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We investigate some asymptotic properties of general Markov processes conditioned not to be absorbed by the moving boundaries. We first give general criteria involving an exponential convergence towards the Q-process, that is the law of the considered Markov process conditioned never to reach the moving boundaries. This exponential convergence allows us to state the existence and uniqueness of the quasiergodic distribution considering either boundaries moving periodically or stabilizing boundaries. We also state the existence and uniqueness of a quasi-limiting distribution when absorbing boundaries stabilize. We finally deal with some examples such as diffusions which are coming down from infinity.
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1 Introduction

Let (Ω, A, P) be a probability space and let (X t ) t∈I be a time-homogeneous Markov process (where I = Z + or R + ) defined on a metric state space (E, d). We associate with E a σ-algebra E. For any t ∈ I, denote by F t = σ(X s , 0 ≤ s ≤ t) the σ-field generated by (X s ) 0≤s≤t∈I . For any subset F ⊂ E, denote by M 1 (F ) the set of probability measures defined on F and B(F ) the set of the bounded measurable function f : F → R. We define, for each time t ∈ I, a subset A t ∈ E called absorbing subset at time t and we denote by E t the complement set of A t called survival subset at time t. We will call t → A t the moving absorbing subset or the moving absorbing boundary. We denote by τ A := inf{t ∈ I : X t ∈ A t } the reaching time of (A t ) t∈I by the process (X t ) t∈I . In all what follows, we will assume that τ A is a stopping time for the filtration (F t ) t∈I . This assumption holds when, for example, the Markov process (X t ) t∈I is continuous and all the sets (A t ) t∈I are closed.

Even though the process (X t ) t∈I is time-homogeneous, we will associate to this process a family of probability measures (P s,x ) s∈I,x∈E such that, for any s ∈ I and for any x ∈ E, P s,x (X s = x) = 1 and, for any measure µ on E, define P s,µ = P s,x dµ(x). We denote by E s,x and E s,µ the corresponding expectations. When the starting time is not needed, we will prefer the notation P µ := P 0,µ and E µ := E 0,µ .

In this paper, we will deal with the so-called Q-process, quasi-limiting distribution and quasi-ergodic distribution, defined as below : Definition 1. i) We say that there is a Q-process if there exists a family of probability measures (Q s,x ) s∈I,x∈Es such that for any s ≤ t, x ∈ E s ,

P s,x (X [s,t] ∈ •|τ A > T ) (d) -→ T ∈I,T →∞ Q s,x (X [s,t] ∈ •),
where, for any u, v ∈ I, X [u,v] is the trajectory of (X t ) t∈I between times u and v and where (d) refers to the weak convergence of probability measures.

ii) We say that α ∈ M 1 (E) is a quasi-limiting distribution if, for some µ ∈ M 1 (E 0 ),

P µ (X t ∈ •|τ A > t) (d) -→ t∈I,t→∞ α. (1) 
iii) We say that β ∈ M 1 (E) is a quasi-ergodic distribution if there exists µ ∈ M 1 (E 0 ) such that,

• 1 n n k=0 P µ (X k ∈ •|τ A > n) (d) -→ n→∞ β if I = Z + , • 1 t t 0 P µ (X s ∈ •|τ A > t)ds (d) -→ t→∞ β if I = R + .
For Markov processes absorbed by non-moving boundaries (i.e. A t = A 0 for any t ∈ I), the notions of Q-process, quasi-limiting distribution and quasi-ergodic distribution are dealt with by the theory of quasi-stationarity, which studies the asymptotic behavior of such processes conditioned not to be absorbed. In particular, the main object of this theory is the quasi-stationary distribution, which is defined as a probability measure α such that, for all t ∈ I,

P α (X t ∈ •|τ A > t) = α. (2) 
In the time-homogeneous setting, it is well known that the notions of quasi-stationary distributions and quasi-limiting distributions are equivalent. The interested reader can see [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF] and [START_REF] Collet | Quasi-stationary distributions[END_REF] for an overview of the theory. In particular, these monographes give some results about the existence of quasi-limiting distributions and Q-processes for several processes : Markov chains on finite state space and countable space, birth and death processes, diffusion processes and others. In a same way, existence of quasi-ergodic distributions has been also shown for such processes. The reader can see [START_REF] He | On the quasi-ergodic distribution of absorbing Markov processes[END_REF][START_REF] Zhang | Quasi-stationarity and quasi-ergodicity of general Markov processes[END_REF][START_REF] Breyer | A quasi-ergodic theorem for evanescent processes[END_REF] for the study on quasi-ergodic distributions in a very general framework.

In this article, we will be interested in the existence of a Q-process, a quasi-limiting distribution and a quasi-ergodic distribution when (A t ) t∈I depends on the time. More precisely, we want to generalize the results presented in [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF], which were only obtained for discrete-time Markov chains defined on finite state space. In particular, this paper showed, in a first time, that the notion of quasi-stationary distribution as defined by the relation [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF], considering that the boundary (A n ) n∈Z + is moving, is not well-defined. If moreover the boundary moves periodically, then the notion of quasi-limiting distribution is not well-defined either. Finally, it is shown in [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF] that, still considering periodic moving boudaries, the probability measure

1 n n i=1 P µ (X k ∈ •|τ A > n)
converges weakly towards a quasi-ergodic distribution β if the initial measure µ satisfies some assumptions (see [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF]Theorem 3]). Moreover, the Q-process is well-defined.

Hence, the main goal of this paper is to recover these results for a more wide class of Markov processes, such as diffusion processes. In particular, we want to know if the quasi-ergodic distribution is still well-defined for such processes when the moving boundary (A t ) t∈I is periodic.

The main assumption that (X t ) t∈I will satisfy in this paper will be based on a Champagnat-Villemonais type condition. When A does not depend on t, Champagnat and Villemonais introduce in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] the following assumption : there exists ν ∈ M 1 (E) such that (A1) there exist t 0 ≥ 0 and c 1 > 0 such that

∀x ∈ E 0 , P x (X t 0 ∈ •|τ A > t 0 ) ≥ c 1 ν; (A2) there exists c 2 > 0 such that : ∀x ∈ E 0 , ∀t ≥ 0, P ν (τ A > t) ≥ c 2 P x (τ A > t).
In particular, (A1) can be seen as a conditional version of Doeblin's condition. Then the authors show that (A1)-(A2) are equivalent to an exponential uniform convergence of the total variation distance between the conditional probability P µ (X t ∈ •|τ A > t) and the unique quasi-stationary distribution. Moreover, one has, under these assumptions, the existence of a Q-process, as well as the existence and the uniqueness of the quasi-ergodic distribution (see [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF] for this last result).

Champagnat and Villemonais also adapt the assumptions (A1)-(A2) to the timeinhomogeneous setting in the paper [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF]. This time-inhomogeneous version will be used to our purpose; we refer the reader to the Section 3 for more details about it. In particular, the Assumption (A'), which is introduced in Section 2, is a particular case of their time-inhomogeneous conditions. In this paper, the existence of a Q-process will be proved, as well as the exponential convergence in total variation of the probability measure P s,x (X [s,t] ∈ •|τ A > T ) towards the Q-process, when T goes to infinity. In the same way as in the paper [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF], this exponential convergence implies that the existence and the uniqueness of the quasi-ergodic distribution is equivalent to an ergodic theorem for the Q-process. In particular, this corollary will be applied for periodic moving boundaries to show the existence and the uniqueness of a quasi-ergodic distribution.

Moreover, the case of a non-increasing converging moving boundary (the notion of convergence will be defined further) will be dealt with. In this case, one can expect an asymptotic homogeneity of the conditional probability P s,x (X s+t ∈ •|τ A > s + t) when s goes to infinity (in the meaning of Proposition 3 in Subsection 4.2), and use this property to show the existence of a quasi-limiting distribution. It will be therefore shown in this paper that, under the Champagnat-Villemonais condition and some extra assumptions, there exists a unique quasi-limiting distribution for which the weak convergence (1) holds for any initial law µ.

This paper ends with an application of these results to a one-dimensional diffusion process coming down from infinity, that is to say, for some t ≥ 0 and y ∈ R + ,

lim x→+∞ P x (τ y < t) > 0,
where τ y is the hitting time of y by (X t ) t∈I . It will be shown that, under additional assumptions, the diffusion process (X t ) t≥0 satisfies the time-inhomogeneous Champagnat-Villemonais conditions.

Assumptions and general results

From now on, assume that (A t ) t∈I could depend on time and for any s ∈ I and x ∈ E s ,

P s,x (τ A < ∞) = 1,
and, in order to make sense of the conditioning, we will assume that for any s ≤ t and any x ∈ E s , P s,x (τ A > t) > 0.

We introduce now the main assumption adapted from the Champagnat-Villemonais conditions introduced in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF]:

Assumption (A').
There exist (ν s ) s∈I a sequence of probability measures (ν s ∈ M 1 (E s ) for each s ∈ I), and t 0 , c 1 , c 2 > 0 such that

(A'1) ∀s ∈ I, ∀x ∈ E s , P s,x (X s+t 0 ∈ •|τ A > s + t 0 ) ≥ c 1 ν s+t 0 ; (A'2) ∀s ≤ t, ∀x ∈ E s , P s,νs (τ A > t) ≥ c 2 P s,x (τ A > t).
In this section, the main results and contributions in this paper are presented. Let us recall that the total variation distance between two probability measures µ and ν on E is defined by ||µ -ν|| T V := sup

f ∈B 1 (E) |µ(f ) -ν(f )|, where B 1 (E) := {f ∈ B(E) : ||f || ∞ ≤ 1}
and where the notation

µ(f ) := E f (x)µ(dx)
is used. Then let us state our main result :

Theorem 1. Under Assumption (A'), there exists a Q-process (Definition 1 (i)). Furthermore, there exists C, λ > 0 such that, for any s ≤ t ≤ T and x ∈ E s ,

||P s,x (X [s,t] ∈ •|τ A > T ) -Q s,x (X [s,t] ∈ •)|| T V ≤ Ce -λ(T -t) .
Explicit formulae will be provided later in Theorem 5, whose the statement is more precise than the one of the previous theorem.

As written in the introduction, two specific behavior of moving behavior will be studied in this paper :

• Periodic moving boundaries,

• Non-increasing converging moving boundaries, i.e. A t ⊂ A s for all s ≤ t and

A ∞ := t∈I A t = ∅. (3) 
In the periodic case, the following theorem is shown in the Subsection 4.1.

Theorem 2. If (X t ) t≥0 satisfies Assumption (A'), then there exists a unique probability measure β such that, for any µ ∈ M 1 (E 0 ),

1 t t 0 P µ (X s ∈ •|τ A > t)ds (d) -→ t→∞ β.
The expression of the quasi-ergodic distribution β is spelled out later in Theorem 6.

For converging non-increasing moving boundaries, some extra assumptions are needed to state the theorems. The following assumptions will be useful to show the asymptotic homogeneity of the conditional probability P s,x (X s+t ∈ •|τ A > s + t) :

Assumption (H hom ). a) Strong Markov property: For any τ stopping time of F t = σ(X s , 0 ≤ s ≤ t) and for any x ∈ E,

P x ((X τ +t ) t∈I ∈ •, τ < ∞|F τ ) = 1 τ <∞ P Xτ ((X t ) t∈I ∈ •); b)
Convergence in law for the hitting times : For any x ∈ E 0 and for any t ∈ I,

P s,x (τ A > s + t) -→ s→+∞ P x (τ A∞ > t),
where

τ A∞ := inf{t ≥ 0 : X t ∈ A ∞ };
c) Time-continuity: For any x ∈ E 0 and s ≥ 0, the functions t → P s,x (τ A > t) and t → P x (τ A∞ > t) are continuous;

Moreover, defining E ∞ as the complement of A ∞ , let us set the additional following assumption :

Assumption (H ∞ ). There exists a unique probability measure α ∞ ∈ M 1 (E ∞ ) such that, for any µ ∈ M 1 (E ∞ ) and t ≥ 0,

||P µ (X t ∈ •|τ A∞ > t) -α ∞ || T V ≤ C ∞ e -γ∞t , (4) 
where C ∞ , γ ∞ > 0.

Under Assumption (H ∞ ), it is well known (see [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]) that there exists λ ∞ > 0 such that, for any t ∈ I,

P α∞ (τ ∞ > t) = e -λ∞t , (5) 
and also a function η ∞ (see [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF]Proposition 2.3]) positive on E ∞ and vanishing on A ∞ such that, for any

x ∈ E ∞ , η ∞ (x) = lim t→∞ e λ∞t P x (τ A∞ > t). (6) 
To state our result of convergence, the following assumption is needed :

Assumption (H' ∞ ). There exists s 0 ∈ I and x 0 ∈ E s 0 such that, for any s ≥ s 0 ,

E s,x 0 e λ∞τ A η ∞ (X τ A ) < +∞,
and

lim s→∞ E s,x 0 e λ∞(τ A -s) η ∞ (X τ A ) = 0.
Somehow, this previous assumption impose that the boundary (A t ) t∈I decreases fast enough towards A ∞ .

Then, considering non-increasing converging moving boundaries, one has the following statement : Theorem 3. Under the assumptions (A'), (H hom ) (H ∞ ) and (H ∞ ), for any µ ∈ M 1 (E 0 ),

P µ (X t ∈ •|τ A > t) (d) -→ t→∞ α ∞ ,
where α ∞ is the quasi-stationary distribution defined in the Assumption (H ∞ ).

The existence and the uniqueness of the quasi-ergodic distribution is also shown in the Subsection 4.2.

3 Exponential convergence towards Q-process and quasiergodic distribution

First, we recall Proposition 3.1. and Theorem 3.3. of [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF]. In their paper, N. Champagnat and D. Villemonais took a time-inhomogeneous Markov process and (Z s,t ) s≤t a collection of multiplicative nonnegative random variables (i.e. satisfying Z s,r Z r,t = Z s,t , ∀s ≤ r ≤ t) such that, for any s ≤ t ∈ I and x ∈ E s , E s,x (Z s,t ) > 0 and sup y∈Es E s,y (Z s,t ) < ∞.

In our case, (X t ) t∈I is time-homogeneous, however the penalization (Z s,t ) s≤t we shall use is given by

Z s,t = 1 τ A >t , ∀s ≤ t.
and is time-inhomogeneous because (A t ) t∈I depends on t. For any s ≤ t, define by

φ t,s : µ → P s,µ (X t ∈ •|τ A > t).
Then, by Markov property, the family (φ t,s ) s≤t is a semi-flow, that is : for any r ≤ s ≤ t,

φ t,r = φ t,s • φ s,r . (7) 
Let t 0 ∈ I. For any s ≥ t 0 and x 1 , x 2 ∈ E s-t 0 , define v s,x 1 ,x 2 and v s as follows :

v s,x 1 ,x 2 = min j=1,2 φ s,s-t 0 (δ x j ); (8) 
v s = min x∈E s-t 0 φ s,s-t 0 (δ x ), (9) 
where the minimum of several measures is understood as the largest measure smaller than all the considered measures. Finally, for any s ≥ t 0 , define

d s = inf t≥0,x 1 ,x 2 ∈E s-t 0 P s,vs,x 1 ,x 2 (τ A > t + s) sup x∈Es P s,x (τ A > t + s) ; ( 10 
)
d s = inf t≥0 P s,vs (τ A > s + t) sup x∈Es P s,x (τ A > s + t) . (11) 
In particular, v s ≤ v s,x 1 ,x 2 and d s ≤ d s . We can now state Proposition 3.1. and Theorem 3.3. of [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF] in our situation (see [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF] for a more general framework) :

Proposition 1 (Proposition 3.1. ( [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF])). For any s ∈ I such that d s > 0 and y ∈ E s , there exists a finite constant C s,y only depending on s and y such that, for all x ∈ E s and t, u ≥ s + t 0 with t ≤ u,

P s,x (τ A > t) P s,y (τ A > t) - P s,x (τ A > u) P s,y (τ A > u) ≤ C s,y inf v∈[s+t 0 ,t] 1 d v v-s t 0 -1 k=0 (1 -d v-k ). ( 12 
)
In particular, if

lim inf t∈I,t→∞ 1 d t t-s t 0 -1 k=0 (1 -d t-k ) = 0, (13) 
for all s ≥ 0, there exists a positive bounded function η s : E s → (0, ∞) such that

lim t→∞ P s,x (τ A > t) P s,y (τ A > t) = η s (x) η s (y) , ∀x, y ∈ E s ,
where, for any fixed y, the convergence holds uniformly in x. η s satisfies for all x ∈ E s and s ≤ t ∈ I,

E s,x (1 τ A >t η t (X t )) = η s (x). In addition, the function s → ||η s || ∞ is locally bounded on [0, ∞). Theorem 4 (Theorem 3.3 ([9])). Assume that lim inf t∈I,t→∞ 1 d t t-s t 0 -1 k=0 (1 -d t-k ).
Then there exists (Q s,x ) s∈I,x∈Es such that

P s,x (X [s,s+t] ∈ •|τ A > T ) (d) -→ T ∈I,T →∞ Q s,x (X [s,s+t] ∈ •), ∀s, t ∈ I, x ∈ E s ,
and Q s,x is given by, for all s ≤ t and

x ∈ E s , Q s,x (X [s,t] ∈ •) = E s,x 1 X [s,t] ∈• 1 τ A >t η t (X t ) E s,x (1 τ A >t η t (X t )) = E s,x 1 X [s,t] ∈•,τ A >t η t (X t ) η s (x) . (14) Furthermore, under (Q s,x ) s∈I,x∈Es , (X t ) t∈I is a time-inhomogeneous Markov process.
Finally, this process is asymptotically mixing in the sense that, for any s ≤ t and for any µ, π

∈ M 1 (E s ), ||Q s,µ (X t ∈ •) -Q s,π (X t ∈ •)|| T V ≤ 2 t-s t 0 -1 k=0 (1 -d t-k ),
where

Q s,µ (•) := Es Q s,x (•)µ(dx). ( 15 
)
Remark 1. Note that, by the definition (15), when µ is not a Dirac mass,

Q s,µ = lim T →+∞ P s,µ (•|τ A > T ).
However, using the notation

f * µ(dx) := f (x)µ(dx) µ(f ) , ∀µ ∈ M 1 (E s ), ∀f ∈ B(E s ), (16) 
one has lim

T →+∞ P s,µ (•|τ A > T ) = Q s,ηs * µ .
Remark 2. We emphasize that, in [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF], Proposition 3.1. and Theorem 3.3 are stated for any penalizations (Z s,t ) s≤t . In particular, instead of considering absorbed Markov process, it is possible to work on renormalized Feynman-Kac semi-group taking

Z s,t = e t s g(Xu)du ,
for some measurable functions g. Indeed, the specific choice of Z s,t we did in Proposition 1 and Theorem 4 does not play a role in the proofs.

Under Assumption (A'), and considering t 0 ∈ I as defined in Assumption (A'), one has, for any s ∈ I,

d s ≥ d s ≥ c 1 c 2 > 0. (17) 
Hence, by Proposition 1, ( 13) is satisfied and, for any s < s + t 0 ≤ t ≤ u and x, y ∈ E s ,

P s,x (τ A > t) P s,y (τ A > t) - P s,x (τ A > u) P s,y (τ A > u) ≤ C s,y × 1 c 1 c 2 (1 -c 1 c 2 ) t-s t 0 . ( 18 
)
From this last equation, we can expect an exponential convergence of the family of probability measures

(P s,x (X [s,t] ∈ •|τ A > T )) T ≥t towards the Q-process.
Let us now reformulate the Theorem 1, in a more precise manner :

Theorem 5. Let (X t ) t≥0 be a Markov process satisfying Assumption (A').

1. Then, for any

s ≤ t ≤ T and x ∈ E s , ||P s,x (X [s,t] ∈ •|τ A > T ) -Q s,x (X [s,t] ∈ •)|| T V ≤ 1 (c 1 c 2 ) 3 (1 -c 1 c 2 ) T -t t 0
, where Q s,x is defined by ( 14) in Theorem 4.

2. If the Q-process satisfies an ergodic theorem, i.e. there exists a probability measure β such that for any x ∈ E 0 ,

1 t t 0 Q 0,x (X s ∈ •)ds (d) -→ t→∞ β, (19) 
then for any µ ∈ M 1 (E 0 ),

1 t t 0 P µ (X s ∈ •|τ A > t)ds (d) -→ t→∞ β.
The statement of this theorem is implicitly written for I = R + . Obviously, the statement holds when I = Z + and, from now, we will confuse integral and sum to deal with quasi-ergodic distributions when the time space I will not be specify.

Proof of Theorem 5. First we will show the exponential convergence towards the Qprocess essentially thanks to [START_REF] Zhang | Quasi-stationarity and quasi-ergodicity of general Markov processes[END_REF]. In the second step, we will show the existence and uniqueness of the quasi-ergodic distribution using a method similar to that used in [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF].

Step 1 : Exponential convergence towards the Q-process

We may extend [START_REF] Zhang | Quasi-stationarity and quasi-ergodicity of general Markov processes[END_REF] to general initial law µ and π : putting moreover 1/c 1 c 2 inside the constant, there exists C s,π > 0 only depending on s and π such that, for any s ≤ t ≤ u,

P s,µ (τ A > u) P s,π (τ A > u) - P s,µ (τ A > t) P s,π (τ A > t) ≤ C s,π (1 -c 1 c 2 ) t-s t 0 .
Thus, by Theorem 4 and letting u → ∞,

µ(η s ) π(η s ) - P s,µ (τ A > t) P s,π (τ A > t) ≤ C s,π (1 -c 1 c 2 ) t-s t 0 . ( 20 
)
Using Markov property, for any s ≤ t ≤ T and for any x ∈ E s ,

P s,x (X [s,t] ∈ •|τ A > T ) = E s,x 1 X [s,t] ∈• 1 τ A >t P t,Xt (τ A > T ) P s,x (τ A > T ) = E s,x 1 X [s,t] ∈• 1 τ A >t P t,Xt (τ A > T ) E s,x (1 τ A >t P t,Xt (τ A > T )) = E s,x 1 X [s,t] ∈• 1 τ A >t P t,Xt (τ A > T ) P s,x (τ A > t)E s,x (P t,Xt (τ A > T )|τ A > t) = E s,x 1 X [s,t] ∈• 1 τ A >t P t,Xt (τ A > T ) P s,x (τ A > t)P t,φt,s(δx) (τ A > T ))
.

Using this last equality and ( 14), for any s ≤ t ≤ T , for any x ∈ E s and any

B ∈ E, P s,x (X [s,t] ∈ B|τ A > T ) -Q s,x (X [s,t] ∈ B) = E s,x 1 X [s,t] ∈B 1 τ A >t P s,x (τ A > t) P t,Xt (τ A > T ) P t,φt,s(δx) (τ A > T )) - η t (X t ) φ t,s (δ x )(η t ) ≤ C t,φt,s(δx) (1 -c 1 c 2 ) T -t t 0 E s,x 1 X [s,t] ∈B 1 τ A >t P s,x (τ A > t)
, where the last inequality follows from (20). Moreover, for any s ≤ t,

E s,x 1 X [s,t] ∈B 1 τ A >t P x (τ A > t) = P s,x X [s,t] ∈ B|τ A > t ≤ 1, ∀B ∈ E.
Hence, for any s ≤ t, x ∈ E s and B ∈ E,

P s,x (X [s,t] ∈ B|τ A > T ) -Q s,x (X [s,t] ∈ B) ≤ C t,φt,s(δx) (1 -c 1 c 2 ) T -t t 0
.

Without loss of generality, one can assume t -s ≥ t 0 , since for any t ≤ s + t 0 ,

{X [s,t] ∈ B} = {X [s,s+t 0 ] ∈ B}, where B := {ω : [s, s + t 0 ] → E : ω [s,t] ∈ B} is a measurable set.
Note that [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF] provides an explicit formula of C s,y in the proof of Proposition 3.1. for s and y fixed. Adapting this formula for a general probability measure π and recalling that we put the term 1/c 1 c 2 inside C s,π , one explicit formula of C s,π for s ∈ I can be

C s,π = 1 c 1 c 2 sup z∈Es P s,z (τ A > v s ) d vs P s,π (τ A > v s ) , (21) 
where v s ∈ I is the smaller time v ≥ s + t 0 such that d v > 0 (with d v as defined in [START_REF] Durrett | Weak convergence to Brownian meander and Brownian excursion[END_REF]). Then, by [START_REF] Oçafrain | Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically[END_REF],

v s = s + t 0 and d s+t 0 ≥ c 1 c 2 , so C s,π ≤ C sup z∈Es P s,z (τ A > s + t 0 ) P s,π (τ A > s + t 0 ) , ∀s ≥ 0, ∀π ∈ M 1 (E s ),
where we set C := 1 (c 1 c 2 ) 2 . Thus, for any x ∈ E s ,

C t,φt,s(δx) ≤ C sup z∈Et P t,z (τ A > t + t 0 ) P t,φt,s(δx) (τ A > t + t 0 )
. Now, the following lemma is needed :

Lemma 1. For any s ≤ t such that t -s ≥ t 0 , for any x ∈ E s , φ t,s (δ x ) ≥ c 1 ν t . ( 22 
)
In particular, the condition (A'1) holds replacing t 0 by any time t 1 greater than t 0 .

The proof of this lemma is postponed at the end of this proof. Then, by Lemma 1 and using (A'2),

P t,φt,s(δx) (τ A > t + t 0 ) ≥ c 1 P t,νt (τ A > t + t 0 ) ≥ c 1 c 2 sup z∈Et P t,z (τ A > t + t 0 ).
As a result C t,φt,s(δx) ≤ 1/(c 1 c 2 ) 3 , and

P s,x (X [s,t] ∈ B|τ A > T ) -Q s,x (X [s,t] ∈ B) ≤ 1 (c 1 c 2 ) 3 (1 -c 1 c 2 ) T -t t 0 .
This concludes the first step.

Step 2 : Convergence towards the quasi-ergodic distribution

We just proved that for any 0 ≤ s ≤ t and x ∈ E 0 ,

||P x (X s ∈ •|τ A > t) -Q 0,x (X s ∈ •)|| T V ≤ 1 (c 1 c 2 ) 3 (1 -c 1 c 2 ) t-s t 0 .
Note that, in the same way, it was possible to consider a general initial law µ instead of a Dirac measure δ x , so that the inequality

||P µ (X s ∈ •|τ A > t) -Q 0,η 0 * µ (X s ∈ •)|| T V ≤ 1 (c 1 c 2 ) 3 (1 -c 1 c 2 ) t-s t 0 (23)
holds for any probability measure µ on E 0 (the notation η 0 * µ is defined in ( 16)). As a result for any 0 ≤ s ≤ t, for any µ ∈ M 1 (E 0 ),

1 t t 0 P µ (X s ∈ •|τ A > t)ds - 1 t t 0 Q 0,η 0 * µ (X s ∈ •)ds T V ≤ 1 (c 1 c 2 ) 3 t t 0 (1 -c 1 c 2 ) t-s t 0 ds ≤ 1 (c 1 c 2 ) 3 t t 0 (1 -c 1 c 2 ) t-s t 0 -1 ds = - t 0 (c 1 c 2 ) 3 (1 -c 1 c 2 ) log(1 -c 1 c 2 ) × 1 -(1 -c 1 c 2 ) t t 0 t .
Let β as defined in (19). Then for any µ ∈ M 1 (E 0 ) and f ∈ B(E),

1 t t 0 E µ (f (X s )|τ A > t)ds -β(f ) ≤ 1 t t 0 P µ (X s ∈ •|τ A > t)ds - 1 t t 0 Q 0,η 0 * µ (X s ∈ •)ds T V + 1 t t 0 E Q 0,η 0 * µ (f (X s ))ds -β(f ) ≤ - t 0 (c 1 c 2 ) 3 (1 -c 1 c 2 ) log(1 -c 1 c 2 ) × 1 -(1 -c 1 c 2 ) t t 0 t + 1 t t 0 E Q 0,η 0 * µ (f (X s ))ds -β(f ) ,
where E Q 0,η 0 * µ is the expectation with respect to Q 0,η 0 * µ . Then, using the ergodic theorem for the Q-process,

1 t t 0 E µ (f (X s )|τ A > t)ds -β(f ) -→ t→∞ 0.
Proof of Lemma 1. Applying the condition (A'1) to the starting time t -t 0 ,

P t-t 0 ,y (X t ∈ •, τ A > t) ≥ c 1 ν t (•)P t-t 0 ,y (τ A > t), ∀y ∈ E t-t 0 .
Then, for any probability measure µ, integrating the last inequality over µ(dx) and dividing by P t-t 0 ,µ (τ A > t), one obtains

P t-t 0 ,µ (X t ∈ •|τ A > t) ≥ c 1 ν t , ∀µ ∈ M 1 (E t-t 0 ).
Hence, using the semi-flow property (7) of (φ t,s ) s≤t , for any s ≥ 0 and t ≥ s + t 0 ,

φ t,s (δ x ) = φ t,t-t 0 • φ t-t 0 ,s (δ x ) = P t-t 0 ,φ t-t 0 ,s (δx) (X t ∈ •|τ A > t) ≥ c 1 ν t , which is (22).
Remark 3. The time-homogeneity of the Markov process (X t ) t∈I does not play a particular role in the previous proof. In particular, Theorem 5 can be applied to timeinhomogeneous Markov process. However, in the next section, the time-homogeneity of (X t ) t∈I will be needed.

Some behaviors of moving boundaries and quasi-ergodicity

In this section, we will focus on two types of behavior for the moving boundaries 1. when A is γ-periodic with γ > 0; 2. when A is non-increasing and converges at infinity towards A ∞ = ∅.

Under Assumption (A'), the existence of the Q-process is provided by Theorem 4 (Theorem 3.3, [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF]) and we get moreover an exponential convergence towards the Q-process provided by Theorem 5. Now we want to investigate on the existence of a quasi-ergodic distribution in the two cases described above.

Quasi-ergodic distribution when A is γ-periodic

In this subsection, we will work on periodic moving boundaries and we will assume that the Markov process (X t ) t≥0 satisfies the Assumption (A'). In particular, considering Assumption (A') for s = 0, for any x ∈ E 0 and t ∈ I,

1. P x (X t 0 ∈ •|τ A > t 0 ) ≥ c 1 ν t 0 ; 2. P ν 0 (τ A > t) ≥ c 2 P x (τ A > t).
As the Lemma 1 claims, any time t 1 greater than t 0 is suitable for the condition (A'1). Hence, without loss of generality, t 0 will be taken such that t 0 = n 0 γ with n 0 ∈ N. Moreover, by periodicity of A, it is easy to see that (ν s ) s≥0 can be chosen as a γ-periodic sequence. As a result, one has

ν t 0 = ν n 0 γ = ν 0 .
In all what follows, we will consider such a choice of (ν s ) s≥0 . The aim is to obtain the convergence of

1 t t 0 P µ (X s ∈ •|τ A > t)
ds towards a quasi-ergodic distribution which will be unique. Let us state the following result, which is the more precise version of Theorem 2 introduced in Section 2 : Theorem 6. Assume A is γ-periodic with γ > 0, and assume that Assumption (A') is satisfied. Then for any µ ∈ M 1 (E 0 ),

1 t t 0 P µ (X s ∈ •|τ A > t)ds (d) -→ t→∞ 1 γ γ 0 Q 0,βγ (X s ∈ •)ds, where β γ is the invariant measure of (X nγ ) n∈N under Q 0,• , i.e. ∀n ∈ N, β γ = Q 0,βγ (X nγ ∈ •) = E 0 β γ (dx)Q 0,x (X nγ ∈ •).
Proof of Theorem 6. We want to show an ergodic theorem for the time-inhomogeneous Markov process (X t ) t≥0 under (Q s,x ) s≥0,x∈Es . Since (A t ) t≥0 is γ-periodic, for any 0 ≤ s ≤ t, for any x ∈ E s ,

Q s+kγ,x (X t+kγ ∈ •) = Q s,x (X t ∈ •), ∀k ∈ Z + . (24) 
Moreover, for any n ∈ Z + ,

Q 0,x (X nγ ∈ •) = lim t→∞ P x (X nγ ∈ •|τ A > t) = lim m∈Z + ,m→∞ P x (X nγ ∈ •|τ A > mγ) = lim m∈Z + ,m→∞ P x (Y n ∈ •|τ ∂ > m),
where τ ∂ is defined by

τ ∂ = inf{n ≥ 1 : ∃t ∈ ((n -1)γ, nγ], X t ∈ A t } if Y 0 ∈ E 0 0 if Y 0 ∈ A 0
and (Y n ) n∈Z + is the time-homogeneous Markov chain defined by

Y n = X nγ for n < τ ∂ ∂ otherwise
where ∂ plays the role of an absorbing state for (Y n ) n∈Z + . In other words, τ ∂ is an absorbing time for (Y n ) n∈Z + and, under (Q 0,x ) x∈E 0 , the chain (X nγ ) n∈Z + is the Q-process of (Y n ) n∈Z + . By Assumption (A') and recalling that we chose (ν s ) s≥0 as γ-periodic, (Y n ) n∈Z + satisfies the following Champagnat-Villemonais type condition :

1. ∀x ∈ E 0 , P x (Y n 0 ∈ •|τ ∂ > n 0 ) ≥ c 1 ν 0 ; 2. ∀x ∈ E 0 , ∀n ∈ Z + , P ν 0 (τ ∂ > n) ≥ c 2 P x (τ ∂ > n).
where we recall that n 0 = t 0 γ . Hence, by Theorem 3.1 in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF], there exists

β γ ∈ M 1 (E 0 ), C > 0 and ρ ∈ (0, 1) such that for any n ∈ Z + , ||Q 0,x (X nγ ∈ •) -β γ || T V ≤ Cρ n , ∀x ∈ E 0 .
This implies that, under Q 0,• , (X nγ ) n∈N is Harris recurrent. We can therefore apply Theorem 2.1 in [START_REF] Höpfner | Estimating discontinuous periodic signals in a time inhomogeneous diffusion[END_REF] and deduce that, for any nonnegative function f ,

1 t t 0 f (X s )ds -→ t→∞ E Q 0,βγ 1 γ γ 0 f (X s )ds , Q 0,x -almost surely, ∀x ∈ E 0 ,
where E Q 0,µ (G) = GdQ 0,µ for any measurable nonnegative function G and µ ∈ M 1 (E 0 ). It extends to f ∈ B(E) using f = f + -f -with f + , f -non negative functions. Thus, by bounded Lebesgue's convergence theorem, for any x ∈ E 0 and for any f ∈ B(E),

1 t t 0 E Q 0,x (f (X s ))ds -→ t→∞ E Q 0,βγ 1 γ γ 0 f (X s )ds .
Hence the condition (19) is satisfied. We conclude the proof using the second part of Theorem 5.

Remark 4. In [START_REF] Höpfner | Estimating discontinuous periodic signals in a time inhomogeneous diffusion[END_REF], Höpfner and Kutoyants claimed their results for Markov processes with continuous paths. It is easy to see using their arguments that the statement in Theorem 2.1. can be generalized to any time-inhomogeneous Markov processes (X t ) t∈I such that the condition of periodicity ( 24) is satisfied and the chain (X nγ ) n∈Z + is Harris recurrent. See also Proposition 5 of [START_REF] Höpfner | Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input[END_REF].

Quasi-ergodic distribution when A converges at infinity

In this subsection, we assume that A is non-increasing and let A ∞ as defined in [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF].

In what follows, we will first state the existence and uniqueness of a quasi-limiting distribution under these assumptions. Then we will deal with quasi-ergodic distribution.

Quasi-limiting distribution

First we state the following proposition which will be useful to prove the theorem on the existence and the uniqueness of the quasi-limiting distribution.

Proposition 2. Under Assumptions (A'), for any B ∈ E, the quantities lim sup t→∞ P s,µ (X t ∈ B|τ A > t) and lim inf

t→∞ P s,µ (X t ∈ B|τ A > t)
do not depend on any couple (s, µ) such that µ ∈ M 1 (E s ).

Proof of Proposition 2. We recall the statement of [9, Theorem 2.1], which is adapted to our case :

Theorem 7 (Theorem 2.1., [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF]). For any s ∈ I, for any

µ 1 , µ 2 ∈ M 1 (E s ), for any t ≥ s + t 0 , ||P s,µ 1 (X t ∈ •|τ A > t) -P s,µ 2 (X t ∈ •|τ A > t)|| T V ≤ 2(1 -c 1 c 2 ) t-s t 0 . ( 25 
)
Let B ∈ E. First we remark that, for s fixed, lim sup t→∞ P µ (X t ∈ B|τ A•θs > t) does not depend on µ ∈ M 1 (E s ). This is straightforward since, thanks to (25), for any s ≥ 0 and any

µ 1 , µ 2 ∈ M 1 (E s ), ||P s,µ 1 (X t ∈ •|τ A > t) -P s,µ 2 (X t ∈ •|τ A > t)|| T V -→ t→0 0,
which implies that, for any s ≥ 0 and

µ 1 , µ 2 ∈ M 1 (E s ), lim sup t→∞ P s,µ 1 (X t ∈ B|τ A > t) = lim sup t→∞ P s,µ 2 (X t ∈ B|τ A > t). (26) 
Now for any u ≥ 0, recalling the notation φ t,s (µ

) = P s,µ (X s+u ∈ •|τ A > s + u) for any s ≤ t and µ ∈ M 1 (E s ), lim sup t→∞ P s,µ (X t ∈ B|τ A > t) = lim sup t→∞ P s,µ (X t+u ∈ B|τ A > t + u) = lim sup t→∞ P s+u,φ u+s,s (µ) (X t ∈ B|τ A > t) = lim sup t→∞ P s+u,ν (X t ∈ B|τ A > t), (27) 
where we used first the semi-flow property of (φ t,s ) s≤t , and then (26) with a given probability measure ν ∈ M 1 (E s+u ). Hence (27) show that lim sup t→∞ P s,µ (X t ∈ B|τ A > t) does not depend on any couple (s, µ) satisfying s ∈ I and µ ∈ M 1 (E s ). A similar reasoning shows that lim inf t→∞ P s,µ (X t ∈ B|τ A > t) does not depend on s and µ either.

Before showing the existence of a quasi-limiting and a quasi-ergodic distribution, let us state the following proposition providing a uniform-in-time convergence of the timeinhomogeneous conditioned semi-group towards the time-homogeneous limit semi-group. Proposition 3. Assume (H hom ), (H ∞ ) and (H ∞ ), and let s 0 and x 0 as defined in (H ∞ ). Then,

lim s→∞ sup 0≤t≤T ||P s,x 0 (X t+s ∈ •|τ A > s + T ) -P x 0 (X t ∈ •|τ A∞ > T )|| T V = 0. ( 28 
)
Remark 5. Taking T = t, (28) implies that

lim s→∞ sup t≥0 ||P s,x 0 (X t+s ∈ •|τ A > s + t) -P x 0 (X t ∈ •|τ A∞ > t)|| T V = 0.
This is actually a stronger version than the definition of asymptotic pseudotrajectories as introduced by Benaïm and Hirsch in [START_REF] Benaïm | Asymptotic pseudotrajectories and chain recurrent flows, with applications[END_REF], for which the supremum is usually only taken on a compact set of time. In a practical way, it is difficult to use the weak version to show the convergence of the time-inhomogeneous semi-flow; considering instead a uniform convergence on R + will be useful for our purpose. The interested reader can see [START_REF] Benaïm | Dynamics of stochastic approximation algorithms[END_REF] for more details about asymptotic pseudotrajectories.

Proof of Proposition 3. For any 0 ≤ t ≤ T , s ≥ s 0 and B ∈ E,

|P s,x 0 (X t+s ∈ B|τ A > s + T ) -P x 0 (X t ∈ B|τ A∞ > T )| = |P s,x 0 (X t+s ∈ B|τ A > s + T ) -P s,x 0 (X s+t ∈ B|τ A∞ > s + T )| = P s,x 0 (τ A∞ > s + T ) P s,x 0 (τ A > s + T ) P s,x 0 (X t+s ∈ B, τ A > s + T ) P s,x 0 (τ A∞ > s + T ) - P s,x 0 (X s+t ∈ B, τ A∞ > s + T ) P s,x 0 (τ A∞ > s + T ) ≤ P s,x 0 (τ A∞ > s + T ) P s,x 0 (τ A > s + T ) P s,x 0 (X s+t ∈ B, τ A > s + T ) P s,x 0 (τ A∞ > s + T ) - P s,x 0 (X t+s ∈ B, τ A > s + T ) P s,x 0 (τ A∞ > s + T ) + P s,x 0 (X s+t ∈ B, τ A > s + T ) P s,x 0 (τ A∞ > s + T ) - P s,x 0 (X s+t ∈ B, τ A∞ > s + T ) P s,x 0 (τ A∞ > s + T ) ≤ P s,x 0 (τ A∞ > s + T ) P s,x 0 (τ A > s + T ) -1 × P s,x 0 (X s+t ∈ B, τ A > s + T ) P s,x 0 (τ A∞ > s + T ) + P s,x 0 (X s+t ∈ B, τ A > s + T ) -P s,x 0 (X s+t ∈ B, τ A∞ > s + T ) P s,x 0 (τ A∞ > s + T ) ≤ P s,x 0 (τ A∞ > s + T ) P s,x 0 (τ A > s + T ) -1 + P s,x 0 (τ A ≤ s + T < τ A∞ ) P s,x 0 (τ A∞ > s + T )
, where we used several times the fact that A ∞ ⊂ A t for any t (in particular to say that P s,x 0 (τ A > s + u) ≤ P s,x 0 (τ A∞ > s + u) for any u ≥ 0). Hence it is enough to prove that

sup t≥0 P s,x 0 (τ A ≤ s + t < τ A∞ ) P x 0 (τ A∞ > t) -→ s→∞ 0. ( 29 
)
As a matter of fact, (29) is equivalent to

sup t≥0 P s,x 0 (τ A > s + t) P x 0 (τ A∞ > t) -1 -→ s→∞ 0.
and it is easy to check that, for general functions (s, t) → f (s, t), (f (s, •)) s≥0 converges uniformly towards the constant function equal to 1 if and only if 1 f (s,•) s≥0 also converges uniformly towards 1. Fix t ≥ 0. Since A is non-increasing, for any s < s ,

P s,x 0 (τ A ≤ s + t < τ A∞ ) P x 0 (τ A∞ > t) ≥ P s ,x 0 (τ A ≤ s + t < τ A∞ ) P x 0 (τ A∞ > t)
.

Moreover, using the convergence in law for the hitting times of Assumption (H hom ), one has, for any t ≥ 0,

P s,x 0 (τ A ≤ s + t < τ A∞ ) P x 0 (τ A∞ > t) -→ s→∞ 0.
Finally, by the strong Markov property of Assumption (H hom ), for any t ≥ 0,

P s,x 0 (τ A ≤ s + t < τ A∞ ) = E s,x 0 (1 τ A ≤s+t φ(X τ A , τ A -s, t)), where φ(•, •, •) is defined as follows ∀z ∈ E ∞ , ∀ 0 ≤ u ≤ t, φ(z, u, t) = P z (τ A∞ > t -u).
In [START_REF] Champagnat | Uniform convergence to the Q-process[END_REF] it is shown (Theorem 2.1.) that, under (H ∞ ), there exists a constant a 1 > 0 such that, for any x ∈ E ∞ and t ∈ I, η ∞ (x)

e λ∞t P x (τ A∞ > t) -1 ≤ a 1 e -γ∞t , (30) 
where λ ∞ , γ ∞ and the function η ∞ were defined respectively in ( 5), ( 4) and ( 6) in the section 2. This implies therefore that there exists C > 0 such that, for any x ∈ E ∞ and t ∈ I, η ∞ (x) -e λ∞t P x (τ A∞ > t) ≤ a 1 e -γ∞t e λ∞t P x (τ A∞ > t) ≤ Ce -γ∞t , where we used that the function t → e λ∞t P x (τ A∞ > t) is upper bounded uniformly in x.

Hence, for any x ∈ E ∞ and t ≥ 0,

e λ∞t P x (τ A∞ > t) η ∞ (x) ≤ 1 + Ce -γ∞t η ∞ (x) . ( 31 
) By [6, Proposition 2.3], 1 τ A ≤t+s φ(Xτ A ,τ A -s,t)
Px 0 (τ A∞ >t) converges almost surely towards e λ∞(τ A -s) η∞(Xτ A ) η∞(x 0 ) , and using (30) and (31), φ(X τ A , τ A -s, t)

P x 0 (τ A∞ > t) = e λ∞(τ A -s) η ∞ (X τ A ) η ∞ (x 0 ) η ∞ (x 0 ) e λ∞t P x 0 (τ A∞ > t) × 1 τ A ≤t+s e λ∞(t-(τ A -s)) φ(X τ A , τ A -s, t) η ∞ (X τ A ) . ≤ e λ∞(τ A -s) η ∞ (X τ A ) η ∞ (x 0 ) (1 + a 1 e -γ∞t ) 1 + C η ∞ (x 0 ) e -γ∞(t-(τ A -s)) 1 τ A ≤t+s ≤ (1 + a 1 ) 1 + C η ∞ (x 0 ) η ∞ (X τ A ) η ∞ (x 0 ) e λ∞(τ A -s) .
Then, under (H ∞ ), by the bounded Lebesgue's convergence theorem, for any s ≥ s 0 ,

lim t→∞ P s,x 0 (τ A ≤ s + t < τ A∞ ) P x 0 (τ A∞ > t) = lim t→∞ E s,x 0 1 τ A ≤s+t φ(X τ A , τ A -s, t) P x 0 (τ A∞ > t) = E s,x 0 e λ∞(τ A -s) η ∞ (X τ A ) η ∞ (x 0 ) .
For any s ≥ 0, we can therefore define

f s : t → Ps,x 0 (τ A ≤s+t<τ A∞ ) Px 0 (τ A∞ >t) on the Alexandroff extension R + ∪ {∞} setting f s (∞) := lim t→∞ P s,x 0 (τ A ≤ s + t < τ A∞ ) P x 0 (τ A∞ > t) = E s,x 0 e λ∞(τ A -s) η ∞ (X τ A ) η ∞ (x 0 ) .
Then, like any t ∈ R, (f s (∞)) s≥0 is non-increasing and, by the assumption (H ∞ ),

lim s→∞ f s (∞) = lim s→∞ E s,x 0 e λ∞(τ A -s) η ∞ (X τ A ) η ∞ (x 0 ) = 0.
We conclude to the uniform convergence (29) using Dini's theorem for a non-increasing sequence of functions. Now one will prove Theorem 3 stated in Section 2, which is recalled below :

Theorem 8. Under Assumptions (A'), (H hom ), (H ∞ ) and (H ∞ ), for any µ ∈ M 1 (E 0 ), P µ (X t ∈ •|τ A > t) (d) -→ t→∞ α ∞ ,
where α ∞ is the quasi-stationary distribution defined in Assumption (H ∞ ).

Proof of Theorem 8 (Theorem 3). Fix B ∈ E and note that, by Assumption (H ∞ ), for

any µ ∈ M 1 (E ∞ ), lim sup t→∞ P µ (X t ∈ B|τ A∞ > t) = lim inf t→∞ P µ (X t ∈ B|τ A∞ > t) = α ∞ (B),
where we recall that α ∞ is the quasi-stationary distribution of (X t ) t∈I absorbed at A ∞ . By Proposition 2, for a given s ∈ I, lim sup t→∞ P s,µ (X t ∈ B|τ A > t) and lim inf t→∞ P s,µ (X t ∈ B|τ A > t) do not depend on µ ∈ M 1 (E s ). Denote therefore by F sup and F inf the functions defined by, for any s ≥ s 0 and any µ ∈ M 1 (E s ) ,

F sup (s) := lim sup t→∞ P s,µ (X s+t ∈ B|τ A > s + t) = lim sup t→∞ P s,x 0 (X s+t ∈ B|τ A > s + t)
and

F inf (s) := lim inf t→∞ P s,µ (X s+t ∈ B|τ A > s + t) = lim inf t→∞ P s,x 0 (X s+t ∈ B|τ A > s + t)
where x 0 is defined as in (H ∞ ). Then F sup and F inf do not depend on s either (by Proposition 2), hence for any s ≥ 0,

F sup (s) = lim u→∞ F sup (u),
and

F inf (s) = lim u→∞ F inf (u).
Moreover, by the uniform convergence (28) of Proposition 3,

lim u→∞ F sup (u) = lim u→∞ lim sup t→∞ P u,x 0 (X u+t ∈ B|τ A > u + t) = lim sup t→∞ P x 0 (X t ∈ B|τ A∞ > t) = α ∞ (B).
Similarly,

lim u→∞ F inf (u) = α ∞ (B).
Hence, for any s ≥ 0 and µ ∈ M 1 (E s ), lim sup

t→∞ P s,µ (X t ∈ B|τ A > t) = lim inf t→∞ P s,µ (X t ∈ B|τ A > t) = α ∞ (B).
Remark 6. It can be interesting to compare this result and this proof with the one of [START_REF] Bansaye | Ergodic behavior of non-conservative semigroups via generalized Doeblin's conditions[END_REF]Theorem 3.11] obtained by Bansaye and al. In particular, they used a different property of asymptotic homogeneity, which is uniform-in-state in their case.

Quasi-ergodic distribution

Now we can state the existence and uniqueness of the quasi-ergodic distribution :

Theorem 9. Under the assumptions of Theorem 8, for any µ ∈ M 1 (E 0 ),

1 t t 0 P x (X s ∈ •|τ A > t)ds (d) -→ t→∞ β ∞ ,
where β ∞ is the unique invariant measure of the Q-process of (X t ) t≥0 absorbed by A ∞ .

Proof of Theorem 9. We will show that the Q-process converges weakly towards a probability measure. Fix B ∈ E. Since we have the following inequality shown in Theorem

3.3 of [9] ||Q s,µ 1 (X t ∈ •) -Q s,µ 2 (X t ∈ •)|| T V ≤ 2(1 -c 1 c 2 )
t-s t 0

, for any µ 1 , µ 2 ∈ M 1 (E s ). We get therefore that lim sup

t→∞ Q s,µ 1 (X t ∈ B) = lim sup t→∞ Q s,µ 2 (X t ∈ B),
and we can therefore use the reasoning of the proof of Proposition 2 to show that, for any s, u ∈ I, for any µ, ν

∈ M 1 (E s ) × M 1 (E s+u ), lim sup t→∞ Q s,µ (X t ∈ B) = lim sup t→∞ Q s+u,ν (X t ∈ B).
In particular, for any

s ≥ 0, µ ∈ M 1 (E s ), lim sup t→∞ Q s,µ (X t ∈ B) = lim u→∞ lim sup t→∞ Q u,x 0 (X t ∈ B).
By the uniform convergence (28) of Proposition 3, for any

s ≥ 0, µ ∈ M 1 (E s ), lim sup t→∞ Q s,µ (X t ∈ B) = lim u→∞ lim sup t→∞ Q u,x 0 (X u+t ∈ B) = lim u→∞ lim sup t→∞ lim T →∞ P u,x 0 (X u+t ∈ B|τ A > u + T ) = lim sup t→∞ lim T →∞ P x 0 (X t ∈ B|τ A∞ > T ) = lim sup t→∞ Q ∞ x 0 (X t ∈ B),
where, for any

x ∈ E ∞ , Q ∞ x (X t ∈ B) = lim T →∞ P x (X t ∈ B|τ A∞ > T )
is well-defined by [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF]Theorem 3.1] under Assumption (H ∞ ). This theorem states moreover that (X t ) t∈I admits under (Q ∞ x ) x∈E∞ a unique invariant measure β ∞ and for any

x ∈ E ∞ , lim t→∞ Q ∞ x (X t ∈ •) = β ∞ .
Thus, for any B ∈ E, s ≥ 0 and

x ∈ E s , lim sup t→∞ Q s,x (X t ∈ B) = β ∞ (B) = lim inf t→∞ Q s,x (X t ∈ B).
Finally, thanks to the convergence in law of the Q-process we just prove, we can deduce the weak ergodic theorem using Cesaro's rule lim t→∞

1 t t 0 Q 0,x (X s ∈ •)ds = β ∞ .
Hence the condition (19) holds. As a result we can apply the second part of Theorem 5 and conclude the proof.

Example : Diffusion on R

Let (X t ) t≥0 be a diffusion on R satisfying the following stochastic differential equation

dX t = dW t -V (X t )dt, (32) 
where (W t ) t∈R + is Brownian motion on R and V ∈ C 1 (R). We assume that, under P x , there exists a strongly unique non explosive solution of (32) such that X 0 = x almost surely.

Let h be a positive bounded C 1 -function. We define τ h the random time defined by

τ h = inf{t ≥ 0 : X t ≤ h(t)}.
Let us also recall the definition of the semi-flow (φ t,s ) s≤t when the absorbing boundary is h :

φ t,s : µ → P s,µ (X t ∈ •|τ h > t), ∀s ≤ t.

Preliminaries on one-dimensional diffusion processes coming down from infinity

We assume that (X t ) t∈R + comes down from infinity (in the sense given in [START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF]), that is, there exists y > h max := sup s≥0 h(s) and t > 0 such that

lim x→∞ P x (τ y < t) > 0, (33) 
where, for any z ∈ R,

τ z := inf{t ≥ 0 : X t = z}.
In this case, as remarked in the subsection 4.5.2. of [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF], (X t ) t≥0 satisfies then

1 0 1 x sup y∈(z,Λ -1 z (x)] 1 Λ z (y) y z Λ z (ξ) 2 m(dξ) dx < ∞,
where, for any z ≥ 0, Λ z is the scale function of X satisfying Λ z (z) = 0 and defined by

Λ z (x) = x z e 2 y 0 V (ξ)dξ dy, ∀x ≥ z ( 34 
)
and m is the speed measure of (X t ) t≥0 defined by

m(dξ) = 2e -2 ξ 0 V (ξ )dξ dξ.
In particular, for any z ≥ 0, the process Y z := (Λ z (X t )) t≥0 is a local martingale and, since X is solution of (32), by Itô's formula, for any t ≥ 0, Theorem 4.6] for general diffusion processes, we deduce that for any t > 0, there exists A z t < ∞ such that

Y z t = Y z 0 + t 0 Λ z (Λ -1 z (Y z s ))dW s . Note that Λ z = Λ 0 = e 2 • 0 V (ξ)dξ for any z. So denoting for any x, z ≥ 0 σ z (x) := Λ z (Λ -1 z ) = Λ 0 (Λ -1 z ), one has dY z t = σ z (Y z t )dW t . Adapting [7,
P x (t < τ z ) ≤ A z t Λ z (x)
, ∀x ≥ z. So let u 1 ≥ 0 arbitrarily chosen. One has for any z ≥ 0,

P x (u 1 < τ z ) ≤ A z u 1 Λ z (x), ∀x ≥ z (35) 
or, equivalently,

P Λ -1 z (x) (u 1 < τ z ) ≤ A z u 1 x, ∀x ≥ 0.
Denoting for any r ≥ 0 and for any process (R t ) t≥0 τ r (R) := inf{t ≥ 0 : R t = r}, one has for any z ≥ 0 and x ≥ r,

P Λ -1 z (x) (u 1 < τ Λ -1 z (r) ) = P (τ r (Y z ) > u 1 |Y z 0 = x) .
Since z → Λ -1 z (x) is increasing for any x > 0, then, for any x > 0 and for any z ≥ z ,

σ z (x) ≥ σ z (x). (36) 
Thus, using the same reasoning as in the proof of Lemma 4.2. in the paper [START_REF] Champagnat | Uniform convergence of penalized timeinhomogeneous Markov processes[END_REF], it is possible to show that (36) implies that, for any z ≥ z and x ≥ r

P τ r (Y z ) > u 1 Y z 0 = x ≥ P τ r (Y z ) > u 1 Ỹ z 0 = x or, equivalently, P Λ -1 z (x) (u 1 < τ Λ -1 z (r) ) ≤ P Λ -1 z (x) (u 1 < τ Λ -1 z (r) ). (37) 
Taking z = r = 0, for any x ≥ 0,

P Λ -1 z (x) (u 1 < τ z ) ≤ P Λ -1 0 (x) (u 1 < τ 0 ) ≤ A 0 u 1 x, ∀x ≥ 0.
In conclusion, one has, for any z ≥ 0,

P x (u 1 < τ z ) ≤ A 0 u 1 Λ z (x), ∀x ≥ z. (38) 
One set A := A 0 u 1 . Let us now state and prove the following lemma.

Lemma 2. There exists u 0 ≥ 0, κ > 0 a family of probability measures (ψ z ) z∈[0,hmax] such that, for any z ∈ [0, h max ],

P x (X u ∈ •|τ z > u) ≥ κψ z , ∀x > z, ∀u > u 0 . (39) 
The difference between this lemma and [7, Theorem 4.1] is that the time u 0 and the constant κ do not depend on z. The sketch of the proof is inspired from the proof of the Theorem 4.1 presented in [7, Subsection 5.1].

Proof of Lemma 2. The following proof is divided into two steps.

Step 1. : Mimicking the Step 1 in the proof of [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF]Theorem 4.1] The aim of this first step is to prove that there exist , c > 0 not depending on z such that

P x (Λ z (X u 1 ) ≥ |τ z > u 1 ) ≥ c, ∀x > z. (40) 
Since, for any z ∈ [0, h max ], Λ z (X) is a local martingale, one has for any x ∈ (z, Λ -1 z (1)),

Λ z (x) = E x (Λ z (X u 1 ∧τz∧τ Λ -1 z (1) 
))

= P x (τ z > u 1 )E x (Λ z (X u 1 ∧τ Λ -1 z (1) 
)

|τ z > u 1 ) + P x (τ Λ -1 z (1) < τ z ≤ u 1 ).
By Markov property,

P x (τ Λ -1 z (1) < τ z ≤ u 1 ) ≤ E x (1 τ Λ -1 z (1)
<τz∧u 1 P Λ -1 z (1) (τ z ≤ u 1 )) ≤ P x (τ Λ -1 z (1) < τ z )P Λ -1 z (1) (τ z ≤ u 1 ) = Λ z (x)P Λ -1 z (1) (τ z ≤ u 1 ),
Finally, there exist ∈ (0, 1/(2A -1)) and c > 0 (not depending on z) such that, for any x ≥ z,

P x (Λ z (X u 1 ) ≥ |τ z > u 1 ) ≥ c.
Step 2. Mimicking the steps 2 and 3 in the proof of [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF]Theorem 4.1]. Now, taking the exact same reasoning as the one presented in the second step of the proof of Theorem 4.1 [7, Subsection 5.1], one can prove that, for any z ∈ [0, h max ], for all x ≥ ,

P Λ -1 z ( ) (Λ z (X u 2,z ) ∈ •, τ z > u 2,z ) ≥ c 1,z ψ z , where • u 2,z can be any time satisfying c 1,z := inf y>z P y (τ z < u 2,z ) > 0, • c 1,z := c 1,z P Λ -1 z ( ) (τ z > u 2,z ), • and νz := P Λ -1 z ( ) (Λ z (X u 2,z ) ∈ •|τ z > u 2,z
). In particular, for z = 0, one choose u 2,0 such that

inf y>0 P y (τ 0 < u 2,0 ) > 0. (41) 
Hence, for any z ∈ [0, h max ] and x > z,

P x (τ z < u 2,0 ) ≥ P x (τ 0 < u 2,0 ) ≥ inf y>0 P y (τ 0 < u 2,0 ) = c 1,0 .
Hence, for any z ∈ [0, h max ],

c 1,z = inf x>z P x (τ z < u 2,0 ) > c 1,0 .
In other words, we can set for any z ∈ [0, h max ] u 2,z = u 2,0 .

Hence, one can define for any z ∈ [0, h max ],

c 1,z := c 1,z P Λ -1 z ( ) (τ z > u 2,0 ), νz := P Λ -1 z ( ) (Λ z (X u 2,0 ) ∈ •|τ z > u 2,0
). As a result, doing the same computation as those presented in Step 3 of the proof of Theorem 4.1 in [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF], and defining u 0 := u 1 + u 2,0 , for any x > z,

P x (Λ z (X u 0 ) ∈ •|τ z > u 0 ) ≥ c 1,z cν z ≥ cc 1,0 P Λ -1 hmax ( ) (τ hmax > u 2,0 )ν z .
In conclusion, to get (almost) (39), one has to set κ := cc 1,0 P Λ -1 hmax ( ) (τ hmax > u 2,0 ) and

ψ z := P Λ -1 z ( ) (X u 2,0 ∈ •|τ z > u 2,0
) and one has

P x (X u 0 ∈ •|τ z > u 0 ) ≥ κψ z , ∀x > z. (42) 
To get (39) exactly, just note that the Lemma 1 (seen in the proof of Theorem 5) can be applied to the conditional probabily P x (X u ∈ •|τ z > u), in such a way that the inequality (42) holds for any u greater than u 0 .

Using the Champagnat-Villemonais type condition (39) for z = h max , for any u ≥ u 0 ,

P x (X u ∈ •|τ hmax > u) ≥ κψ hmax , ∀x ∈ (h max , ∞)
Then we obtain for any u 0 ≤ u ≤ u 0 + γ,

P s,x (X s+u ∈ •|τ h > s + u) ≥ P x (τ hmax > u) P s,x (τ h > s + u) κψ hmax ≥ P x (τ hmax > u 0 + γ) P s,x (τ h > s + u 0 ) κψ hmax .
Recalling that h is Lispchitz and that we defined L = sup s≤t

|h(t)-h(s)| |t-s|
, for any x ∈ (h max , ∞),

P x (τ hmax > u 0 + γ) P s,x (τ h > s + u 0 ) ≥ P x (τ hmax > u 0 + γ) P x (τ u→hmax-Lu > u 0 )
, where τ u→hmax-Lu := inf{t ≥ 0 : X t = h max -Lt}.

To show that inf x∈(hmax,∞) 

P x (τ hmax > u 0 + γ) P x (τ u→hmax-Lu > u 0 ) > 0 using a
P x (τ hmax > u 0 + γ) P x (τ u→hmax-Lu > u 0 ) ≥ lim x→∞ P x (τ hmax > u 0 + γ) > 0.
Thus let us focus on (44). Our strategy will be to reduce the study to the case of a Brownian motion. Denote by (M t ) t≥0 the exponential local martingale defined by, for any t,

M t := exp - t 0 V (W s )dW s - 1 2 t 0 V 2 (W s )ds = exp F (W 0 ) -F (W t ) + 1 2 t 0 (V (W s ) -V 2 (W s ))ds ,
where F is a primitive of V that we choose as a positive function on [-Lu 0 , ∞) (it is possible since F is necessarily non-decreasing by the assumptions on V ). Under P x for x ∈ (h max , h max + 1], W 0 = x almost surely. Moreover denote by τ W hmax and τ W u→hmax-Lu the following random times :

τ W hmax := inf{t ≥ 0 : W t = h max }, τ W u→hmax-Lu := inf{t ≥ 0 : W t = h max -Lt}.
Thus, since F is non-decreasing, the stopped local martingale (M t∧u 0 ∧τ W u→hmax-Lu ) t≥0

is almost surely bounded by exp F (h max + 1) + u 0 2 sup y∈R V (y) -V 2 (y) and is therefore a martingale. Likewise, the stopped local martingale (M t∧u 0 +γ∧τ W hmax ) t≥0 is also a martingale. By Girsanov's theorem,

P x (τ hmax > u 0 + γ) P x (τ u→hmax-Lu > u 0 ) = E x 1 τ W hmax >u 0 +γ M u 0 +γ∧τ W hmax E x 1 τ W u→hmax-Lu >u 0 M u 0 ∧τ W u→hmax-Lu = E x 1 τ W hmax >u 0 +γ M u 0 +γ E x 1 τ W u→hmax-Lu >u 0 M u 0 . For any x ∈ (h max , h max + 1], E x (1 τ W hmax >u 0 +γ M u 0 +γ ) ≥ E x 1 τ W hmax >u 0 +γ M u 0 +γ 1 sup s∈[0,u 0 +γ] Ws≤hmax+2 .
On the event {sup s∈[0,u 0 +γ] W s ≤ h max + 2},

M u 0 +γ ≥ exp -F (h max + 2) + u 0 + γ 2 inf s∈[hmax,hmax+2] (V (s) -V 2 (s)) =: Mu 0 +γ .
As a result,

E x (1 τ W hmax >u 0 +γ M u 0 +γ ) ≥ Mu 0 +γ E x 1 τ W hmax >u 0 +γ 1 sup s∈[0,u 0 +γ] Ws≤hmax+2 ≥ Mu 0 +γ P x τ W hmax > u 0 + γ inf y∈(hmax,hmax+1] P y sup s∈[0,u 0 +γ] W s ≤ h max + 2 τ W hmax > u 0 + γ .
Noting that

lim y→hmax P y sup s∈[0,u 0 +γ] W s ≤ h max + 2 τ W hmax > u 0 + γ = P sup s∈[0,u 0 +γ] W + s ≤ 2 > 0,
where (W + t ) t≥0 is a Brownian meander (see [START_REF] Durrett | Weak convergence to Brownian meander and Brownian excursion[END_REF], Theorem 2.1.), we deduce finally that there exists c > 0 such that for any x ∈ (h max , h max + 1]

E x (1 τ W hmax >u 0 +γ M u 0 +γ ) ≥ cP x τ W hmax > u 0 + γ .
On the other side, as we said before, (M t∧u 0 ∧τ W u→hmax-Lu

) t≥0 is almost surely bounded by exp F (h max + 1) + u 0 2 sup y∈R V (y) -V 2 (y) . Hence there exists d > 0 such that, for any x ∈ (h max , h max + 1],

E x 1 τ W u→hmax-Lu >u 0 M u 0 ≤ dP x (τ W u→hmax-Lu > u 0 ).
As a result, for any (h max , h max + 1],

P x (τ hmax > u 0 + γ) P x (τ u→hmax-Lu > u 0 ) ≥ c d P x (τ W hmax > u 0 + γ) P x (τ W u→hmax-Lu > u 0 )
.

For any x > h max , denote by p W hmax (x, •) and p W u→hmax-Lu (x, •) the density functions of τ W hmax and τ W u→hmax-Lu which are known to be equal to

p W hmax (x, t) = x -h max √ 2πt 3 exp - (x -h max ) 2 2t and p W u→hmax-Lu (x, t) = x -h max √ 2πt 3 exp - 1 2t (x -h max + Lt) 2 .
Then, for any x ∈ (h max , h max + 1],

P x (τ W hmax > u 0 + γ) P x (τ W u→hmax-Lu > u 0 ) = ∞ u 0 +γ p W hmax (x, t)dt ∞ u 0 p W u→hmax-Lu (x, t)dt .
By l'Hôpital's rule,

lim x→hmax P x (τ W hmax > u 0 + γ) P x (τ W u→hmax-Lu > u 0 ) = lim x→hmax ∞ u 0 +γ ∂ x p W hmax (x, t)dt ∞ u 0 ∂ x p W u→hmax-Lu (x, t)dt = ∞ u 0 +γ ∂ x p W hmax (h max , t)dt ∞ u 0 ∂ x p W u→hmax-Lu (h max , t)dt > 0.
As a result,

lim inf x→hmax P x (τ hmax > u 0 + γ) P x (τ u→hmax-Lu > u 0 ) ≥ c d lim x→hmax P x (τ W hmax > u 0 + γ) P x (τ W u→hmax-Lu > u 0 ) > 0.
In conclusion, inf

x∈(hmax,∞) Px(τ hmax >u 0 +γ) Px(τ u→hmax-Lu >u 0 ) > 0 and (43) holds with C max = κ × inf x∈(hmax,∞) Px(τ hmax >u 0 +γ) Px(τ u→hmax-Lu >u 0 ) .

Second step : Generalization and conclusion

Now let s ≥ 0. Then there exists s ≥ 0 such that s + s ∈ T max . As a result we can construct a function g : R + → R + as follows

g(s) = inf{s ≥ 0 : s + s ∈ T max }. (46) 
In particular, g(s) = 0 if s ∈ T max . Since h is a continuous function, s+g(s) ∈ T max for any s ≥ 0. Moreover, since h is γ-periodic, then for any s ≥ 0, g(s) ≤ γ. Thus, by the semi-flow property of (φ t,s ) s≤t , one has for any x ∈ E s ,

P s,x (X s+u 0 +γ ∈ •|τ h > s + u 0 + γ) = φ s+u 0 +γ,s (δ x ) = φ s+u 0 +γ,s+g(s) • φ s+g(s),s (δ x ) = P s+g(s),φ s+g(s),s (δx) (X s+u 0 +γ ∈ •|τ h > s + u 0 + γ).
Now by (43), for any x > h(s),

P s+g(s),φ s+g(s),s (δx) (X s+u 0 +γ ∈ •|τ h > s + u 0 + γ) ≥ C max ψ hmax . since u 0 + γ -g(s) ∈ [u 0 , u 0 + γ].
Hence, for any s ≥ 0 and x > h(s),

P s,x (X s+u 0 +γ ∈ •|τ h > s + u 0 + γ) ≥ C max ψ hmax .
As a result the first condition in Assumption (A') holds denoting for any s ≥ 0,

ν s = ψ hmax , t 0 = γ + u 0 , (47) 
c 1 = C max .
2. For the second condition of Assumption (A'), we will use some part of the proof of [7, Theorem 4.1]. First we recall [7, Lemma 5.1] :

Lemma 3 (Lemma 5.1., [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF]). There exists a > h max such that ψ hmax ([a, ∞)) > 0 and, for any k ∈ N, P a (X ku 0 ∧τ hmax ≥ a) ≥ e -ρku 0 , with ρ > 0.

So let a as in the previous lemma. It is shown in [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF] that we can choose b > a large enough such that sup

x≥b E x (e ρτ b ) < ∞. (48) 
Using Markov property, for any s ≥ 0, t ≥ 0, and for any

s 0 = k 0 γ with k 0 ∈ N, P s,a (τ h > s + t) ≥ P s,a (τ h > s + s 0 ∧ τ hmax + t) ≥ P s,a (X s+s 0 ∧τ hmax ≥ b, τ h > s + s 0 ∧ τ hmax + t) ≥ P a (X s 0 ∧τ hmax ≥ b)P s+s 0 ,b (s + s 0 + t < τ h ) ≥ P a (X s 0 ∧τ hmax ≥ b)P s,b (s + t < τ h ).
Then, for s 0 > 0 fixed, C := 1/P a (X s 0 ∧τ hmax ≥ b) < ∞, and for any s ≤ t,

P s,b (t < τ h ) ≤ CP s,a (t < τ h ).
Thanks to Markov property again, for any u ≤ t ∈ R + P a (X u∧τ hmax ≥ a)P s+u,a (s + t < τ h ) ≤ P s,a (s + t < τ h ).

According to Markov property, for any u ∈ R + ,

P a (X u∧τ hmax ≥ a) ≥ P a (X u u 0 u 0 ∧τ hmax ≥ a)P a (X (u-u u 0 u 0 )∧τ hmax ≥ a) ≥ C P a (X u u 0 u 0 ∧τ hmax ≥ a), (50) 
where

C := inf v∈[0,u 0 ] P a (X v∧τ hmax ≥ a) > 0 since v → P a (X v∧τ hmax ≥ a) is continuous and P a (X v∧τ hmax ≥ a) > 0 for any v ∈ [0, u 0 ]
. Gathering all these inequalities and using also Lemma 3, for any x ≥ b,

P s,x (t + s < τ h ) ≤ P x (τ b > t) + t 0 P s+u,b (t + s < τ h )P x (τ b ∈ du) (51) ≤ sup x≥b E x (e ρτ b )e -ρt + C t 0 P s+u,a (t + s < τ h )P x (τ b ∈ du) ≤ sup x≥b E x (e ρτ b )e -ρ t/u 0 u 0 + C C P s,a (s + t < τ h ) t 0 1 P a (X u/u 0 u 0 ∧τ hmax ≥ a) P x (τ b ∈ du) ≤ sup x≥b E x (e ρτ b )e ρu 0 e -ρ t u 0 +1 u 0 + C C P s,a (t + s < τ h ) t 0 e ρu P x (τ b ∈ du) ≤ sup x≥b E
x (e ρτ b )e ρu 0 P a (X ( t/u 0 +1)u 0 ∧τ hmax ≥ a)

+ C C P s,a (t + s < τ h ) t 0 e ρu P x (τ b ∈ du) ≤ sup x≥b E x (e ρτ b )e ρu 0 P s,a (τ h > s + t) + C C P s,a (t + s < τ h ) t 0 e ρu P x (τ b ∈ du). (52) 
We deduce from (48) that, for any t ≥ 0,

sup x≥b P s,x (t + s < τ h ) ≤ C P s,a (t + s < τ h ),
where

C = e ρu 0 + C C sup x≥b E x (e ρτ b ) < ∞.
Since ψ hmax ([a, ∞)) > 0, we conclude the point 2. of Assumption (A') setting

c 2 = 1 C .

When h is decreasing and converges at infinity

Let us now state the main proposition of this subsection : Proposition 5. Let (X t ) t≥0 be a diffusion process following (32), such that Assumption 1 is satisfied. Assume moreover that h is a decreasing C 1 -function going to 0 as t goes to infinity. Then Assumption (A') holds.

Since this is a diffusion process on R + , (X t ) t≥0 satisfies the strong Markov property and the assumption of continuity presented in Assumption (H hom ). Moreover, since t → X t is continuous almost surely and, for any s ≥ 0, τ h(s) is the hitting time of the closed set [-1, h(s)], then τ h(s) -→ s→∞ τ 0 almost surely, which entails the convergence in law of the hitting times of Assumption (H hom ). In other words, Assumption (H hom ) is satisfied for such a process.

Moreover, by [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF]Theorem 4.1.], (H ∞ ) is satisfied and there exists a unique quasistationary distribution α ∞ ∈ M 1 ((0, +∞)) and two constants C ∞ , γ ∞ such that, for any t ≥ 0 and initial measure µ,

P µ (X t ∈ •|τ 0 > t) -α ∞ T V ≤ C ∞ e -γ∞t ,
as well as a function η ∞ as defined in [START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF] in the section 2. However, the assumption (H ∞ ) is not satisfied for all decreasing C 1 -function converging to 0. Nevertheless, it will be satisfied if h : t → e -λt with λ > 0. As a matter of fact, for such a function h, one has, by continuity of (X t ) t≥0 and h, for any s ≥ 0 and x ∈ E s , E s,x (e λ∞τ h η ∞ (X τ h )) = E s,x (e λ∞τ h η ∞ (h(τ h ))) = E s,x (e λ∞τ h η ∞ (e -λτ h )), and, using [7, Proposition 4.2.], there exists K > 0 such that, for any x ∈ (0, +∞), η ∞ (x) ≤ Kx, so that E s,x (e λ∞τ h η ∞ (X τ h )) = E s,x (e λ∞τ h η ∞ (e -λτ h )) ≤ KE s,x (e (λ∞-λ)τ h ). Now it is well-known (see [START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF]Proposition 3]) that, since λ ∞ -λ < λ ∞ , there exists x 0 ∈ (0, +∞) such that E x 0 (e (λ∞-λ)τ 0 ) < +∞.

Hence, for any s ≥ 0 such that h(s) ≤ x 0 , E s,x 0 (e λ∞τ h η ∞ (X τ h )) ≤ KE s,x 0 (e (λ∞-λ)τ h ) ≤ KE x 0 (e (λ∞-λ)(s+τ 0 ) ) < ∞.

Moreover, E s,x 0 (e λ∞(τ h -s) η ∞ (X τ h )) ≤ Ke -λs E x 0 (e (λ∞-λ)τ 0 ) -→ s→∞ 0, so the condition (H ∞ ) is satisfied. Then, for such a function h, Proposition 5 entails that, for any µ ∈ M 1 ((h(0), +∞)),

P µ (X t ∈ •|τ h > t) (d) -→ t→∞ α ∞ .
Proof of Proposition 5.

1. Adapting exactly the same reasoning as Proposition 4, we can show that for any s ≥ 0 and any x > h(s), P s,x (X s+u 0 ∈ •|τ h > s + u 0 ) ≥ ds κ 0 ψ h(s) , where we recall that u 0 , κ 0 and ψ z are such that (39) holds, and where d s is defined by ds = P x (τ h(s) > u 0 ) P x (τ u→h(s)-Lu > u 0 ) .

We have therefore to show that inf s≥0 ds > 0.

For any z ∈ [0, h(0)] define (X As a result the first hypothesis of Assumption (A') holds setting for any s ≥ 0,

ν s = ψ h(0) if s ≤ u 0 ψ h(s-u 0 ) if s > u 0 t 0 = u 0 , c 1 = κ 0 × inf s≥0 ds .
2. The reasoning is the same as the point 2. in the proof of the Proposition 4 and the technical computations could be hidden if they are already explicitly written for the periodic case.

Noting that, for any z ∈ [0, h(0)] and any y ≥ h(0), ψ z ([y, ∞)) > 0, then, by Lemma 3, there exists a > h(0) such that, for any z ∈ [0, h(0)], ψ z ([a, ∞)) > 0 and for any k ∈ N P a (X ku 0 ∧τ h(0) ≥ a) ≥ e -ρku 0 , where ρ > 0. We deduce that for any s ≥ 0 P a (X ku 0 ∧τ h(s) ≥ a) ≥ e -ρku 0 .

As in the proof of Proposition 4, we can choose b > a large enough such that

sup x≥b E x (e ρτ b ) < ∞.
Since h is non-increasing, for any s, t ≥ 0 and s 0 ≥ 0, P s+s 0 ,b (τ h > s + s 0 + t) ≥ P s,b (τ h > s + t).

Hence, according to Markov property, P s,a (s + t < τ h ) ≥ P a (X s 0 ∧τ h(s) ≥ b)P s,b (s + t < τ h ) ≥ P a (X s 0 ∧τ h(0) ≥ b)P s,b (s + t < τ h ).

for any t ≥ 0 and any s 0 ≥ 0. Hence, for s 0 fixed, C := 1 Pa(Xs 0 ∧τ h(0) ≥b) < ∞, and for any s ≤ t, P s,b (t < τ h ) ≤ CP s,a (t < τ h ).

Likewise, one finds an analog of the inequality (49) P a (X u∧τ h(s) ≥ a)P s+u,a (t + s < τ h ) ≤ P s,a (t < τ h ), and using the same reasoning as for the inequality (50), P a (X v∧τ h(0) ≥ a) > 0.

Hence, using these previous inequalities and doing again the array of computation (51)-( 52), we deduce that, for any s ≤ t, Since ψ h(s) ([a, ∞)) > 0 for any s ≥ 0, we conclude the proof of the point 2 setting

c 2 = 1 C .

=

  dW t -V (X (z) t + z)dt.In particular, X (0)(d) = X. Likewise, for any y ∈ R and z ∈ [0, h(0)], we denote by τ (z) y := inf{t ≥ 0 : X (z) t = y} and τ (z) u→y-Lu := inf{t ≥ 0 : X (z) t= y -Lt}. Since V is positive and increasing on [-Lu 0 , ∞), then, using Theorem 1.1 in [[START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF], Chapter VI, p.437], we can show that for any x > 0 and z ∈ [0, h(0)],P x (τ (z) 0 > u 0 ) ≥ P x (τ (h(0)) 0 > u 0 ) and that P x (τ (z) u→-Lu > u 0 ) ≤ P x (τ(0)u→-Lu > u 0 ). Then, for any x > 0 and s ≥ 0,P x+h(s) (τ h(s) > u 0 ) = P x (τ > u 0 ) P x+h(s) (τ u→h(s)-Lu > u 0 ).To conclude, it is enough to see that inf x>0 >u 0 ) > 0 using the same techniques as the point 1 of Proposition 4.

P

  a (X u∧τ h(s) ≥ a) ≥ C P a (X u u 0 u 0 ∧τ h(s) ≥ a), with C := inf v∈[0,u 0 ]

  sup x≥b P s,x (t < τ h ) ≤ C P s,a (t < τ h ),whereC := e ρu 0 + C C sup x≥b E x (e ρτ b ) < ∞.
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where the following identity is used

As a result, using (38), one has, for any x ∈ (z, Λ -1 z (1)),

where A z := A/P Λ -1 z (1) (u 1 < τ z ). But, since z ∈ [0, h max ], the inequality (37) applied to r = 0 implies that

Thus, using Markov's inequality,

)

Then, since A > 1 by (38), 1/(2A -1) < 1. Thus, for any ∈ (0, 1/(2A -1)) and x ∈ (z, Λ -1 z (1/(2A -1))),

, then there exist ∈ (0, 1/(2A -1)) and c > 0 (not depending on z) such that, for any x ∈ (z, Λ -1 z (1/(2A -1))),

Periodic absorbing function

Before showing that the Assumption (A') is satisfied when h is periodic or converging, we will need to give some hypothesis on the function V as defined in (32). In the both case we will deal with, the absorbing function h will be Lipschitz, i.e.

Now we state the assumption we need on the function V Assumption 1 (Hypothesis on V ).

• V is such that the process X satisfying (32) comes down from infinity.

• V is positive and increasing on [-Lu 0 , ∞) (where u 0 is mentioned in Lemma 2).

Note that the functions V : x → (x -c) α with α > 1 and c > 0 are suitable functions. Now the following proposition is stated and proved : Proposition 4. Let (X t ) t≥0 be a diffusion process following (32), such that Assumption 1 is satisfied. Assume moreover that h is a periodic function, with period γ > 0.

Then Assumption (A') holds. In particular, there exists a probability measure β γ such that, for any x > h(0),

Proof of Proposition 4. We will show that the two points in Assumption (A') are satisfied.

1. Denote by T max the set defined by

where we recall that h max = sup s≥0 h(s). The main part of this proof is to show that there exists C max > 0 such that, for any s ∈ T max and any u ∈ [u 0 , u 0

where u 0 and ψ hmax are defined in Lemma 2. Then we will generalize (43) to any s ≥ 0 using Markov property.

First step : Proof of (43) Let s ∈ T max . For any x > h max , for any t ≥ 0, P s,x (X t+s ∈ •|τ h > s + t) ≥ P x (τ hmax > t) P s,x (τ h > s + t) P x (X t ∈ •|τ hmax > t).