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ABSTRACT
Super-resolution is a classical problem in image processing, with
numerous applications to remote sensing image enhancement. Here,
we address the super-resolution of irregularly-sampled remote sens-
ing images. Using an optimal interpolation as the low-resolution
reconstruction, we explore locally-adapted multimodal convolu-
tional models and investigate different dictionary-based decom-
positions, namely based on principal component analysis (PCA),
sparse priors and non-negativity constraints. We consider an appli-
cation to the reconstruction of sea surface height (SSH) fields from
two information sources, along-track altimeter data and sea surface
temperature (SST) data. The reported experiments demonstrate
the relevance of the proposed model, especially locally-adapted
parametrizations with non-negativity constraints, to outperform
optimally-interpolated reconstructions.

Index Terms— Super-resolution, convolutional model, irregu-
lar sampling, dictionary-based decomposition, non-negativity

1. INTRODUCTION

Image super-resolution or upscaling is a classical problem in im-
age processing [1, 2]. Super-resolution techniques also apply to
remote sensing image enhancement problems [3]. Contrary to the
classical super-resolution setting, numerous satellite remote sens-
ing applications do not only involve low-resolution images but also
irregularly-sampled high-resolution information. The later may be
due to specific sampling patterns, such as along-track narrow-swath
satellite data, as well as to partial occlusions caused by weather
conditions [4, 5]. The availability of such partial high-resolution
data supports locally-adapted super-resolution models, rather than
models fully trained offline, with a view to accounting for the space-
time variabilities of the monitored processes.
In this paper, we address such image super-resolution issues from
irregularly-sampled high-resolution information. Following state-
of-the-art super-resolution models [6–8], we consider locally-
adapted convolution-based models. Our methodological contri-
butions are two-fold: i) the proposed convolution-based models
combine both a low-resolution image and a secondary image source,
ii) we explore dictionary-based representations of the convolutional
operators with different types of constraints, namely orthogonality,
non-negativity and sparsity constraints [9, 10]. Such dictionary-
based representations and constraints are particularly appealing to
resort to locally-adapted super-resolution models calibrated from a
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low number of high-resolution training data.
As case study, we apply the proposed framework to multi-source
ocean remote sensing data, namely the reconstruction of high-
resolution SSH (Sea Surface Height) images from satellite-derived
along-track altimeter data, a high-resolution SST (Sea Surface
Temperature) image and a low-resolution SSH image. We report
numerical experiments, which demonstrate the relevance of the
proposed super-resolution models, especially under non-negativity
constraints, compared with optimally-interpolated SSH images.
The paper is organized as follows. In Section 2 we introduce the pro-
posed super-resolution model along with the associated calibration
schemes. In Section 3, we present the application to the reconstruc-
tion of satellite-derived SSH images and described experimental
results. Finally, we report concluding remarks and discuss future
work in Section 4.

2. MODEL FORMULATION

2.1. Problem statement

We aim at reconstructing a series of high-resolution images {Y (t)}t
at different times {t1, ...., tT } from the corresponding series of low-
resolution images {YLR(t)}t. In the considered application setting,
we are also provided with:

• a complementary source of high-resolution images {X(t)}t,
which may depict some local or global correlation with
{Y (t)}t;

• an irregularly-sampled dataset of high-resolution point-wise
observations {t̃(k), s̃(k), Ỹ (k)}k, with t̃(k), s̃(k) and Ỹ (k)
respectively the time, location and value of the kth high-
resolution observation.

Figure 1 reports an example of the considered sampling patterns.
We let the reader refer to Section 3 for the detailed description of the
considered application to ocean remote data.
The reconstruction of high-resolution image Y (t) given low-
resolution image YLR(t) is stated according to the following
convolution-based model:

Y (t) = YLR(t) +HY ∗ YLR(t) +HX ∗X(t) +N(t) (1)

where N is a space-time noise process. HY (resp. HX ) is the two-
dimensional impulse response of the YLR (resp. X) component of
the proposed convolutional model. HY and HX are characterized
by (2Wp + 1) × (2Wp + 1) discrete representations onto the con-
sidered high-resolution grid. Importantly, HY and HX are space-
and-time-varying operators and capture the space-time variabilities



of (Y, YLR) and (Y,X) relationships. This model can be regarded as
a patch-based super-resolution approach where high-resolution im-
age Y at a given location is computed as a linear combination of
(2 ∗Wp + 1) × (2 ∗Wp + 1) patches of images X and YLR cen-
tered at the same location. Parametrization HX = 0 clearly relates
to regression-based super-resolution models [6, 7].

2.2. Unconstrained model calibration

The calibration of model (1) amounts to the estimation of the
(2Wp+1)×(2Wp+1) matrix representations of operatorsHY and
HX at any space-time location. The availability of the irregularly-
sampled dataset {t̃(k), s̃(k), Ỹ (k)}k provides the means for this
locally-adapted calibration. It may be noted that, in classical image
super-resolution issue, such models are trained offline or involve
nearest-neighbor techniques using a training dataset of joint low-
resolution and high-resolution image patches [6, 7]. Here, we pro-
ceed as follows. For a given space-time location (t0, s0), we regard
all data such that t̃(k) ∈ [t0 −Dt, t0 +Dt] and ‖s̃(k)− s0‖ ≤ Ds

as observations for model (1) at location (t0, s0). Parameters Dt

and Ds state respectively the spatio-temporal extent of the consid-
ered neighborhood around location (t0, s0). Given the irregular
sampling of the high-resolution dataset, no guarantees exist that
sampling locations s̃(k) will lie within the considered X/YLR grid,
and thus (2Wp + 1) × (2Wp + 1) high-resolution X patches and
low-resolution YLR patches need to be interpolated around spatio-
temporal locations (s̃(k), t̃(k)). Local impulse responses HX and
HY are then fitted by minimizing the mean square reconstruction
error E (HX , HY ) for the high-resolution detail dY = Y − YLR at
irregularly-sampled dataset positions (s̃(k), t̃(k)):

E (HX , HY ) =
∑
k

∣∣∣∣∣∣dỸ (k)− d̂Ỹ (k)
∣∣∣∣∣∣2 (2)

where d̂Ỹ (k) =HY ∗ YLR

(
t̃ (k) , s̃ (k)

)
+

HX ∗X
(
t̃ (k) , s̃ (k)

) (3)

Assuming the number of observations is high-enough, minimization
(2) resorts to a least-square estimation of operators HY and HX .

2.3. Dictionary-based decompositions

A critical aspect of the above least-square minimization is the num-
ber of available training data points and the underlying balance be-
tween locally-adapted and robust parametrizations. With a view to
improving estimation robustness as well model interpretability, we
explore dictionary-based decomposition approaches. They resort to
the following decomposition of operators HX and HY :

H{X,Y } =

K∑
k=1

αkD
{X,Y }
k (4)

where DY
k (resp. DX

k ) is the kth component of the dictionary of
operators for operator HY (resp. HX ) and αk is the kth scalar co-
efficient that states the decomposition of operator HY (resp. HX )
onto dictionary element DY

k (resp. DX
k ). It should be noted that a

joint dictionary-based representation is considered in our study, so
that decomposition coefficients αk are shared by the two convolu-
tional operators HY and HX .
Following classical dictionary-based settings [11], we explore their
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Fig. 1: Illustration of the irregular sampling of high-resolution ob-
servations associated with ocean remote sensing data: sea surface
height image with the sampled along-track positions by satellite al-
timeters (cyan squares) in a ±10-day time window around April
20th, 2012.

applications to convolution operators. We investigate three differ-
ent types of constraints for dictionary elements {DY

k } and decom-
position coefficients {αk}: namely orthogonality, sparsity and non-
negativity constraints. The calibration of these dictionary-based set-
tings first involve the estimation of dictionary elements {DY

k } using
training data. We here assume we are provided with a represen-
tative dataset of unconstrained estimates of operators HY and HX

from (2), denoted by {Hn
Y , H

n
X}n. More precisely, the considered

dictionary-based decompositions are as follows:
• Orthogonality constraint: under this constraint, dictionary

elements {DY
k } form an orthonormal basis with no other con-

straints onto coefficients {αk}. This decomposition relates to
the application of principal component analysis (PCA) [12]
to dataset {Hn

Y , H
n
X}n. Given the trained dictionary, the esti-

mation of decomposition coefficients {αk} comes to the pro-
jection of the unconstrained operator estimates onto dictio-
nary elements {DY

k }.
• Sparsity constraint: the sparse dictionary-based decompo-

sition [13] resorts to complementing MSE criterion (2) with
the L1 norm of coefficients {αk}. We apply a KSVD scheme
to dataset {Hn

Y , H
n
X}n to train dictionary elements {DY

k }.
Given the trained dictionary, we proceed similarly to kSVD
and use orthogonal matching pursuit [14] for the sparse esti-
mation of decomposition coefficients {αk} for any new un-
constrained operator estimate.

• Non-negativity constraint: the non-negative dictionary-
based decomposition constrains coefficients {αk} to be
non-negative. Given dataset {Hn

Y , H
n
X}n, the training of

dictionary elements {DY
k } resorts to the minimization of re-

construction error (2) under non-negativity constraints for the
decomposition coefficients. We exploit an iterative proximal
operator-based algorithm [15]. Given the trained dictionary,
the estimation of decomposition coefficients {αk} comes to
a least-square estimation under non-negativity constraints.

2.4. Locally-adapted dictionary-based convolutional models

The application of the proposed dictionary-based decompositions to
the super-resolution of irregularly-sampled high-resolution images
involves the following main steps. For a given dictionary-based de-
composition, we first train the associated dictionaries {DX

k , D
Y
k }.

Considering the entire image time series, we proceed to the uncon-
strained estimation of operators HX and HY from (2) for a variety
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Fig. 2: Probability distribution for the relative root mean square re-
construction error (RMSE) for daily high-resolution SSH images
{Y (t)}t, for a global convolutional model and for locally-adapted
decompositions of a global convolutional model using principal
component analysis (PCA) [12], KSVD [13] and non-negative de-
composition (NN) and considering K = 10 classes. The probabil-
ity distribution of the RMSE for daily low-resolution SSH images
{YLR(t)}t is given as reference (noted as SSHLR).

of spatio-temporal neighborhoods with given parameters DTr
s and

DTr
t . Parameters DTr

s and DTr
t are set such that the number of

high-resolution observations is high enough to solve for least-square
criterion (2). We typically sample around 1500 neighborhoods to
build a representative dataset of operators HX and HY .
Given the trained dictionaries, we proceed to the super-resolution
of an image at a given date t∗ as follows. For any given spatial
location s∗, we first estimate the associated decomposition coeffi-
cients {αk} from the subset of high-resolution observations in a
spatio-temporal neighborhood of space-time location (t∗, s∗) with
parameters DSR

s and DSR
t . The later parameters typically define

smaller spatio-temporal neighborhoods than training neighborhoods
with parameters DTr

s and DTr
t . As such, estimated coefficients

{αk} come to the projection of more local convolutional operators
onto the subspace spanned by the estimated dictionaries, thus yield-
ing a more locally-adapted model (1). This calibrated model is then
applied to the reconstruction of image Y in a neighborhood of lo-
cation (t∗, s∗). To reduce the computational time, we perform this
calibration of locally-adapted models for a regular subsampling of
the image grid, typically DSR

s /2, and use a spatial averaging of
overlapping local reconstructions to obtain a single high-resolution
reconstruction of image Y .

3. EXPERIMENTS

As case study, we consider an application to ocean remote sensing
data, more particularly to the reconstruction of sea-surface height
(SSH) image time series from along-track altimeter data. Satellite
altimeters are narrow-swath sensors such that high-resolution altime-
ter data is only acquired along the satellite track path [16], resulting
in an particularly scarce and irregular sampling of the ocean surface
as illustrated in Fig.1. Interestingly, numerous studies have pointed
out the potential contribution of high-resolution sea surface temper-
ature (SST) images to the reconstruction of SSH images, as they
share common geometrical patterns associated with the underlying

Table 1: Relative root mean square reconstruction error (RMSE)
for daily high-resolution SSH images {Y (t)}t, for a global convo-
lutional model and for locally-adapted decompositions of a global
convolutional model using principal component analysis (PCA)
[12], KSVD [13] and non-negative decomposition (NN), consider-
ing K = 2, K = 5 and K = 10 classes. The RMSE value for daily
low-resolution SSH images {YLR(t)}t is given as reference (noted
as SSHLR). Best results for each number of classes K considered
are presented in bold. Results that outperform a global convolutional
model are underlined.

K = 2 K = 5 K = 10

PCA 0.1823 0.1732 0.1717
KSVD 0.1629 0.1629 0.1629
NN 0.1562 0.1521 0.1519

Global model 0.1733
SSHLR 0.2201

upper ocean dynamics [17, 18]. In addition, optimally-interpolated
products [16] provide a low-resolution reconstruction of the SSH im-
age. Overall, the reconstruction of high-resolution SSH image time
series resorts to a super-resolution issue from irregularly-sampled
high-resolution information as stated in Section 2. It may be stressed
that this case study involves a scaling factor of about 10 between the
low-resolution and high-resolution data, which makes it particularly
challenging compared with classical image super-resolution issues.
In our experiments, we exploit a ground-truthed dataset using an ob-
serving system simulation experiment for a case study region in the
Western Mediterranean Sea (36.5◦N to 40◦N , 1.5◦E to 8.5◦E).
A high-resolution numerical simulation of the WMOP model [19]
is used to generate daily high-resolution SSH images from 2009
to 2013 for a 1/20◦ grid. The along-track dataset is simulated by
sampling the SSH images at real along-track positions issued from
from multiple altimetry missions in 2014 and 2015 (see Figure 1).
Given the simulated along-track dataset, optimally-interpolated SSH
fields [16], referred to as low-resolution SSH images YLR, are com-
puted for a 1/8◦ grid resolution. The calibration of the proposed
convolutional operators is performed by consideringWp = 1, which
corresponds to 3× 3 convolutional masks. We use the following pa-
rameter setting for spatio-temporal neighborhoods: t0±Dt-day time
windows with Dt = 10, and Ds × Ds spatial neighborhoods with
DTr

s = 7◦ for the training step and Ds = 2◦ for the locally-adapted
calibration steps.
In Table 1, we report the average root mean square reconstruction
error (RMSE) for daily high-resolution SSH images {Y (t)}t, for
a global convolutional model and for locally-adapted convolutional
models, using principal component analysis (PCA) [12], KSVD [13]
and non-negative dictionary-based decomposition (NN) and consid-
ering K = 2, K = 5 and K = 10 elements in the dictionar-
ies. The reconstruction RMSE for daily low-resolution SSH images
{YLR(t)}t (noted as SSHLR) is given as reference.
From Table 1, locally-adapted convolutional models clearly outper-
form global models (with the exception of the PCA-based decompo-
sition for a small number of classes K), which can be explained by
the improved local adaptation to local spatio-temporal variabilities
through locally-adapted decomposition coefficients. In this respect,
the non-negative decomposition outperforms alternative approaches,
with a maximum relative gain (with respect to optimally-interpolated
low-resolution SSH images {YLR(t)}t, at K = 10) of 30.99% for
NN, 25.99% for KSVD, 21.99% for PCA and 21.26% for a global
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Fig. 3: High-resolution SSH image Y reconstruction, April 20th, 2012: first row, from left to right, real high-resolution SSH image Y ,
low-resolution SSH image YLR (noted as SSHLR), reconstruction of high-resolution SSH image Y using global convolutional model (1);
second row, reconstruction of high-resolution SSH image Y using a 10-class locally-adapted decomposition (4) of global convolutional model
(1) using, from left to right, principal component analysis (PCA) [12], KSVD [13] and non-negative decomposition (NN).

convolutional model.
These results are further illustrated by the reconstruction of high-
resolution SSH image Y for sample date April 20th, 2012 presented
in Figure 3 and by the probability distributions of daily reconstruc-
tion root mean square error for high-resolution SSH images {Y (t)}t,
computed for the global convolutional model and for each one of
the considered locally-adapted models with K = 10, presented in
Figure 2. Visually, the proposed super-resolution models clearly im-
prove the reconstruction of finer-scale details compared to the low-
resolution image. The model using non-negativity constraints seem
to involve slightly sharper the gradients compared with the uncon-
strained and sparsity-based model. PCA-based model appear visu-
ally less relevant.

4. CONCLUSION

In this paper, we addressed the multimodal super-resolution of
irregularly-sampled high-resolution images. This issue arises in a
number of remote sensing applications, where several sensors as-
sociated with different regular and irregular sampling patterns may
contribute to the reconstruction of a given high-resolution image.
As a case study, we considered an application to the reconstruc-

tion of high-resolution sea surface height (SSH) images. From a
methodological point of view, we complement previous convolution-
based super-resolution models [7, 8] with the evaluation of different
dictionary-based decompositions and the use of a complementary
high-resolution image source. Dictionary-based decompositions are
regarded as a means to better account for spatio-temporal variabili-
ties through more locally-adapted model calibrations. Our numerical
experiments support the selection of non-negativity constraints to
achieve a better local adaptation. They demonstrate the relevance of
the proposed approach to achieve a better reconstruction of higher-
resolution details, compared with the optimally-interpolated fields.
Future work includes non-local extensions of the proposed model
to combine spatio-temporal and similarity-based neighborhoods
as considered in regression-based super-resolution models [7, 8].
Non-linear dictionary-based decomposition seems particularly ap-
pealing to combine non-linear mapping, for instance CNN-based
models [20], and locally-adapted models. As far as ocean remote
sensing applications are considered, applying the proposed models
to different sampling patterns, for instance along-track narrow-swath
satellite data vs. wide-swath satellite data, appears to be of interest,
the later possibly enabling the modeling of higher-order geometrical
details.
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