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Abstract 

Much has been written on the subject of objective functions to calibrate rainfall–runoff 

models. Many studies focus on the best choice for low–flow simulations or different multi–

objective purposes. Only a few studies, however, investigate objective functions to optimise 

the simulations of low–flow indices that are important for water management. Here, we test 

different objective functions, from single objective functions with different discharge 

transformations or using low–flow indices to combinations of single objective functions and 

we evaluate their robustness and sensitivity to the rainfall–runoff model. We found that the 

Kling and Gupta efficiency (KGE) applied to a transformation of discharge was inadequate to 

fulfil all assessment criteria, whereas the mean of the KGE applied to the discharge and the 

KGE applied to the inverse of the discharge was sufficient. The robustness was dependent on 

the climate variability rather than the objective function and the results were not sensitive to 

the model. 
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1 Introduction 

Studying low flows is of paramount importance to manage water resources, for water 

uses such as irrigation, water supply, navigation and hydroelectricity (Engeland et Hisdal, 

2009 ; Lang Delus, 2011). Low flows can be characterised by different indices (Smakhtin, 

2001 ; WMO, 2008) such as the mean annual minimum discharge or a percentile from the 

flow duration curve. When sites are gauged for long record periods, these indices can easily 

be calculated from river discharge values. Other strategies, however, are needed in the context 

of spatial or temporal extrapolation studies for which discharge data are not available. In these 

cases, the use of a rainfall–runoff model, taking into account climate variability and which 

parameters can be regionalised is a possible answer. Using a rainfall–runoff model to simulate 

long discharge records in order to derive low–flow indices is an uncertain task and raises 

questions about (i) the type of model and (ii) the calibration procedure. While the choice of 

the model to be used is often driven by data availability and/or the expert knowledge of the 

model user, the calibration procedure might be tricky since simulating low flows is not a 

common usage of the rainfall–runoff model. This point is discussed in detail hereafter. 

The calibration step can make use of a visual comparison between observed and 

simulated hydrographs, but this technique is subjective, dependent on expert judgement and 

difficult to reproduce (Chiew et McMahon, 1993 ; Houghton-Carr, 1999 ; Crochemore et al., 

2015). Since numerical criteria are more objective because they are reproducible and are more 

easily explained (Krause et al., 2005), the calibration step usually involves choosing an 

optimisation algorithm, an objective function and one or several criteria to assess the model’s 

goodness of fit. The criteria used to assess the model’s goodness of fit are often used as 

objective functions. However, if the target variables are low–flow indices, this potentially 

leads to difficulties in finding a robust set of parameters. Consequently, objective functions 

based on the goodness of fit of hydrographs are often preferred. 

The relevance of an objective function depends on the aim of the study or a simulation 

but also on the time step of hydrological modelling. Most existing objective functions based 

on least–square errors generally favour the goodness of fit of the hydrograph for high flows. 

For low–flow simulations, many authors have suggested alternative objective functions or 

alternative optimization strategies and the three main types of approaches are listed below. 
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 More often than not, it is suggested using common objective functions with an 

appropriate transformation applied to the discharge in order to put more 

emphasis on low–flow goodness of fit. Oudin et al. (2006) used a modified Nash 

and Sutcliffe efficiency (NSE) criterion applied to logarithmic transformed 

discharge and Pushpalatha et al. (2012) suggested using the inverse of the 

discharge as a criteria of efficiency. Another option consists in calculating 

model errors under a certain threshold discharge (Deckers et al., 2010) or 

weighting the errors depending on their flow ranges (Krause et al., 2005 ; Le 

Moine, 2008). 

 Other studies (Westerberg et al., 2011) use an objective function, based on the 

flow–duration curve (FDC). The rationale underlying this usage in the case of 

low–flow index simulations is that these indices are derived in the frequency 

domain and the temporal goodness of fit of the hydrographs is not a prerequisite 

of good low–flow index simulations (see e.g. the results obtained by Price et al., 

2012). Putting this idea further, Olsen et al. (2013) suggested calibrating the 

model using directly the flow indices that are targeted by the model user. They 

obtained interesting results on a set of 49 catchments in Denmark but here the 

choice of the low–flow indices used in the objective function can also be a 

thorny issue. 

 Some authors advocate the use of multi–objective techniques. Multi–objective 

techniques provide the key advantage to possibly combine objective functions in 

a tailor–made framework. Multi–objective technique can be implemented in the 

theoretical framework of multi–objective optimization such as a Pareto front 

(Khu et Madsen, 2005 ; Fenicia et al., 2007), or more simply by deriving 

aggregated (combined) objective function (Madsen, 2003 ; Merz et Blöschl, 

2004 ; Oudin et al., 2006 ; Booij et Krol, 2010 ; Nicolle et al., 2014). Vis et al. 

(2015) assessed the ability of seven objective functions to simulate flow 

statistics at 27 catchments in the United States. They showed that combined 

objective functions generally gave the best results for flow statistics but the 

choice of the combined objective varied according to the desired flow statistic. 

This study intends first to define an appropriate objective function for the simulations of 

low–flow indices at the scale of the French territory, but also the simulations of flow 
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seasonality and mean annual runoff. Second, we wish to evaluate the robustness of the 

calibrated set of parameters. 

To meet these objectives, we will test a large panel of existing approaches and objective 

functions, including objective functions with different discharge transformations, objective 

functions based on the FDC, objective functions directly using low–flow indices and 

combined objective functions. The validation criteria to assess the relative merits of these 

objective functions are based on low–flow indices, seasonality and the mean annual runoff, 

most of them being used by national water management agencies. 

The next section presents the data and the catchment set, the rainfall–runoff models 

used in this study and the methodology. Then the results are presented and discussed before 

the conclusions. 

Author-produced version of the article published in Hydrological Sciences Journal, 2017, 62, 1149-1166 
The original publication is available at http://www.tandfonline.com/doi/abs/10.1080/02626667.2017.1308511 
DOI: 10.1080/02626667.2017.1308511



 

2 Study area, models and methodology 

This section presents the dataset, the hydrological models used for this study and the 

methodology to test different objective functions. 

2.1 Dataset 

2.1.1 Catchment set 

A set of 691 catchments throughout France was collected for this study (see Figure 1 for 

the catchment locations). They were chosen following different criteria: the type of 

catchment, the availability of flow time series and the diversity of hydro–meteorological 

regimes. 

Therefore, we first retained natural catchments with limited human influence, and 

therefore small in size (less than 8 000 km²). Then we intended to have long series of data 

from gauging stations, at least 25 years available between 1970 and 2013 for the cross–

validation and the calculation of the low–flow indices. These data were deemed good by the 

station managers and a threshold of 10% missing data per year was allowed. Finally, we 

evaluated the diversity of the set so that it would be representative of all hydrological regimes 

in France (Sauquet et al., 2008): pluvial (77% of the catchment set), Mediterranean (9%) and 

snowmelt–fed (14%) hydrological regimes. 
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Figure 1: Spatial distribution of the QMNA(5) over the set of 691 French catchments. The red 

contour line delimits the catchment of the Loir River at Durtal. 

2.1.2 Data 

Meteorological data came from the distributed mesoscale atmospheric analysis system 

SAFRAN developed by Météo–France (Quintana-Seguí et al., 2008 ; Vidal et al., 2010), 

which provides daily solid and liquid precipitation and temperature data throughout France. 

Daily potential evapotranspiration (PE) was estimated using a temperature–based formula 

(Oudin et al., 2005). These data were available on the 1959–2013 period over France. 

Daily discharge data came from the French Hydro database (www.hydro.eaufrance.fr). 

For the catchment set of interest in this study, the length of the discharge records for each 

catchment varied but they were generally available for the 1970–2013 period, which includes 

very humid years (e.g. 1977) and very dry years (e.g. summers 1976, 1989, 2003 and 2005). 

Table 1 summarises the hydro–meteorological diversity of our set and some catchment 

characteristics. 
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Table 1: Percentiles of the distributions of climatic and catchment characteristics on the set of 

691 study catchments. 

  Min 25% Median 75% Max 

Mean annual runoff (mm/year) 44 256 390 609 2 211 

Mean annual precipitations (mm/year) 634 867 988 1 181 2 094 

Mean annual PE (mm/year) 237 623 660 703 864 

Catchment area (km²) 4 98 211 478 7 935 

Mean elevation (m a.s.l.) 29 188 362 743 2 866 

Base-Flow Index (–) 0.12 0.47 0.57 0.67 0.98 

2.1.3 Low–flow indices 

Low flows in France mostly occur in summer and at the beginning of autumn, due to a 

lack of precipitation and an increased evaporative demand, except over the mountainous area 

where they occur in winter. A multitude of low–flow indices can be estimated (Smakhtin, 

2001 ; Laaha et Blöschl, 2006 ; WMO, 2008 ; Lang Delus, 2011). Since our focus was on 

low–flow severity, at different time steps, and low–flow indices used by water management 

agencies, the following indices were selected: Q95 and Q75, MAM3, MAM10 and QMNA at 

the recurrence interval of 5 years (called MAM3(5), MAM10(5) and QMNA(5)). 

Q95 and Q75 are derived from the flow–duration curve (Vogel et Fennessey, 1994 ; 

1995), calculated over all the available years. Q95 is the discharge exceeded 95% of the time 

and Q75, the discharge exceeded 75% of the time. 

MAM3 and MAM10 are the mean annual 3– and 10–day minimum discharge, 

respectively, and QMNA is the annual minimum monthly discharge. The latter is widely used 

in France for low–flow management and drought management plans. 

Since these three indices were estimated for each year, we calculated the 5–year return 

period of these three indices. Therefore, for each catchment, the distribution of each index 

was fitted to a log–normal distribution. The parameters of the log–normal distribution were 

estimated by the maximum likelihood method since Catalogne (2012) showed that this 

distribution and this estimation method are the most appropriate for low flows in France. For 

some catchments, the rivers dry up for several years; a conditional probability model is used 

in this case (Stedinger et al., 1993). In Figure 1, the different catchments are represented with 

their QMNA(5) value and Table 2 summarises the diversity of these low–flow indices for the 

dataset. 

Author-produced version of the article published in Hydrological Sciences Journal, 2017, 62, 1149-1166 
The original publication is available at http://www.tandfonline.com/doi/abs/10.1080/02626667.2017.1308511 
DOI: 10.1080/02626667.2017.1308511



 

Table 2: Percentiles of the distribution of low–flow characteristics on the set of 691 study 

catchments. 

  Min 25% Median 75% Max 

Q95 (mm/d) 0 0.06 0.13 0.26 1.32 

Q75 (mm/d) 0 0.15 0.29 0.51 2.14 

MAM3(5) (mm/d) 0 0.03 0.09 0.18 1.14 

MAM10(5) (mm/d) 0 0.04 0.1 0.21 1.16 

QMNA(5) (mm/month) 0 1.83 3.96 8.22 37.67 

2.2 Hydrological models 

The rainfall–runoff model used for this study was GR4J (Perrin et al., 2003), a 

continuous lumped model with four parameters. This model has been used in many studies, 

especially in France for management and operational purposes. Figure 2 shows the structure 

of the model. Effective rainfall and actual evapotranspiration are calculated as functions of the 

soil moisture store level (S), the net rainfall (P-PE) and the parameter X1 (mm), the maximum 

capacity of the soil moisture store. The percolation of the store is also a function of the store 

filling rate. 

 

Figure 2: Schematic diagram of the GR4J model structure (PE: potential evapotranspiration, 

P: rainfall, Q: streamflow, Xi: parameter i, other notations correspond to internal state 

variables). 
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Inter–basin groundwater flows are controlled by a second parameter (X2, mm/d). If X2 

is positive, the catchment gains water and if X2 is negative, there is a water loss. 

Effective rainfall is then divided into two flow components in the routine function: 90% 

are routed by a unit hydrograph, whose time–base parameter is X4 (d), and a nonlinear 

routing store, and the remaining 10% are routed through a unit hydrograph. The last 

parameter, X3 (mm), is the maximum level of the routing store. The simulated discharge is 

the sum of these two components. 

Since our catchment set includes mountainous catchments, GR4J was used with a two–

parameter snow module called CemaNeige (Valéry, 2010 ; Valéry et al., 2014), using the 

regionalised parameters for each French mountain massif that were established by Brigode et 

al. (2014). 

To assess whether the results depend on the model structure, a six–parameter version of 

TOPMODEL (Beven et Kirkby, 1979), named TOPMO, was also used. This version differs 

from the original TOPMODEL structure since it is a lumped version of the model with a 

parameterized expression of the soil–topographic distribution (see Edijatno et al., 1999 and 

Michel et al., 2003 for more details). This model was also used with the snow module 

CemaNeige. 

2.3 Calibration and validation methodologies 

2.3.1 Cross–validation and calibration algorithm 

The calibration algorithm used for this study is a two–step search procedure. First, the 

parameter space is screened and then a local search algorithm is performed. This approach 

will not be discussed here but has been proved efficient for parsimonious models like GR4J 

(Edijatno et al., 1999 ; Mathevet, 2005). 

The evaluation of the different objective functions was based on classical split–sample–

test scheme (Klemeš, 1986). The discharge records were divided into two independent sub–

periods of equivalent lengths (P1: 1970–1991 and P2: 1992–2013). We first calibrated the 

model parameters on P1 and validated it on P2, then exchanged the two sub–periods, i.e. we 

calibrated on P2 and validated it on P1. Five years before each period (1965–1969 for P1 and 

1987–1991 for P2) were used to initialise the model and to avoid any problem with 
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catchments with long–term memory. Then we evaluated the model’s performance on the two 

validation periods. 

2.3.2 Assessment criteria 

The objective was to evaluate the quality of the simulation of low–flow indices, mean 

annual runoff and seasonality. The low–flow indices selected were Q95, Q75, MAM3(5), 

MAM10(5) and QMNA(5). We obtained one observed and one simulated value of these five 

indices and also for mean annual runoff (MAR) for each catchment and for each simulation. 

To obtain a general assessment of each simulation over the entire set of catchments, we 

calculated for each index a spatial criteria based on the NSE as a transposition of the NSE 

from a temporal to a spatial analysis, called “Spatial Index Efficiency” (SIE): 

SIE = 1 −
∑ (FIi

obs − FIi
sim)

2𝑛
𝑖=1

∑ (FIi
obs −𝑚𝑜𝑏𝑠)

2𝑛
𝑖=1

 (1) 

where FIi
obs

 and FIi
sim

 are the observed and simulated indices for the catchment i, n the 

number of catchments (here 691) and mobs the mean of the observed indices. A SIE close to 

unity means that the indices are well simulated over France. 

To assess the goodness of fit of flow seasonality, we computed a NSE (Nash et 

Sutcliffe, 1970) over the 12 observed and simulated mean monthly discharges and then we 

calculated the median of the 691 NSE values. To assess the impact of the different objective 

functions on the continuous simulations, we computed a bounded–version of the NSE 

(Mathevet et al., 2006), called NSE*: 

NSE∗ =
NSE

2 − NSE
 (2) 

with NSE = 1 −
∑ (Qi

obs−𝑄i
sim)

2
𝑀
𝑖=1

∑ (𝑄i
obs−𝜇𝑜𝑏𝑠)

2𝑀
𝑖=1

 (3) 

where µobs is the mean of the observed and simulated discharge series. 

We computed this criterion on the discharge, the square–root of the discharge and the 

inverse of the discharge and then calculated the median of each distribution. This provides 

assessment criteria on seven indices and three continuous simulations to evaluate each 
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simulation; radial plots were used to present the different results and ease the comparisons. 

The larger the polygon is, the better the simulations are. 

Table 3 summarises the list of criteria for the test evaluation. 

Table 3: Selection of the assessment criteria. 

Name Description 

  Low–flow indices 

SIE(Q95) SIE calculated on Q95, discharge exceeded 95% of the time 

SIE(MAM3(5)) SIE calculated on MAM3(5), mean annual 3–day minimum at T = 5 years 

SIE(MAM10(5)) SIE calculated on MAM10(5), mean annual 10–day minimum at T = 5 years 

SIE(QMNA(5)) SIE calculated on QMNA(5), annual minimum monthly flow at T = 5 years 

SIE(Q75) SIE calculated on Q75, discharge exceeded 75% of the time 

  Seasonality 

q50(NSE(QMM)) Median of the distribution of the 691 NSE on the mean monthly flows (QMM) 

  Mean annual runoff 

SIE(MAR) SIE calculated on MAR, mean annual runoff 

  Continuous simulations 

q50(NSE*(Q)) Bounded version of the NSE calculated on discharges 

q50(NSE*(Q
0.5

)) Bounded version of the NSE calculated on root–squared transformed discharges 

q50(NSE*(1/Q)) Bounded version of the NSE calculated on inverse transformed discharges 

2.3.3 Objective functions analysed 

First, this study evaluated the impact of choosing the assessment criteria on the seven 

indices as an objective function. To this aim, an objective function derived from the RMSE 

was computed on the seven assessment criteria and used as the objective function. This 

objective function is noted OFAC hereafter: 

OFAC =
1

𝑁
∑(1 −

ACk
sim + 𝜀

ACk
obs + 𝜀

)

2𝑁

𝑘=1

 (4) 

where ACk
obs

 and ACk
sim

 are the observed and simulated values of the assessment 

criterion k, respectively, N is the number of assessment criteria and ε is a small quantity in 

case ACk
obs

 equals zero (taken equal to one one–hundredth of the median value over the 

catchment set). The assessment criteria are the five low–flow indices, Q95, MAM3(5), 

MAM10(5), QMNA(5) and Q75, the twelve mean monthly flows, QMM, and the mean 

annual discharge, MAR. All indices are calculated in mm/d. An OFAC close to zero means 

that all assessment criteria are well simulated for the catchment. 
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Then, this study focused on the Kling and Gupta efficiency, KGE (Gupta et al., 2009), 

since it has been analysed and recommended in many studies (Lobligeois, 2014 ; Magand, 

2014 ; Osuch et al., 2015). KGE is given by: 

KGE = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (5) 

with 

{
 
 

 
 𝑟 =

1

𝑀
∑

(𝑄j
obs−𝜇obs)(𝑄j

sim−𝜇sim)

𝜎obs𝜎sim

𝑀
𝑗=1

𝛼 =
𝜎sim

𝜎obs

𝛽 =
𝜇sim

𝜇obs

 (6) 

where r is the Pearson product–moment correlation coefficient, μ and σ are the mean 

and the standard deviation of the observed and simulated discharge series, respectively, α is 

the ratio between the simulated and observed standard deviation values and β is the ratio 

between the simulated and observed mean values. The objective was to tend towards the ideal 

value of r, α and β, which is 1, so that the Euclidean distance tends towards 0 and the KGE 

criterion is maximised. 

The first part of this study evaluated if a single objective function provided fair results 

to simulate low flow, mean annual runoff and seasonality. Since the simplest objective 

function that can be used for all catchments was sought, we decided to evaluate the KGE with 

discharge transformations, choosing the following: 

 KGE(Q), which puts more weight on high flow, 

 KGE(Q
0.5

), which does not favour high flow nor low flow, 

 KGE(1/Q), which puts more weight on low flow. 

For the third discharge transformation, to avoid any problems with zero discharge, a 

small constant, ε, was added, which was one one–hundredth of the mean observed discharge 

as advised by Pushpalatha et al. (2012). Since the objective here was primarily to simulate 

low–flow indices, we chose to evaluate the KGE on the FDC, with the same discharge 

transformations, leading to the three following objective functions: 

 KGE(Qsort), which puts more weight on high flow, 

 KGE(Qsort
0.5

), which does not favour high flow nor low flow, 

 KGE(1/Qsort), which puts more weight on low flow. 
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Table 4 summarises these six objective functions and their specificities. 

Table 4: Selection of the objective functions tested. 

  Criterion Names Weights on 

Temporal criteria KGE(Q) KGE calculated on discharges High flows 

 KGE(Q
0.5

) KGE calculated on root–squared transformed 

discharges 

Neither high nor 

low flows 

 KGE(1/Q) KGE calculated on inverse transformed discharges Low flows 

Frequency criteria KGE(Qsort) KGE calculated on the FDC High flows 

 KGE(Qsort
0.5

) KGE calculated on the root–squared 

transformation of the FDC 

Neither high nor 

low flows 

 KGE(1/Qsort) KGE calculated on the inverse transformation of 

the FDC 

Low flows 

The second part evaluated all the different combinations of two of these functions. The 

combination was the mean of these two functions and the different weights that can be 

applied between the two functions were evaluated. 

2.3.4 Temporal robustness assessment 

For this study, we evaluated the temporal robustness of the calibrated set of the model 

parameters. The robustness of the parameter sets was analysed by dividing the discharge 

records into two different periods: one with the 22 driest years and one with the 22 wettest 

years. To split these 44 years, an annual aridity index (Budyko, 1974) was calculated and the 

22 lowest values of this aridity index corresponded to the 22 driest years and the 22 highest 

values to the 22 wettest years. Then we calibrated the model parameters on the dry period and 

validated it on the wet period and then exchanged the two sub–periods. 
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3 Results and discussions 

This section first presents the results obtained with assessment criteria used as objective 

functions, then those obtained using a single objective function and in the third stage the 

results obtained when combining two single objective functions. Last, the general reach of the 

results is analysed with the best single objective function and the best combination by 

analysing (i) their temporal robustness and (ii) their sensitivity to the model structure. 

3.1 Assessment criteria as objective function 

Figure 3 shows the radial plot with the results in calibration and in validation when 

using the seven indices within the objective function (OFAC). We observed that the seven 

indices are quite well simulated in calibration periods with SIE values between 0.95 for the 

simulation of the Q75 and 0.98 for the simulation of the MAM10(5). However, we observed a 

drop for the simulations of these seven indices in validation, with SIE values around 0.7. 

Using the seven assessment indices as an objective function seems to simulate indices that are 

not robust. These results differ from the ones obtained by Olsen et al. (2013). However, these 

authors used an objective function combining low–flow and high–flow indices, which can be 

more related to an objective function based on the FDC and lead to more robust results. 

Looking at the continuous simulations, we observed that this objective function did not 

provide good continuous simulations since it did not take into account the temporal goodness 

of fit of the hydrographs. 
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Figure 3: Radial plot showing the mean results in calibration and in validation for the two 

periods for the seven assessment criteria used as an objective function. 

3.2 Single objective function 

Figure 4 illustrates the impact of the choice of the objective function for one catchment, 

the Loir River at Durtal (7 920 km², located by the red lines in Figure 1) in the validation 

period 1970–1991. Figure 4 (a) shows the simulations of seasonality with the six single 

objective functions for one period in validation and for this catchment. The lowest discharges, 

in summer, were better simulated with the KGE(1/Q) function, whereas they were 

underestimated with the other functions, especially with those applied to the discharge. In 

contrast, the highest discharges, in winter for this catchment, were better simulated with 

KGE(Q
0.5

), but they were underestimated with the functions applied to the inverse discharge 

and overestimated with the function applied to the discharge. Figure 4 (b) shows the 
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simulation of the FDC, also for one period in validation. Interestingly, KGE(1/Q) and 

KGE(1/Qsort) allowed better simulations of the part of the curve depicting the low flows, 

whereas the part depicting the high flows was better simulated with KGE(Q) and KGE(Qsort). 

For the simulation of the FDC, the three objective functions based on the sorted discharge 

gave better results than the temporal functions. Figure 4 (c), (d) and (e) shows the simulations 

of, respectively, MAM3, MAM10 and QMNA. These three indices were better simulated with 

KGE(1/Q) and KGE(1/Qsort), whereas they were underestimated by the other four objective 

functions. Figure 4 (f) shows the simulation of the annual runoff, AR. This index was better 

simulated with the two objective functions based on the discharge or the square root of the 

discharge, whereas those based on the inverse of the discharge showed a tendency to 

underestimate the AR. 
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Figure 4: Representation of seasonality (a), the flow duration curve (b), the annual MAM3 

(c), the annual MAM10 (d), the annual QMNA (e) and the annual runoff (f) observed (in 

black) and simulated with the six single objective functions (in colours) in the validation 

period 1970–1991 for the Loir River at Durtal. 
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Figure 5 shows the radial plot with the results in validation for the simulations with the 

six single objective functions. As for the example of the Loir River at Durtal, the two 

functions applied to the inverse discharge, KGE(1/Q) and KGE(1/Qsort), provided better 

simulations of the four low–flow indices with SIE values around 0.9, whereas the two 

functions applied to the discharge, KGE(Q) and KGE(Qsort), gave relatively poor results with 

SIE values between 0.55 and 0.65. The opposite is observed for the simulation of mean 

annual runoff and flow seasonality. The two functions applied to the square–root of the 

discharge, KGE(Q
0.5

) and KGE(Qsort
0.5

), provided good simulations of mean annual runoff 

and seasonality and reasonable simulations of the low–flow indices. These results confirmed 

that KGE(Q) and KGE(Qsort) put more weight on high flows, KGE(1/Q) and KGE(1/Qsort) on 

low flows, whereas KGE(Q
0.5

) and KGE(Qsort
0.5

) weighted neither type of flow. Looking at 

the continuous simulations, we observe the same trend. The objective functions with no 

transformation or the square–root transformation gave good results for the high and 

intermediate flows, whereas the inverse transformation gave better results for the low flows. 

As for the Loir River at Durtal study, only a few differences were observed between objective 

functions in the temporal and frequency domains. However, these differences increased for 

the continuous simulations since the three single objective functions in the frequency domain 

did not take into account the temporality of the hydrographs. Since the first goal was the 

simulation of low–flow indices, the functions on the inverse discharge seemed to provide 

better results, but the simulations of mean annual runoff and seasonality were overly reduced. 

Therefore, the function applied to the square–roots seemed to provide the best results. Since 

there is clearly a trade–off between low–flow indices, mean annual discharge and flow 

seasonality, the next section tests various combinations of the objective functions tested. 
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Figure 5: Radial plot showing the mean results in validation for the two periods for the six 

single objective functions. 

3.3 Combination of two single objective functions 

Figure 6 shows the simulation of seasonality, FDC, MAM3, MAM10, QMNA and AR 

in the validation period 1970–1991 for the Loir River at Durtal, for the parameters calibrated 

with KGE(Q
0.5

), the combination of KGE(Q) and KGE(Qsort), and the combination of 

KGE(Q) and KGE(1/Q). In all the sub–figures except the last one, the combination between 

KGE(Q) and KGE(1/Q) provided good simulations of all these indices, whereas the other 

combination did not improve the results. For the simulation of AR, we observed a tendency to 

overestimate this index with the combination of KGE(Q) and KGE(1/Q). 
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Figure 6: Representation of seasonality (a), the flow duration curve (b), the annual MAM3 

(c), the annual MAM10 (d), the annual QMNA (e) and the annual runoff (f) observed (in 

black) and simulated with the three objective functions, KGE(sqrt(Q)) and two combinations 

(in colours) in the validation period 1970–1991 for the Loir River at Durtal. 

All the possible combinations between two single objective functions from the pool of 

objective functions assessed in the preceding section were tested and the results for the seven 

assessment criteria are shown in Figure 7. The complementarity of the objective functions 
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taken into account demonstrates good efficiency for the several assessment criteria. In this 

context, mixing an objective function applied to the inverse of the discharge with an objective 

function applied to the discharge provided the best results, as shown by the purple curve for 

the simulation with KGE(Q) and KGE(1/Q). Conversely, mixing two objective functions on 

similar discharge transformation provided the worst results overall, such as the orange curve 

on the graphs, which draws the results for the simulation with the combination of KGE(Q) 

and KGE(Qsort). The same results were observed for the continuous simulations. 

 

Figure 7: Radial plot showing the mean results in validation for the two periods for all the 

combinations of two single objective functions. 

Table 5 summarises the values of the seven assessment criteria and the sum of these 

seven criteria for each objective function. As shown in Figure 7, combining with an objective 

function applied to the inverse discharge gave good results for the simulation of low–flow 

indices. The simulations of seasonality and mean annual runoff were improved with these 
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combinations, compared to the results when calibrating only with KGE(1/Q) or KGE(1/Qsort). 

Combining with the objective functions applied to the discharge or the square root of the 

discharge gave better results for the simulation of seasonality and mean annual runoff. 

Looking at the sum of the values of the seven assessment criteria, three objective functions 

gave the best performance: combining KGE(1/Q) with KGE(Q
0.5

), KGE(Q) or KGE(Qsort
0.5

). 

Therefore, we chose the objective function that combines KGE(Q), an objective function with 

no transformation that puts more weight on high flows with KGE(1/Q), an objective function 

that puts more weight on low flows. This function has already been used in a study to 

calibrate the parameter set of the rainfall–runoff model GR6J conducted by Nicolle et al. 

(2014). 

Table 5: Simulations of the seven assessment criteria in validation for the two periods for all 

objective functions. 

 SIE on SIE on SIE on SIE on SIE on q50 of SIE on   

KGE on MAM3(5) MAM10(5) QMNA(5) Q95 Q75 NSE(QMM) MAR 
 

Total 

Q
0.5

, 1/Q 0.877 0.895 0.886 0.924 0.896 0.894 0.937 
 

6.309 

Q, 1/Q 0.873 0.894 0.890 0.926 0.896 0.889 0.938 
 

6.305 

1/Q, Qsort
0.5

 0.865 0.893 0.882 0.926 0.909 0.884 0.945 
 

6.305 

Q
0.5

, 1/Qsort 0.879 0.893 0.874 0.920 0.901 0.880 0.931 
 

6.279 

1/Q, Qsort 0.840 0.885 0.895 0.924 0.912 0.873 0.944 
 

6.272 

Q, 1/Qsort 0.877 0.892 0.864 0.922 0.899 0.877 0.936 
 

6.267 

Qsort
0.5

, 1/Qsort 0.876 0.894 0.845 0.925 0.905 0.867 0.940 
 

6.252 

Qsort, 1/Qsort 0.857 0.886 0.849 0.921 0.904 0.858 0.943 
 

6.219 

1/Q, 1/Qsort 0.887 0.892 0.873 0.915 0.910 0.771 0.858 
 

6.106 

1/Q 0.887 0.896 0.878 0.918 0.908 0.762 0.850 
 

6.099 

1/Qsort 0.880 0.887 0.868 0.909 0.909 0.738 0.856 
 

6.047 

Q
0.5

, Qsort
0.5

 0.727 0.785 0.824 0.852 0.915 0.902 0.955 
 

5.961 

Q
0.5

 0.725 0.782 0.832 0.846 0.907 0.910 0.955 
 

5.958 

Qsort
0.5

 0.723 0.782 0.775 0.850 0.913 0.897 0.955 
 

5.894 

Q, Qsort
0.5

 0.694 0.758 0.792 0.835 0.910 0.906 0.955 
 

5.850 

Q, Q
0.5

 0.650 0.719 0.782 0.794 0.882 0.909 0.954 
 

5.690 

Qsort, Qsort
0.5

 0.661 0.733 0.734 0.806 0.892 0.893 0.954 
 

5.672 

Q
0.5

, Qsort 0.600 0.681 0.729 0.761 0.870 0.900 0.954 
 

5.494 

Q, Qsort 0.538 0.625 0.660 0.708 0.839 0.899 0.950 
 

5.218 

Q 0.521 0.609 0.688 0.695 0.828 0.905 0.949 
 

5.194 

Qsort 0.540 0.627 0.628 0.707 0.837 0.895 0.949 
 

5.184 

Legend: 

Poorly simulated              Well simulated 
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3.4 Comparison between KGE(Q
0.5

) and the combination of KGE(Q) with 

KGE(1/Q) 

Figure 8 compares the distribution of the relative errors or the NSE when the parameter 

sets are calibrated with KGE(Q
0.5

) or the combination of KGE(Q) with KGE(1/Q). Figure 8 

(a), (b), (c), (d) and (e) shows the results for the relative errors of the five low–flow indices, 

respectively, MAM3(5), MAM10(5), QMNA(5), Q95 and Q75. For some catchments, the 

relative error values are very high, up to factors 10 to 20. These catchments are intermittent 

streams with observed low-flow indices very close to zero. When the parameters are 

calibrated with KGE(Q
0.5

), these indices are overestimated for many basins. This trend 

decreases with indices that characterised less severe low flows, such as Q75. Figure 8 (f) 

compares the relative errors on the MAR. No huge trend is observed, but the results are 

underestimated for some basins with the combination of KGE(Q) and KGE(1/Q). Figure 8 (g) 

compares the simulations of seasonality. For some basins, seasonality is better simulated 

when the parameter sets are calibrated with KGE(Q
0.5

). 
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Figure 8: Scatter plot of relative errors on MAM3(5) (a), MAM10(5) (b), QMNA(5) (c), Q95 

(d), Q75 (e) and MAR (f), and the NSE(QMM) (g) obtained in validation by KGE(sqrt(Q)) 

and the combination of KGE(Q) with KGE(1/Q). 
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Figure 9 compares the parameters that are calibrated by each objective function. The 

values of the parameters X1 (capacity of production store) and X2 (groundwater exchange 

coefficient) were higher when calibrated with the objective function combining KGE(Q) with 

KGE(1/Q) than when calibrated by KGE(Q
0.5

), resulting in greater losses from 

evapotranspiration and lower underground losses. This trend was not observed for the other 

two parameters. Whatever the two objective functions, we observed that some values of the 

parameter X4 are outliers. These points represented catchments in the Seine–Normandy 

region, for which BFI values are high, between 0.96 and 0.99. Their hydrographs are very 

influenced by groundwater runoff and are very difficult to simulate with GR4J. 
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Figure 9: Comparison of the GR4J parameters calibrated by the objective function 

KGE(sqrt(Q)) and the parameters calibrated with the objective function combining KGE(Q) 

with KGE(1/Q). 
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3.5 Weights in the combination of KGE(Q) with KGE(1/Q) 

The results in section 3.3 indicate that the combination of KGE(Q) with KGE(1/Q) 

improved the calibration of the parameter set to estimate low–flow indices, seasonality and 

the mean annual runoff. This combination was chosen as the mean between the two single 

objective functions, putting the same weight, 50%, on the two functions. We evaluated the 

impact of the weights on the results. Therefore, different weights were tested, from 10% to 

90%. Figure 10 shows the radial plot results for the different weights in validation. 

Interestingly, the functions that gave substantial weight to KGE(Q), 90% or 80%, did not 

provide good simulations of the low–flow indices. For example, when the weight was 90%, 

the SIE on the MAM3(5) was 0.7, whereas with the other functions, it was around 0.9. When 

putting 90% on KGE(1/Q), the quality of the seasonality simulations and the mean annual 

runoff decreased slightly. For all the other weights, the quality of the simulations was nearly 

the same. 
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Figure 10: Evaluation of the weights in the combination of KGE(Q) and KGE(1/Q). Radial 

plot showing the results in validation for the two periods. 

Based on the OFAC calculated on the seven assessment criteria, we determined the 

optimal weights for each catchment. For 461 catchments, there was not one optimal weight 

but all weights between 20% and 70% for KGE(Q) gave exactly the same calibrated 

parameter values and therefore the same simulations. For the other 230 catchments, we were 

able to find one optimal weight between 10% and 90%, depending on the catchment. We 

compared these optimal weights with different low–flow indices, the BFI, the hydrological 

regimes of each catchment but we were not able to provide a priori descriptors to determine 

these weights. These optimal weights could also be related to poor quality in low–flow data 

leading to parameter values that compensate these uncertainties. However, the data quality for 

the selected catchments were deemed good by the water agency managers during low flows, 

intermediate flows and high flows and it is not easy to find indicators related to the quality of 
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low–flow data. Therefore, we recommend using the mean and thus putting the same weight 

on KGE(Q) and KGE(1/Q). 

3.6 Temporal robustness 

We first evaluated the temporal robustness of the model parameters calibrated by 

KGE(Q
0.5

) and by the combination of KGE(Q) with KGE(1/Q). Figure 11 shows the results 

with the simulation in calibration, for the wet and dry periods, and in validation for these two 

periods. The loss in performance between calibration and validation for all seven assessment 

criteria was a little greater with the combined objective functions – 0.01 for MAR and 

seasonality and 0.07 for the low–flow indices – than with KGE(Q
0.5

) – between 0.01 and 0.05. 

However, MAM3(5), MAM10(5), QMNA(5) and Q95 were better simulated in validation 

with the combined objective function. 
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Figure 11: Assessment of temporal robustness. Radial plot showing the results in calibration 

for the two periods (dry and wet periods) and in validation for the two periods for the two 

objective functions, KGE(sqrt(Q)) and the combination of KGE(Q) and KGE(1/Q). 

Figure 12 shows the distribution of the relative errors of the MAR simulations with each 

objective function and for each period. We observed that when calibrating on the wet period, 

the MAR were overestimated on the dry validation period. The opposite was observed when 

calibrating on the dry period and validated on the wet period. The same trend was observed 

for the other assessment criteria. This lack of robustness was more important for mountainous 

catchments where the climate variability was higher. However, this lack of robustness is 

relatively independent of the objective function. 
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Figure 12: Box plot of distribution of MAR obtained in validation (P1: calibration on dry 

period, P2: calibration on wet period) with the two objective functions, KGE(sqrt(Q)) (called 

sFO) and the combination of KGE(Q) and KGE(1/Q) (called cFO) over the entire catchment 

set (boxes represent the 0.25 and 0.75 percentiles, with the median value inside, and the 

whiskers represent the 0.05 and 0.95 percentiles). 

3.7 Comparison with the six parameter model TOPMO 

Figure 13 shows the radial plot results for the two objective functions, KGE(Q
0.5

) and 

the combination between KGE(Q) and KGE(1/Q) for the two models, GR4J and TOPMO, in 

validation. We observed that the low–flow indices were better simulated when calibrating the 

models with the combination of KGE(Q) and KGE(1/Q) than with KGE(Q
0.5

) and the 

calibration with these two objective functions gave the same results for the simulations of the 

seasonality and MAR. Looking at the continuous simulations, we observed that for high and 

intermediate flows, the medians of the distributions of NSE*(Q) and NSE*(Q
0.5

) were the 

same whatever the objective function. However, for low–flow simulations, the simulations 

were better with the objective function combining KGE(Q) and KGE(1/Q), especially for 

TOPMO. Whatever the objective functions, the low-flow indices were as good simulated by 

GR4J as by TOPMO. The MAR was slightly better simulated by GR4J. The hydrographs for 

the mountainous catchments were indeed not as well simulated with this version of TOPMO.
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Figure 13: Radial plot showing the results in validation for the two objective functions, 

KGE(sqrt(Q)) and the combination of KGE(Q) and KGE(1/Q) and the two models, GR4J and 

TOPMO. 

3.8 Conclusions 

This study aimed at identifying the best objective function to simulate low–flow indices 

in order to calibrate the parameter set of a rainfall–runoff model to estimate these statistics. 

First, the seven assessment criteria were used as the objective function. The results of this test 

suggest that this objective function was not robust, giving quite good results in calibration but 

relatively poor results in validation. Then, six single objective functions and 15 combinations 

of these single objective functions were tested on a large sample of 691 catchments of various 

hydro–meteorological regimes throughout France. The results of our tests suggest that a 

combination as the mean of two single objective functions, KGE(Q) and KGE(1/Q), improved 

the simulation of these seven assessment criteria. The quality of the simulations for very 

different calibration and validation periods did not decrease excessively and was dependent 

Author-produced version of the article published in Hydrological Sciences Journal, 2017, 62, 1149-1166 
The original publication is available at http://www.tandfonline.com/doi/abs/10.1080/02626667.2017.1308511 
DOI: 10.1080/02626667.2017.1308511



 

on the climate variability of the catchments rather than the choice of the objective function. 

When testing the best single objective function and the best combination with an alternative 

rainfall–runoff model, the same conclusions were observed, suggesting that the results do not 

depend on the rainfall–runoff model used. Therefore, we recommend using the mean of 

KGE(Q) and KGE(1/Q) as an objective function to simulate low–flow indices with 

continuous conceptual rainfall–runoff models. 

The objective function calculated on the seven assessment criteria showed results that were 

not robust while the combined objective functions were. A perspective of our study would be 

to combine the objective function calculated on the assessment criteria and on the temporal 

goodness-of-fit to keep the dynamic of the hydrographs. 

While the results presented in this paper seem to be relatively general regarding to the 

model used, it should be noted that both tested rainfall–runoff models were not developed 

specifically for low–flow simulations and thus their structure and parametrization might not 

be the best suited for low–flow simulations. Olsen et al. (2013) showed that modifying the 

structure of a typical hydrological model to fit the low–flow simulations might better improve 

low–flow simulation than modifying the objective function. 

The choice of an objective function for low–flow index simulations is strictly restricted 

to gauged catchments. For ungauged catchments, hydrological models are commonly used to 

derive streamflow indices at ungauged sites by transferring model parameters from gauged to 

ungauged catchments. Thus the choice of the objective function used for the gauged 

catchments might influence the simulation of the regionalized model on ungauged sites. 

However there is a high probability that the model parameter transfer from gauged to 

ungauged catchments will carry much more uncertainties than the choice of the objective 

function used in gauged catchments. A natural perspective of our study would be to test the 

sensitivity of the objective function in ungauged catchments. 
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