

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Authors

Manuel López-Radcenco[†] Ronan Fablet[†] Abdeldjalil Aïssa-El-Bey[†] Pierre Ailliot[‡]

[†]IMT Atlantique, UMR CNRS 6285 Lab-STICC, Brest, France. [‡]Laboratoire de Mathématiques de Bretagne Atlantique, UMR 6205, Université de Brest, Brest, France

References

[1] M. Lopez-Radcenco et al., "Locally-adapted convolutionbased super-resolution of irregularly-sampled ocean remote sensing data", IEEE ICIP 2017, Beijing, China.

[2] R. Fablet et al., *"Improving* mesoscale altimetric data from a multi-tracer convolutional processing of standard satellitederived products", IEEE TGRS, in press.

Acknowledgements

This work was supported by ANR (Agence Nationale de la Recherche, grant ANR-13-MONU-0014), Labex Cominlabs project SEACS and OSTST project MANATEE.

1. Abstract

Super-resolution is a classical problem in image processing, with numerous applications to remote sensing image enhancement. Here, we address the super-resolution of irregularlysampled remote sensing images. Using an optimal interpolation as the low-resolution reconstruction, we explore locally-adapted multimodal convolutional models and investigate different dictionary-based decompositions. We consider an application to the reconstruction of sea surface height (SSH) fields from two information sources, along-track altimeter data and sea surface temperature (SST) data. The reported experiments demonstrate the relevance of the proposed model, especially locally-adapted parametrizations with non-negativity constraints, to outperform optimally-interpolated reconstructions.

3. Model

Convolution-based model:

- N is a space-time noise process.

Global unconstrained calibration:

where
$$dY^{*}(k) = Y^{*}(t^{*}(k), s^{*}(k)) - Y_{LR}(t^{*}(k), s^{*}(k))$$

 $\widehat{dY^{*}}(k) = H_{Y} * Y_{LR}(t^{*}(k), s^{*}(k)) + H_{X} * X(t^{*}(k), s^{*}(k))$

4. Results

Remote sensing super-resolution application:

- $(Y_{LR}(t))_t$ Daily SSH (sea surface height) images
- $(X(t))_t$ Daily SST (sea surface temperature) images
- $\{Y^{*}(k)\}_{k}$ Satellite along-track altimetry data (Fig. 1)

Fig.2: Illustration of the irregular sampling of high-resolution observations associated with ocean remote sensing data: sea surface height image with the sampled along-track positions by satellite altimeters (cyan squares) in a ±10-day time window around April 20th, 2012.

6. Conclusion

We addressed the multimodal super-resolution images, using a complementary high-resolution images, using a complem variabilities through more locally-adapted model calibrations. Numerical experiments for the selection of non-negativity constraints to achieve a better local adaptation and a better reconstruction of higher-resolution details. Future work includes non-local extensions of the proposed model to combine spatio-temporal and similarity-based neighborhoods, non-linear dictionary-based decompositions to combine non-linear mapping and locally-adapted models, and applications to different sampling patterns, for instance along-track narrow-swath satellite data vs. wide-swath satellite data.

Contact : manuel.lopezradcenco@imt-atlantique.fr

LOCALLY-ADAPTED CONVOLUTION-BASED SUPER-RESOLUTION OF IRREGULARLY-SAMPLED OCEAN REMOTE SENSING DATA

Problem:

 $Y(t) = Y_{LR}(t) + H_Y * Y_{LR}(t) + H_X * X(t) + N(t)$

 H_{Y} and H_{X} are space-and-time-varying two-dimensional (2 W_{P} +1)x(2 W_{p} +1) matricial operators.

For any given space-time location (t_0,s_0) , the model is fitted using all observations $\{Y^*(k),t^*(k),s^*(k)\}$ that verify:

$$^{*}(k) \in [t_{0} - D_{t}, t_{0} + D_{t}]$$

 $||s^{*}(k) - s_{0}|| \leq D_{s}$

Cost function to be minimized (mean square error criterion): $\mathcal{E}(H_X, H_Y) = \sum \left| \left| dY^*(k) - \widehat{dY^*}(k) \right| \right|^2$

Fig. 3: Daily high-resolution images $\{Y(t)\}_t$ reconstruction error (RMSE) distribution for a global convolutional model and for locallyadapted decompositions of the global convolutional model using *K*=10 classes. The probability distribution of the RMSE for daily lowresolution SSH images $\{Y_{IR}(t)\}_t$ is given as reference (noted as SSH_{LR}).

2. Problem statement

Reconstruct a series of high-resolution images $\{Y(t)\}_t$ at different times $\{t_1, \dots, t_T\}$ from the corresponding series of low-resolution images $\{Y_{LR}(t)\}_t$.

- **Sources of information:** \blacktriangleright Low-resolution images $\{Y_{IR}(t)\}_{t}$.
 - Complementary source of high-resolution images $\{X(t)\}_{t}$, correlated to $\{Y(t)\}_{t}$.
 - \blacktriangleright Irregularly-sampled dataset of high-resolution point-wise observations $\{Y^*(k)\}_k$ at times $\{t^*(k)\}_k$ and locations $\{s^*(k)\}_k$.

Locally-adapted dictionary-based convolutional models:

Operators H_X and H_Y are decomposed using a dictionary-based approach:

$$H_{\{X,Y\}} = \sum_{k=1}^{K} \alpha_k D_k^{\{X,Y\}}$$

- \triangleright D_k^X (resp. D_k^Y) is the kth component of the dictionary of operators for operator H_X (resp. H_Y).
- > Decomposition scalar coefficients α_k are shared by operators H_X and H_Y.
- Different constraints are considered:
- Orthogonality (PCA).
- Sparsity (K-SVD). -
- Non-negativity (NN). -
- Siven the trained dictionaries D_k^X and D_k^Y , the model decomposition is readjusted locally:
 - Decomposition coefficients α_k are readjusted locally for smaller, overlapping spatio-temporal neighbourhoods.

	K=2	K = 5	K = 10
PCA	0.1807	0.1734	0.1680
KSVD	0.2228	0.2228	0.2228
NN	0.1807	0.1734	<u>0.1666</u>
Global model			0.1755
SSH_{LR}			0.2228

Tab. 1: Relative root mean square reconstruction error (RMSE) for daily high-resolution SSH images $\{Y(t)\}_{t}$ for a global convolutional model and for locallyadapted decompositions of a global convolutional model, considering K=2, K=5 and K=10 classes. The RMSE value for daily low-resolution SSH images $\{Y_{IR}(t)\}_{t}$ is given as reference (noted as SSH_{IR}). Best results for each number of classes K considered are presented in **bold**. Results that outperform a global convolutional model are <u>underlined</u>.

global convolutional model using K=10 classes.

Fig.1: Patch-based approach. Patch extraction for convolutionalbased model learning.