choices [START_REF] De Moraes Ramos | Modelling travellers' heterogeneous route choice behaviour as prospect maximizers[END_REF][START_REF] Avineri | Sensitivity to travel time variability: Travelers learning perspective[END_REF]. However, as these experiments are designed to study specific behavioural traits, they are based on simple scenarios: single OD connected by two or three routes, and a basic representation of the network and traffic information. Thus, the impact of other attributes that are believed to influence the route choice decision [START_REF] Bekhor | Evaluation of choice set generation algorithms for route choice models[END_REF], are not investigated in this studies. Moreover, these experiments follow different methodologies. As a consequence, there is no common ground to test different modelling approaches.

The mobility decision game (MDG), which belongs to the EE methods, is the approach of the LICIT laboratory to investigate travellers' decisions in transportation networks at large scale.

The network description in the MDG is based on the full map of a real road network, such as Lyon-Villeurbanne (36km 2 and 3,222 nodes) in our experiment. In the MDG, the players' decisions are TRB 2018 Annual Meeting Original paper submittal send to a microscopic traffic simulator environment, which is in charge of reproducing the traffic conditions in the network. Multiple OD pairs can be assigned simultaneously to players during one game session. Thus, the MDG permits to investigate not only the determinants of player decisions (travel time, network characteristics), but also how concomitant decisions from multiple players may impact the network, and the interactions between travellers. During the game, players may get traffic information from congestion map or as travel time estimates for the different route options.

In this work we present the results of a first experiment using the simulation game. The objective is to gain insight into the route choice behaviour of the travellers under different traffic conditions and traffic information scenarios. In particular, we are interested in the role that (i) the travel time, (ii) the characteristics of the alternative set, and (iii) the traffic information have in explaining the decisions of the travellers. The question of whether travellers are travel time minimizers is central in our investigation. This is possible because with the MDG we can define routes connecting the origins and destinations of different OD pairs with distinct characteristics;

provide traffic information (in the form of congestion maps and travel times) during a session, and, since the traffic conditions in the scenarios are generated by a microscopic simulator, it is possible to study the decision of travellers in a dynamically changing scenario. The modelling approach that we adopt to investigate points (i) and (ii) is the multinomial logit model, as it represents the starting point in our investigation. The three exogenous variables that we consider for this model are the travel time, the length of the route, and the number of intersection per kilometer. The adequacy of the model is assessed by means of its prediction accuracy in subsamples of the data.

Section 2 presents the DMG tool and the experimental set-up. The general results of the experiment, including an statistical analysis of the impact of ATIS, travel time minimization, and relation of attributes with the route choices are presented in section 3. In section 4, we fit a multinomial logit model to our data, and its prediction accuracy is assessed. We discuss the possible causes of the poor performance of the model in our data at the end of this section. Finally, we discuss our findings and the next steps in section 5.

MOBILITY DECISION GAME

From the users' point of view, the MDG consists in playing missions, which corresponds to trips with a given purpose. When a player selects a mission, the target arrival time of the trip is displayed. Then, the player chooses the departure time and route to complete the trip. Once the trip has started, the participants can re-route at predefined points. A mission is finished when the destination is reached before the target arrival time or when the target arrival time is not accomplished. After a mission is finished, the participants may play another one. In figure 1, we show the gameplay of the DMG.

To generate the scenarios in which the missions are placed, the MDG interacts in real-time with a microscopic simulator, which is in charge of generating all the trips that populate the network. The trips on predefined OD pairs are those that the participants can play as missions, changing their departure times and routes, and thus modifying the original assignment of the simulation.

Since multiple players play in the same simulation, their decisions affect the others. Moreover, in the MDG all the trips are clearly identified, i.e., the position of all vehicles can be known at any time, thus, the correlations between the different routes at a link level can be computed. This, together with the fact that the MDG can be configured so that multiple OD pairs can be played simultaneously, will allow us in the future to calibrate and test different assignment models. In addition to the real-time interaction with a microscopic simulator, the MDG can be configured to TRB 2018 Annual Meeting Original paper submittal 

Case study

A first experiment with the MDG consisted in 202 participants that were divided in four groups of approximately 50 people. Two sessions, one with 2 OD pairs and one with 3 OD pairs, were assigned to each group and the participants were assigned into three different information treatments.

In total, 8 sessions, each lasting 20 minutes were played. The sessions were placed in a simulated environment of the city of Lyon-Villeurbanne (36km 2 and 3,222 nodes), between 7:00 and 8:00 in TRB 2018 Annual Meeting Original paper submittal the morning. The purpose of all the missions in the game was commuting to work, and the objective was to complete the trip before a given time. After a mission is selected, participants choose among three alternative routes to complete the trip, and once the trip has started, participants were be able to re-route at predefined points (see figure 1). The demand levels, the OD pairs, and the information that the participants received are detailed in the rest of this section. A total number of 724 choices from the participants were recorded.

Demand level

Two demand scenarios were considered for the simulation game sessions, D 1 and D 2 . In D 1 , the global demand in the network is maintained constant, d 1 = 5770veh/h, during the first part of the experiment; then, at 7:20am, it rises its level to d2 = 6950veh/h. In D 2 the demand starts at level d2 = 6950veh/h and then decreases to d 1 = 5770veh/h at 7:20am. Note that when the global demand level is increased (or decreased) during a simulation, a transition period is needed for the network to reach its new traffic state. These transition period allow us to investigate the travellers choices under different traffic conditions.

OD pairs and routes

Each group of participants plays two sessions that differ in the number of OD pairs where missions are assigned. Two OD pairs considered in the first session of each group have the same destination, but have a slightly different origin. Paths from this origins to this destination share most of their links. We denote these two OD pairs as OD 1 and OD 1 (see figure 2). In the second session played by each group a third OD is added, denoted by OD 2 . The corresponding number of missions for each of the three OD pairs, OD 

Information treatments

The participants in the experiment are divided into treatment groups according to the travel time information that they can consult. Three information treatments are considered in the experiment: • Not informed treatment (NI). These participants don't receive any kind of information regarding the traffic conditions. This group acts as a control group.

• Congestion map information (CMI). The congestion map information is provided as printed maps with colors depicting the congestion in the network roads for periods of 30 minutes. No travel time information is provided. The congestion maps in this treatment are obtained from a prior simulation of the network. Therefore, the traffic information depicted in the maps is not exact.

• Travel time information (TTI). This treatment receives real-time information, computed in the last 15 minutes of the current game. The information provided consists in a congestion map and the travel time estimation, both accessed through the interface of the game.

GLOBAL ANALYSIS OF THE MDG RESULTS

In this section, we analyze the results of a first route choice experiment using the MDG. First, we show the route choice distributions and provide a qualitative analysis of the results. Second, we study the impact of the traffic information by comparing the choice distributions between the three TRB 2018 Annual Meeting Original paper submittal information treatments. Third, we investigate if participants behave as travel time minimizers, and if traffic information help them to minimize their travel times.

Route choice distributions

In figure 3, it can be seen that for OD 1 and treatment NI, the participants have a strong preference for the R_test1_2 route; which is the peripheral route and also the longest in distance. Apparently, travellers perceive the peripheral routes, which are often longer in distance, to be faster; avoiding the inter-urban routes. However, this preference for the peripheral route is less evident for the OD 1 ,

where R_test2_2 is similar to R_test1_2, except in the initial part. The change in preference, due to a small change in the origin, might be explained because in R_test2_2 one must move away from the destination in order to take the peripheral route, making it less preferable (see figure 2).

The same conduct can also explain the low preference for the R_N3 route in OD 2 , which is only 12 meters longer than the most preferred one, R_N1. This behaviour can be observed in the three information treatments. 

Influence of traffic information in route choice

Since the traffic information received by the participants in the experiment differs across the treatments, we expect the choices to be different as well. To corroborate this hypothesis, we performed chi-square tests to the choice distributions of the treatments NI vs CMI, NI vs TTI, and CMI vs TTI, reporting p-values of 0.0057, 0.0178, and 0.0148, respectively. From these results we can conclude that there is strong evidence that points towards the expected result: the choice distributions are different across treatments. Furthermore, the fact that the choice distributions are not the same for the informed treatments, CMI and TTI, implies that the manner in which traffic information is presented leads to different route choices. This is evident in the case of the R_test1_2 route, which is the preferred in both NI and TTI treatments, but that in treatment CMI is not more preferred to the rest of the alternatives: the choice distribution of OD 1 in the CMI treatment is not significantly different from a uniform distribution (chi-squared test with p-value of 0.7676).

This can be explained because in the congestion maps a large contiguous section of the peripheral route is shown as congested; however, the congested sections in the rest of the alternatives, while TRB 2018 Annual Meeting Original paper submittal representing a larger portion of the total length, are not contiguous. This may be perceived by participants as bad traffic conditions on the route and, thus, they tend to avoid it.

Travel time minimization

To see if the information leads to better choices, in terms of travel time, we investigate the travel time minimization rate of participants, i.e., the proportion of times in which the fastest route was chosen. Since the experiment is dynamic, the travel time on each route depends on the demand level, as well as on the decisions of other participants. Thus, the fastest alternative (in mean travel time) is not always the same during a session. Therefore, we restrict the computation of the mean travel time for the alternative j at the moment in which decision i was made. If we let t i be the moment at which decision i was made, then the mean travel time of j is the mean travel time of all trips in j that started in the time interval [t ih,t i ). We denote the mean travel time obtained in this manner as t t i j . For each decision i, we can now order the three alternatives according to t t i j , and obtain the proportion of times that the fastest, second fastest and slow alternatives were chosen.

The The results show that the travel time minimization rate depends on both the OD pair and the information that the participants received. Between treatments, we observe that the participants in the TTI treatment were better in identifying the fastest alternative; behaviour expected from the most informed treatment. However, within the TTI treatment, we observe that for the OD 1 and OD 2 , the second fastest route was chosen more. This result is not in agreement with the expected behaviour that travellers are travel time minimizers. To further investigate this unexpected behaviour, we compute the difference tt i (1) -tt i (2) and tt i (2) -tt i (3) , i.e., the difference of the mean travel times between the fastest and the second fastest alternatives, and the difference of mean travel times between the second fastest and the slow alternatives (see figure 4). We observe that in the case of the OD 1 and OD 2 , the mean travel time difference is small compared to that of OD 1 :

62 and 67 seconds for OD 1 and OD 2 , and 160 seconds for OD 1 . A similar result can be found for the difference in mean travel times of the second fastest and the slow alternatives in OD 1 , which explains the more uniform choices of fastest, second fastest and slow routes in the TTI treatment group. This is not the case in OD 2 , where the difference between the second fastest and the slow routes is not as small as for the fastest and second fastest routes and, thus, the slow route is chosen less. We conjecture that the travellers are indifferent between alternatives with similar travel times, TRB 2018 Annual Meeting Original paper submittal and thus other route attributes weight more in the route choice. We will investigate this conjecture in section 4, where a multinomial logit model is fitted considering not only the travel time, but also the length of the route and the number of intersections per kilometer. 

MULTINOMIAL LOGIT MODELLING

In this section, we expand the analysis of Section 3.3 by fitting two multinomial logit models to each of the OD pairs. First, we investigate the route choice as a response to the mean travel time and the information treatment, formalizing the analysis in the previous section. Then, in a tentative to investigate if other route attributes can explain that the participants are not travel time minimizers, we include the length and the number of intersections per kilometer in our analysis.

Route choice as a response to the mean travel time and information treatments

We fit a multinomial logit model to each of the OD pairs. The specification of the model is

MODEL 1: V i j = ∑ T ∈{NI,CMI,T T I} α T j + β T t t i j I T (T REAT i ), (1) 
where t t i j is the mean travel time in route j at the moment of the decision i (obtained as in section 3.3), T REAT i is the treatment to which the decision maker i belongs, and I T is the indicator function that takes the value 1 when T REAT i = T .

The estimated coefficients of this model are shown in the Table 3. In the case of the OD 1 , the estimated coefficient β T is significant only for the TTI treatment. This result is expected, because the participants in the TTI treatment were the only ones with information about the travel time. Moreover, β T T I < 0, which means that the higher the travel time, the less desirable the route is. For the NI treatment αNI j is significant only for j =R_test1_2, which is the peripheral route.

The fact that αNI j is significant for this route, and that the coefficient for the travel time is not, implies that the preference for the peripheral route in this treatment is not related to the travel time.

Moreover, αTTI j for the same route, R_test1_2, is significant and has the same magnitude, but with contrary sign (-0.8532), meaning that in the TTI treatment the preference for the peripheral route comes from the travel times estimates that the participants received. In the case of the of the OD 1 , the estimated coefficient β T is significant only for the NI treatment. This result is contradictory, as these participants received no information regarding the travel time; we regard it as an artefact in TRB 2018 Annual Meeting Original paper submittal the experiment. The peripheral route in this case has estimated coefficients that are not significant.

Finally, in the case of the OD 2 , none of the estimated coefficients of the travel time are significant.

The estimated constant terms αNI j and αTTI j of the R_N3 route are significant and negative, which shows a dislike for this route.

Route choice as a response to the mean travel time, the length of the route and the number of intersections per kilometer

The specification of the multinomial logit model that we use in this section is

MODEL 2: V i j = β 1 LEN j + β 2 INT ER j + β 3 t t i j , (2) 
where LEN j and INT ER j are the length and the number of intersections per kilometer, and t t i j is the mean travel time in route j at the moment of the decision i (see section 3.3).

The model was estimated for the three OD pairs considering only participants in the TTI treatment. We focus only on participants in the TTI treatment, assuming that theay are the most responsive to travel times. The estimated coefficients are exhibited in the table 3. The results

show that for OD 1 the t t i j is the only significant variable, with estimated coefficient β3 < 0, which implies that the more the mean travel time, the less desirable the route is. For the rest of the OD pairs, OD 1 and OD 2 , the opposite is found: t t i j is not significant, whereas LEN j and INT ER j are. This result points in the same direction of our previous conjecture, that when the differences in mean travel time are small, the route choices of the travellers are driven by other factors, rather than the travel time. The estimated coefficient for the INT ER j variable, β2 , is negative for both OD 1 and OD 2 , which implies that attractiveness for a route decreases with the number of intersections per kilometer. However, the estimated coefficient of the length of the route, β1 is negative in the case of the OD 1 , but positive in the case of OD 2 .

The prediction accuracy of the models, removing the not significant explanatory variables, was assessed by means of bootstrapping, leaving out at each iteration 20% of the data in the fitting process. In each iteration, the choice probabilities of the held out sample were predicted, and their mean compared, using the chi-square distance, to the actual choice distribution. This distance is a measure of the prediction error and it is a measure of how well the model generalizes to scenarios that have not been seen. In this work, the bootstrapping was iterated 1,000 times and the mean of the predicted errors reported and compared to that of the null model. For the OD 1 , the prediction mean error of the null model is 0.1233, while the mean error including the t t i j variable is 0.1001.

This represents an improvement of 18.8%. In the case of the OD 1 and OD 2 , both the null model and the model including the LEN j and INT ER j variables have the same prediction errors: 0.1220 for OD 1 and 0.1581 for OD 2 . Meaning no improvement.

We investigate the possible causes of the failure of the multinomial logit model to predict the behaviour of the participants in the case of the OD 1 and OD 2 . In section 3.3 we conjectured that the travellers are indifferent between alternatives with similar travel times and, thus, other route attributes weight more in the route choice. However, in the results of the above analysis, the length of the route and the number of intersections are not explaining the choice of travellers either. This result suggests that there may be other variables, that we are not observing, but that participants rely on when making their decisions. If this is the case, a violation of the IIA assumption could explain the poor performance of the above models. To show this, note that if two alternatives, j and k have similar attributes, then their systematic part of the utility will be similar, TRB 2018 Annual Meeting Original paper submittal i.e., V (X j , θ i ) ≈ V (X k , θ i ). Because of the IIA assumption in the multinomial logit models, this implies that the probability of individual i choosing either of the alternatives, j or k, will also be similar: P i (C = j|X j , θ i ) ≈ P i (C = k|X k , θ i ). Therefore, the aggregated observations will also be

E Θ P i (C = j|X j , θ i ) ≈ E Θ [P i (C = k|X k , θ i )]
. However, this is not the case for the OD 2 , in which the alternatives R_N1 and R_N3 have similar length, number of intersections per kilometer, and travel time, but still a strong preference towards the route R_N1 is observed. The aggregated probability for the former being equal to 0.7473 and for the later 0.1319 (see figure 3). In the case of the OD 1 , the travel time, the length and the number of intersections are similar for the R_test2 and R_test2_3 routes. Their aggregated probabilities are, respectively, 0.2458 and 0.3814. The result is not as extreme as for the case of OD 2 , but may have the same explanation.

TRB 

DISCUSSION AND FUTURE WORK

In this paper, we introduced the mobility decision game platform that is being developed in the LICIT laboratory to study the behaviour of travellers at a network level. The platform was used in a first case study about route choice behaviour, and the relevance of the multinomial logit model to predict the observed route choices was assessed. In the results of the experiment, we found that participants are not travel time minimizers. In the two OD pairs in which participants were not travel time minimizeres, OD 1 and OD 2 , the difference in mean travel time between the fastest and second fastest route was small. We conjectured that, when travel times are close, other route attributes weight more in the route decision. Two route attributes, the length and the number of TRB 2018 Annual Meeting Original paper submittal intersections per kilometer, were included in a multinomial logit model to test this conjecture.

However, adding this two attributes in the model did not produce significantly better results. We found that the reason of the poor performance of the multinomial logit model in predicting the route choices is that the IIA property is not satisfied: in our data we observe routes with similar measured attributes having different choice probabilities. This implies that there are other attributes that we

have not yet identified, but that participants took into account when making their decisions. We speculate that the directness of the route may be one of the attributes responsible of this behaviour.

Nonetheless, we also found that travellers preferred the peripheral route. This observation is in line with the results in Lotan [START_REF] Lotan | Effects of familiarity on route choice behavior in the presence of information[END_REF], where travellers that are unfamiliar with the network showed a preference for the freeway, which is a peripheral route. A preference for the peripheral route, which resulted to be amongst the least reliable, is also found in a RP experiment in Ramos ( 16), but in the later, the travellers were familiar with the network. As peripheral routes are often longer and less direct, they may not be comparable with the inter-city alternatives. This suggests that peripheral routes should be treated as a different category in the modelling. A nested logit model is suitable for this kind of data.

In this paper we focused on the individual route choices of travellers one OD pair at a time. Thus, path flow estimation is done using a partially myopic vision of the interaction between players at the network level. Interactions are considered through the consequences of travellers' decisions in terms of travel time over the different alternatives, but not as a joint process over all OD pairs. The later approach is common when considering a network loading, such as a dynamic traffic assignment (DTA) problem. A promising property of the MDG platform is that it allows to study the impact of individual decisions at the network level. This can be done because in the MDG the position of all trips at a certain time are known, thus the relation between the travel times and the flows, as well as the correlations between the flows in different routes can be computed. The MDG can thus be used to calibrate or design new DTA models based on behavioural observations and not an equilibrium statement. Figure 5 shows a premise of what can be observed with the DMG in this sense. 

FIGURE 1

 1 FIGURE 1 MDG gameplay. (a) selection of a mission; (b) the objective of the mission is informed; (c) the route and travel time choice; (d) the score earned after a mission is finished; (e) re-route point; and (f) congestion map and travel time.

  not informed (NI), congestion map information (CMI) and travel time information (TTI). The number of missions played in each treatment was 211 in the NI treatment, 188 in the CMI treatment, and 325 in the TTI treatment. A description of the treatment groups is presented below. TRB 2018 Annual Meeting Original paper submittal

FIGURE 2

 2 FIGURE 2 OD pairs and routes considered for players in the experiment.

FIGURE 3

 3 FIGURE 3 Route choice distribution for each OD pair disaggregated by treatment.

FIGURE 4

 4 FIGURE 4 Difference in mean travel times between the fastest and second fastest alternatives (left), and the second fastest and slow alternatives (right).

Figure 5

 5 Figure5depicts the aggregated flows and travel time distributions on the played routes in one of the experiment sessions. The path flows and travel times of the played session are compared with a base scenario, which is a simulation without players. Compared to the base scenario, the route choices of the participants changed the flow and, as a consequence, the travel times. If analysis were done at an OD level, we would expect an increase (decrease) in the flow path on one route to cause an increase (decrease) in the travel times in that route. However, this is not what we observe in the figure5, where the routes R_N1 and R_test1_2 increased their flow in the played session, but have smaller travel times. The reason of this behaviour is because the interactions with the routes in other OD pairs are not being considered. This shows how the MDG can be used for the research on the global analysis of a transportation network.Although the findings on travellers route choices in this paper are not new, they reinforce our confidence in the MDG as a reliable tool for data collection on travellers behaviour. Moreover, the findings provide a path for the design of forthcoming experiments. Future plans include new experiments to investigate other route attributes that may influence the decisions of travellers; the comparison between different choice models in predicting the route decisions; and the study of the relevance of different DTA models to reproduce the flow patterns obtained with the MDG.

FIGURE 5

 5 FIGURE 5 Path flows (top), and travel time distributions (bottom) in the played routes.

TABLE 1

 1 Attributes of the routes in the OD pairs.

	OD	Route	Length No. intersections / km
		R_test1_2 5,562	12.40
	OD 1	R_test1	7,589	5.54
		R_test1_3 6,160	12.01
		R_test2_2 8,110	6.41
	OD 1	R_test2_3 5,140	12.26
		R_test2	5,398	11.86
		R_N1	3,237	13.60
	OD 2	R_N2	3,123	14.09
		R_N3	3,248	14.47

1 , OD 1 and OD 2 , was 260, 258, and 206, respectively. The three OD pairs, as well as the routes connecting them are shown in figure 2. Their characteristics are shown in table 1.

TABLE 2

 2 results are presented in table 2.

	OD Treat No. Total Perc. Fast Perc. Med Perc. Slow
		NI	76	0.539	0.316	0.145
	OD 1	CMI	72	0.417	0.292	0.292
		TTI	112	0.607	0.277	0.116
		NI	67	0.284	0.493	0.224
	OD 1	CMI	69	0.319	0.319	0.362
		TTI	122	0.352	0.361	0.287
		NI	68	0.368	0.324	0.309
	OD 2	CMI	47	0.404	0.468	0.128
		TTI	91	0.418	0.462	0.121

Proportion of times that the fastest, medium and slowest routes were chosen.

TABLE 3

 3 Estimated coefficients for the multinomial logit models MODEL 1 and MODEL 2.
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