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Abstract

In this paper, we study three classes of difficult non-linear optimization, problems with comple-
mentarity (MPCC), vanishing (MPVC) and cardinality constraints (OMCC). They all have in common
degenerate constraints, which fail to satisfy classical constraint qualifications in a generic way. The
feasible sets of these problems are non-convex, possibly non-connected, with an empty relative interior.
This causes several difficulties in practice. In a recent work (Dussault et al. 2017), we propose a unified
framework of methods that consider a regularization-penalization-active set method to solve the MPCC,
which possesses the best known convergence properties. In this paper, we extend this unified framework
to MPVC and OMCC and consider some applications on optimal control problems.

2010 MSC: 90C30, 90C33, 49M37, 65K05.
Keywords: Non-Linear Programming; MPCC; Cardinality Constraint; MPVC; Relaxation Methods.

1 Introduction

In this paper, we study a non-linear optimization model with degenerate constraints including complemen-
tarity constraints, vanishing constraints and cardinality constraints.

min
x∈Rn

f(x)

s.t. x ∈ X ,
(1)

with

X :=

x ∈ Rn

∣∣∣∣∣∣∣∣
g(x) ≤ 0,
0 ≤ G1(x) ⊥ H1(x) ≥ 0,
H2(x) ≥ 0, G2(x) ◦H2(x) ≤ 0,
H3(x) ≥ 0, G3(x) ◦H3(x) = 0,

 ,

where f : Rn → R, g : Rn → Rp, G1, H1 : Rn → Rq1, G2, H2 : Rn → Rq2, G3, H3 : Rn → Rq3. ◦ denotes
the component-wise product of two vectors also known as Hadamard product.

We decide to skip classical equality constraints h(x) = 0 in order to simplify the presentation, although
they could be successfully added without loss of generality in a straightforward way.

Problem (1) can be equivalently written as a special case of an optimization problem with geometric
constraints

min
x∈Rn

f(x) s.t. F (x) ∈ Γ,
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Figure 1: Feasible set of the complementarity, vanishing and kink constraint.

where F (x) := (g(x), h(x),Ψ(x)), Ψ(x) := (G(x), H(x)), Γ := (]−∞, 0]p×{0}m×Cq) and C := C1∪C2∪C3 :=
{(a, b) : 0 ≤ a ⊥ b ≥ 0} ∪ {(a, b) : b ≥ 0, ab ≤ 0} ∪ {(a, b) : b ≥ 0, ab = 0}. In this context, we have
X = F−1(Γ).

This general form obviously includes Mathematical Programs with Complementarity Constraints (MPCC)
[9, 26, 12, 14, 16, 17, 19, 20], Mathematical Programs with Vanshing Constraints (MPVC) [10, 15, 22, 1]
and a more general form of Optimization Models with Cardinality Constraints (OMCC) [5, 6, 4, 7, 11] that
we will call ”Kink Constraints”.

These 3 families of constraints are the most popular in the literature among the degenerate non-linear
programs. MPVC and OMCC can both be cast as an MPCC. However, this approach leads to several
difficulties as pointed out in [1] and in [6, 7].

Remark 1. The motivation to consider kink constraints is to generalize what have been called cardinality
constraints. In [6] the authors consider the relaxation of the cardinality constraint with

‖x‖0 ≤ κ⇐⇒ eT y ≥ n− κ, y ≥ 0, x ◦ y = 0.

In this case, the kink constraint is simplified, since the right-hand side of the degenerate constraint is an
independent variable.

In this context solving the problem means finding a local minimum. Even so, this goal apparently modest
is hard to achieve in general due to the degenerate nature of the MPCC. Therefore, numerical methods that
consider only first order information may be expected to compute a stationary point.

The wide variety of approaches with this aim computes the KKT conditions, which requires some con-
straint qualifications to hold at the solution to be an optimality condition. However, it is well-known
that these constraint qualifications never hold in general for (1). For instance, the classical Mangasarian-
Fromowitz constraint qualification that is very often used to guarantee convergence of algorithms is violated
at any feasible point. This is partly due to the geometry of the complementarity constraint that always has
an empty relative interior.

These issues have motivated the definition of enhanced constraint qualifications and optimality conditions
for the MPCC, MPVC and OMCC as in [17, 16, 29, 12] to cite some of the earliest research on MPCC. In
particular, it was shown that the genuine necessary condition for these problems are M-stationary conditions.

In view of the constraint qualifications issues that plague the (1), the relaxation methods provide an
intuitive answer. The complementarity constraint is relaxed using a parameter so that the new feasible
domain is not thin anymore. It is assumed here that the classical constraints g(x) ≤ 0 are not more difficult
to handle than the complementarity constraint. Finally, as the relaxing parameter is reduced, convergence
to the feasible set of (1) is obtained similarly to a homotopy technique.

In [26], the authors introduce a unified framework of regularization methods for the MPCC, which
contain most of the methods proposed in the literature with proved convergence to M-stationary points. Our
motivation in this paper is to show the straightforward applicability of the unified framework for optimization
methods (UFO) for the more general degenerate non-linear program (1).
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2 Applications in Optimal Control Problems

In this section, we discuss some applications of degenerate non-linear programs applied to various optimal
control problems. Complementarity constraints appear in a very natural way in many applications involving
contact problem (for instance robot system with two modes: contact and no-contact. See optimal control
of multiple robot systems with friction [27]) or change of phase, but also in many optimal control problems
[3]. A large family of problems related with a very recent interest in the literature is the optimal control of
sweeping process [8]. For instance, in [31] the authors study the quadratic optimal control problem with a
linear complementarity system in the constraints.

2.1 Optimal control of the obstacle problem

One of the most typical example is the optimal control of the obstacle problem [24], which is a mathematical
problem governed by variational inequalities in function space.

The distributed optimal control of the obstacle problem with control constraints [32]

min
y∈H1

0 (Ω),u∈L2(Ω),ξ∈H−1(Ω)
j(y) +

ν

2
‖u‖2L2(Ω)

s.t. Ay = u− ξ + f,

0 ≤ ϕ− y ⊥ ξ ≥ 0,

ua ≤ u ≤ ub a.e. in Ω.

(2)

Typical assumptions suppose Ω ⊂ Rn (n ≥ 1) open and bounded, j(y) a Fréchet-differentiable observation
term j : H1

0 (Ω) → R of the state y of an L2(Ω) regularization term with ν > 0. The bounded linear
operator A : H1

0 (Ω) → H−1(Ω) is assumed to be coercive. The right-hand side f belongs to H−1(Ω). The
control bounds satisfy ua, ub ∈ H1(Ω). The obstacle ϕ ∈ H1(Ω) satisfies ϕ ≥ 0 on Γ in the sense that
min(ϕ, 0) ∈ H1

0 (Ω).
Existence of minimizers of (2) can be shown assuming j to be bounded below and weakly lower semicon-

tinuous [25, Thm 2.1]. The study of stationary conditions of (2) has been focused on S-stationary conditions
assuming additional assumptions on the set of admissible controls. In [24], the authors consider a discretized
version of this problem to prove existence of solutions and study the stationary properties of this problem.
The satisfaction of this condition had some practical interest for instance in [24] to prove convergence of the
discretization scheme and discretization error estimates.

2.2 Locomotion problem

The locomotion problem is to move from a given start to a given end position without considering individual
steps as a human would do them. This macroscopic perspective considers a plant with continuous dynamics
that can be described by ordinary differential equations. If combined with a suitable cost function one
obtains a standard optimal control problem. The direct approach to optimal control is chosen here and thus
a combination of a discretization technique and a non-linear optimization method is used. The goal of the
considered inverse optimal control task is to determine a cost function within a given parametrized family
of cost functions such that the corresponding optimal control result has minimal distance to given data. In
consequence, this problem is a special bilevel optimal control problem where the lower level is the optimal
control problem and the upper level is the inversion problem.

In [2], the authors consider numerical methods to solve this problem using relaxation method SS and SU
as well as some lifting approach to solve the corresponding MPCC.
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2.3 Robot motion planning

The complementarity constraint is the most popular degenerate constraint, but the vanishing constraint also
appears in a very natural way, since it can be used to express logic implication, i.e. for some index i

(Gi(x)Hi(x) ≤ 0, Hi(x) ≥ 0)⇐⇒ (0 < Hi(x) =⇒ Gi(x) ≤ 0) .

One example of logic constraints in a real-world application arises in robot motion planning [23]. Here, a
communication network of a given density needs to be maintained among a swarm of independent mobile
robots. For each pair (i, j) of robots, Hi,j(x) > 0 indicates that the pair is communicating. Then, 0 ≤ Gi,j(x)
must be satisfied to ensure that the distance between robots i and j actually allows for communication.
Conversely, this distance constraint vanishes for each pair (i, j) of robots with Hi,j(x) = 0 which do not
communicate. The study of an active-set approach for the related MPVC as well as numerical results have
been shown in [22].

3 Preliminaries

In this section, we introduce some definitions, some preliminary notions and their consequences.
Given x∗ ∈ X , we denote

I+0 := {i | Gi(x∗) > 0 and Hi(x
∗) = 0},

I−0 := {i | Gi(x∗) < 0 and Hi(x
∗) = 0},

I±0 := I+0 ∪ I−0,

I−+ := {i | Gi(x∗) < 0 and Hi(x
∗) > 0},

I0+ := {i | Gi(x∗) = 0 and Hi(x
∗) > 0},

I00 := {i | Gi(x∗) = 0 and Hi(x
∗) = 0}.

Furthermore, we denote

ICC := {1, . . . , q1},
IV C := {q1 + 1, . . . , q1 + q2},
IKC := {q1 + q2 + 1, . . . , q1 + q2 + q3},

and
q = q1 + q2 + q3.

In a comprehensive way, we denote I00
CC = I00 ∩ ICC .

The polar cone of a cone K is a closed and convex cone defined by K◦ := {d | dTx ≤ 0 ∀x ∈ K}.
The tangent cone of a set Ω at x∗ ∈ Ω is a closed cone defined by

TΩ(x∗) := {d | d = lim
k→∞

tk(xk − x∗) with tk ≥ 0 and xk → x∗ with xk ∈ Ω}.

The regular (or Fréchet) normal cone of a set Ω at x∗ ∈ Ω is a closed cone defined by

N̂Ω(x∗) := {d | dT (x− x∗) ≤ o(‖x− x∗‖) ∀x ∈ Ω}.

The limiting (or Mordukhovich) normal cone of a set Ω at x∗ ∈ Ω is a closed cone defined by

NΩ(x∗) := {d | d = lim
k→∞

dk with dk ∈ N̂Ω(xk) and xk → x∗ with xk ∈ Ω}.

We consider the specialized sets

LMPCC(x∗) := {d | 0 ≤ ∇G1i(x
∗)T d ⊥ ∇H1i(x

∗)T d ≥ 0 (i ∈ I00),

∇G1i(x
∗)T d ≥ 0 (i ∈ I+0), ∇H1i(x

∗)T d ≥ 0 (i ∈ I0+)},
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LMPV C(x∗) := {d | ∇H2i(x
∗)T d = 0 (i ∈ I+0),∇H2i(x

∗)T d ≥ 0 (i ∈ I00 ∪ I−0),

∇G2i(x
∗)T d ≤ 0 (i ∈ I0+), (∇H2i(x

∗)T d)(∇G2i(x
∗)T d) ≤ 0 (i ∈ I00)},

and

LOMCC(x∗) := {d | dT∇H3i(x
∗) = 0 (i ∈ I±0), dT∇H3i(x

∗) ≥ 0 (i ∈ I00),

dT∇G3i(x
∗) = 0 (i ∈ I0+), (dT∇G3i(x

∗))(dT∇H3i(x
∗)) = 0 (i ∈ I00)}.

The generalized linearized cone of (1) at x∗ ∈ X is the closed cone defined by

LX := {d | ∇g(x∗)T d ≤ 0} ∩ LMPCC(x∗) ∩ LMPV C(x∗) ∩ LOMCC(x∗).

Note that this cone is not polyhedral and is in general not convex. However, we denote it linearized cone
since it can be interpreted as a first order approximation of the tangent cone of X at x∗.

Definition 3.1. A point x∗ ∈ X is said B-stationary if

−∇f(x∗) ∈ LX (x∗)◦.

We see from this definition that a B-stationary point is closely linked with local minima of a linearization
of (1). This is formalized in the following result.

Theorem 3.2. Let x∗ ∈ X be a local minimum of (1) that satisfies the following constraint qualification:

TX (x∗)◦ = LX (x∗)◦. (3)

Then, x∗ is a B-stationary point.

Proof. It follows from local optimality of x∗ that

∇f(x∗)T d ≥ 0, ∀d ∈ TX (x∗),

which implies
−∇f(x∗) ∈ TX (x∗)◦.

Using the constraint qualification (3), x∗ is then a B-stationary point.

Obviously, computing a B-stationary point is already a very hard problem. Thus, in the next section, we
define some other optimality conditions that are more tractable from a computational point of view.

4 Optimality Conditions and Constraint Qualifications

We introduce two conditions that we will show are interesting optimality conditions for this problem. We
use here the following notation ∇F (x∗)NX (F (x∗)) = {∇F (x∗)ν | ν ∈ NX (F (x∗))}.

Definition 4.1. A point x∗ ∈ X is said

• M-stationary if −∇f(x∗) ∈ ∇F (x∗)NX (F (x∗));

• S-stationary if −∇f(x∗) ∈ ∇F (x∗)N̂X (F (x∗)).

We observe that S-stationarity implies M-stationarity.
In the special case where q1 + q2 + q3 = 0, the problem (1) is reduced to a classical non-linear program.

In this case, it is well-known that under a classical constraint qualification, for instance Guignard Constraint
Qualification (GCQ) TX (x∗)◦ = LX (x∗)◦, a good optimality condition is given by the KKT condition. We say
that x∗ ∈ X is a KKT point if there exists λg ∈ Rp+ with λGi = 0 ∀i /∈ Ig(x∗) such that −∇f(x∗) = ∇g(x∗)λg.

The following result shows the link between S-stationary points and KKT points of (1). The Lagrangian
function associated to (1) at x∗ is given by

L(x∗) := f(x∗) + λgg(x∗)− νG∇G(x∗)− νH∇H(x∗),

where (λ, νG, νH) ∈ Rp × Rq × Rq.
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Theorem 4.2.
x∗ is a KKT point of (1)⇐⇒ x∗ is an S-stationary point.

Furthermore, this condition can be explicitly written as

∇L(x∗) = 0,
λgi = 0 (i /∈ Ig), λgi ≥ 0 (i ∈ Ig),
νGi = 0 (i ∈ I+0

CC), νHi = 0 (i ∈ I0+
CC),

νGi ≥ 0, νHi ≥ 0 (i ∈ I00
CC).

νGi = 0 (i ∈ I±0
V C ∪ I

−+
V C ), νGi ≤ 0 (i ∈ I0+

V C),
νHi = 0 (i ∈ I0+

V C ∪ I
−+
V C ), νHi ≥ 0 (i ∈ I−0

V C)
νHi ≥ 0, νGi = 0 (i ∈ I00

V C),
νHi = 0 (i ∈ I0+

KC), νGi = 0 (i ∈ I±0
KC),

νGi = 0, νHi ≥ 0 (i ∈ I00
KC).

(4)

Proof. The condition (4) is obtained in a straightforward way from the definition of KKT point. It remains
to show that it is equivalent to the Definition 4.1.

We know that for a given finite collection of sets Γ = ∩iΓi ⊂ Rn it holds true that N̂Γ(x∗) = ∩iN̂Γi
(x∗)

by [28, Proposition 6.41]. Thus, it is sufficient to compute N̂C1
(x∗),N̂C2

(x∗) and N̂C3
(x∗):

• For C1, it has been pointed out in [14, Proposition 2.1] that

N̂C1(a, b) =

(d1, d2)

∣∣∣∣∣∣
d1 = 0, d2 ∈ R if a = 0 < b,
d1 ∈ R, d2 = 0 if a > 0 = b,
d1 ≤ 0, d2 ≤ 0 if a = b = 0

 ,

• For C2, direct computation gives

N̂C2
(a, b) =

(d1, d2)

∣∣∣∣∣∣∣∣∣∣
d1 = 0, d2 ≤ 0 if a < 0 = b,
d1 = 0, d2 ∈ R if a > 0 = b,
d1 ≥ 0, d2 = 0 if a = 0 < b,
d1 = 0, d2 = 0 if a < 0 < b,
d1 = 0, d2 ≤ 0 if a = b = 0

 ,

• For C3, direct computation gives

N̂C3
(a, b) =

(d1, d2)

∣∣∣∣∣∣
d1 ∈ R, d2 = 0 if a = 0 < b,
d1 = 0, d2 ∈ R if a 6= 0 = b,
d1 = 0, d2 ≤ 0 if a = b = 0

 .

This concludes the proof.

In the special case of q1 = q2 = 0, i.e. only OMCC, with n1 = n − q3 such that x, y ∈ Rn1 × Rq3 and
G3(x, y) = x, H(x, y) = y and f(x, y) = f(x) we get:

−∇f(x∗) = λg∇g(x∗)− νG∇G(x∗)− νH∇H(x∗),

λgi = 0 (i /∈ Ig(x∗)), νH = 0 (i ∈ I0+), νH ≥ 0 (i ∈ I00), νG = 0 (i ∈ I00 ∪ I+0 ∪ I−0).
(5)

This condition corresponds to the definition of S-stationary point for OMCC in [6]. In the mentioned paper,
the authors prove that under a weak constraint qualification a local minimum of the problem satisfies (5).
However, this is no longer true in our more general context of kink constraints as illustrated by the following
example.
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Example 1. Consider the following three dimensional example:

min
x∈R3

x2 − x3

s.t. x3 − 4x1 ≤ 0, x3 − 4x2 ≤ 0,

x2 ≥ 0, x1 ◦ x2 = 0.

S-stationary condition for this problem at the local minimum x∗ = (0, 0, 0)T yields to 0
−1
1

 = λ1

 −4
0
1

+ λ2

 0
−4
1

− νG
 1

0
0

− νH
 0

1
0

 ,

λ1 ≥ 0, λ2 ≥ 0, νG = 0, νH ≥ 0.

However, the only solution in the above equation is

λ1 = 0, λ2 = 1, νG = 0, νH = −3,

which is a contradiction with the sign of the multiplier νH .

Similar examples can be found for MPCC and MPVC in the literature. This phenomenon is generic from
degenerate non-linear program as (1).

Theorem 4.3. The M-stationarity condition at x∗ ∈ X is equivalent to

∇L(x∗) = 0,
λgi = 0 (i /∈ Ig), λgi ≥ 0 (i ∈ Ig),
νGi = 0 (i ∈ I+0

CC), νHi = 0 (i ∈ I0+
CC),

νGi ν
H
i = 0 or νGi > 0, νHi > 0 (i ∈ I00

CC),
νGi = 0 (i ∈ I±0

V C ∪ I
−+
V C ), νGi ≤ 0 (i ∈ I0+

V C),
νHi = 0 (i ∈ I0+

V C ∪ I
−+
V C ), νHi ≥ 0 (i ∈ I−0

V C)
νGi ν

H
i = 0, νGi ≤ 0 (i ∈ I00

V C),
νHi = 0 (i ∈ I0+

KC), νGi = 0 (i ∈ I±0
KC),

νGi ν
H
i = 0 (i ∈ I00

KC).

(6)

Proof. We proceed in a similar way as in Theorem 4.2.
We know that for a given finite collection of sets Γ = ∩iΓi ⊂ Rn it holds true that NΓ(x∗) = ∩iNΓi

(x∗)
by [28, Proposition 6.41]. Thus, it is sufficient to compute NC1

(x∗),NC2
(x∗) and NC3

(x∗). It can be noted
here that these sets only differ for indices i ∈ I00 compared to those from the proof of Theorem 4.2.

• For C1, it has been proved in [14, Proposition 2.1] that

NC1(a, b) =

(d1, d2)

∣∣∣∣∣∣
d1 = 0, d2 ∈ R if a = 0 < b,
d1 ∈ R, d2 = 0 if a > 0 = b,

either d1d2 = 0 or d1 ≤ 0, d2 ≤ 0 if a = b = 0

 .

• For C2, direct computation gives

N̂C2(a, b) =

(d1, d2)

∣∣∣∣∣∣∣∣∣∣
d1 = 0, d2 ≤ 0 if a < 0 = b,
d1 = 0, d2 ∈ R if a > 0 = b,
d1 ≥ 0, d2 = 0 if a = 0 < b,
d1 = 0, d2 = 0 if a < 0 < b,
d1d2 = 0, d1 ≥ 0 if a = b = 0

 ,
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• For C3, direct computation gives

N̂C3
(a, b) =

(d1, d2)

∣∣∣∣∣∣
d1 ∈ R, d2 = 0 if a = 0 < b,
d1 = 0, d2 ∈ R if a 6= 0 = b,

d1d2 = 0 if a = b = 0

 .

This concludes the proof.

The observation that S-stationarity may not hold at a local minimum has motivated the following key
result.

Theorem 4.4. Let x∗ ∈ X be a local minimum of (1) that satisfies the following constraint qualification:

TX (x∗)◦ ⊂ ∇F (x∗)NX (F (x∗)). (7)

Then, x∗ is an M-stationary point. Conversely, if x∗ ∈ X is an M-stationary point, then (7) holds.

Proof. The first part of the proof follows the exact same steps of Theorem 3.2.
We now prove the converse. Let x∗ be an M-stationary point. For any d ∈ TX (x∗), by [13], there exists

a smooth function ϕ such that x∗ is a local optimum of minx∈X ϕ(x) and −∇ϕ(x∗) = d. It follows that x∗

is an M-stationary point of minx∈X ϕ(x) and hence, by Definition 4.1, we have

d = −∇ϕ(x∗) ⊂ ∇F (x∗)NX (F (x∗)).

Since, we choose arbitrarily d, we have TX (x∗)◦ ⊂ ∇F (x∗)NX (F (x∗)).

We know from [14] and [10] respectively for MPCC and MPVC that the condition (7) is the weakest
constraint qualification that ensures such result. Besides, in [10] the authors give an explicit formulation of
this condition. It is to be noted that both constraint qualifications in Theorem 3.2 and Theorem 4.4 are
independent from the choice of the objective function.

We conclude this section by showing that condition (3) given in Theorem 3.2 is stronger than condition
(7) given in Theorem 4.4.

Theorem 4.5. Let x∗ ∈ X satisfies (3), then it also satisfies (7).

Example 3.1 in [14] in the context of MPCC shows that this result is sharp, since we do not have the
equality in general.

Remark 2. Another degenerate kind of constraint that could have been considered is the ”cross constraint”,
i.e.

{x | G(x) ◦H(x) = 0}.

In this case, a remarkable phenomenon arises, since the Fréchet normal cone is then reduced to the singleton
0, while the limiting normal cone gives {(d1, d2) | d1d2 = 0}. So, the S-stationary condition does not give
any pertinent information.

5 A Constraint Qualification to Show Convergence of the Regu-
larization Methods

In the previous sections, we introduced very weak constraint qualifications that have been used to provide
optimality conditions. In particular, Theorem 4.4 shows that our goal is to define a numerical method, which
converges to M-stationary points. However, both constraint qualifications are very hard to check in practice,
and they may not be sufficient to prove useful algorithmic properties. In this section, we introduce a new
constraint qualification and prove that it is useful in an algorithmic context.
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Definition 5.1. G-GCRSC holds at x∗ if for any partition

I00
CC = ACC ∪BCC ∪ CCC ,
I00
V C = AV C ∪BV C ,
I00
KC = AKC ∪BKC ,

such that

p∑
i=1

νgi∇gi(x
∗)−

q∑
i=1

νGi ∇Gi(x∗)−
q∑
i=1

νHi ∇Hi(x
∗) = 0,

with

νgi = 0 (i /∈ Ig),
νGi = 0 (i /∈ I0+

CC ∪ACC ∪ I
0+
V C ∪AV C ∪ I

0+
KC ∪AKC),

νHi = 0 (i /∈ I+0
CC ∪ACC ∪ I

±0
V C ∪BV C ∪ I

±0
KC ∪BKC),

and νgi ≥ 0 (i ∈ Ig(x∗)), νGi and νHi ≥ 0 (i ∈ ACC), νGi > 0 (i ∈ CCC), νHi (i ∈ BCC) > 0, νGi ≤ 0 (i ∈
I0+
V C ∪AV C), νHi ≥ 0 (i ∈ I−0

V C), there exists δ > 0 such that the family of gradients

{∇gi(x) (i ∈ I1), ∇Gi(x) (i ∈ I3), ∇Hi(x) (i ∈ I4)}

has the same rank for every x ∈ Bδ(x∗), where

I1 := {i ∈ Ig(x∗)| − ∇gi(x∗) ∈ P},
I3 := I0+

CC ∪ CCC ∪ I
0+
KC ∪AKC ∪ {i ∈ ACC ∪ I

0+
V C ∪AV C |∇Gi(x

∗) ∈ P},
I4 := I+0 ∪B ∪ I−0

KC ∪ {i ∈ ACC |∇Hi(x
∗) ∈ P} ∪ {i ∈ I−0

V C | − ∇Hi(x
∗) ∈ P},

with the notations
P = ∇F (x∗)NX (F (x∗)) and B = BCC ∪BV C ∪BKC .

In the special case where there is no partition of I00 that satisfies the condition of the definition above,
the gradients are obviously linearly independent (G-LICQ).

Furthermore, G-GCRSC is weaker than assuming constant rank of the family of gradients of active con-
straints in a neighborhood (G-CRCQ), since the G-GCRSC condition considers only the family of gradients
that are linearly dependent with coefficients that have M-stationary signs.

During the process of an iterative algorithm, we are interested in the study of accumulation points of
sequences computed by the relaxation method. It is common to compute sequences that satisfy the following
assumptions.

Assumption 5.1. Let {xk} and 0 6= {νk} ∈ Rp+ × Rq1+q2+q3 × Rq1+q2+q3 be such that xk → x∗ and

(i) ∇f(xk) +

p∑
i=1

νg,ki ∇gi(x
k)−

q∑
i=1

νG,ki ∇Gi(xk)−
q∑
i=1

νH,ki ∇Hi(x
k)→ 0,

with νg,k ≥ 0 (i ∈ Ig), νGi ≤ 0 (i ∈ I0+
V C),νHi ≥ 0 (i ∈ I−0

V C).

(ii)

 lim
k→∞

νg,k
i

‖νk‖∞ = 0 (i /∈ Ig), lim
k→∞

νG,k
i

‖νk‖∞ = 0 (i /∈ I0+
CC ∪ I

0+
V C ∪ I

0+
KC)

and lim
k→∞

νH,k
i

‖νk‖∞ = 0 (i /∈ I+0
CC ∪ I

±0
V C ∪ I

±0
KC),
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(iii)


lim
k→∞

νG,k
i νH,k

i

‖νk‖2∞
= 0 or lim

k→∞
νG,k
i

‖νk‖∞ > 0, lim
k→∞

νH,k
i

‖νk‖∞ > 0 (i ∈ I00
CC),

lim
k→∞

νG,k
i νH,k

i

‖νk‖2∞
= 0 or lim

k→∞
νG,k
i

‖νk‖∞ < 0 (i ∈ I00
V C),

lim
k→∞

νG,k
i νH,k

i

‖νk‖2∞
= 0 (i /∈ I00

KC),

(iv) the family of gradients of non-vanishing multipliers in (i) are linearly independent.

This condition may correspond to some kind of sequential optimality conditions.

Remark 3. Note that assumption (iv) is not restrictive. According to [30, Lemma 7.1], we can build a
sequence of multipliers that satisfies (i), (ii) and (iii), such that the gradients corresponding to non-vanishing
multipliers in equation (i) are linearly independent for all k ∈ N. This may change the multipliers, but
previously positive ones will stay at least non-negative and vanishing multipliers will remain zero.

The first step in our analysis is to prove that the sequences of multipliers satisfying Assumption 5.1 are
bounded.

Theorem 5.2. Given two sequences {xk},{νk} that satisfy Assumption 5.1. Suppose that xk → x∗ ∈ X ,
and G-CRSC holds at x∗. Then, the sequence {νk} is bounded.

The proof is skipped here, since it is a straightforward extension of the ones presented for MPCC and
MPVC respectively in [9] and [10].

A major consequence of the previous result is now stated.

Corollary 1. Given two sequences {xk},{νk} that satisfy Assumption 5.1. Suppose that xk → x∗ ∈ X , and
G-CRSC holds at x∗. Then, x∗ is an M-stationary point of (1).

Up to this point, it could be noticed that boundedness is not necessary to obtain Corollary 1, however,
it will be of importance in the study of the convergence of the relaxation method.

6 UFO : Unified Framework of Optimization Methods

6.1 Regularization Methods for (1)

Consider the following non-linear parametric program Rt(x) parametrized by the vector t:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

G(x) ≥ −t̄G, H(x) ≥ −t̄H , Φ(G(x), H(x); t) ≤ 0,

(Rt(x))

with t̄G, t̄H : Rl+ → (R+ ∪ {+∞})q1+q2+q3
such that t̄Gi = ∞ for i ∈ IV C ∪ IKC and t̄(t) = t̄GICC

=

t̄HICC∪IV C∪IKC
and t̄ : Rl+ → R+ such that lim‖t‖→0 t̄(t)→ 0 and the relaxation map Φ : Rn → Rq1+q2+2q3.

In the sequel we skip the dependency in t and denote t̄ to simplify the notation. It is to be noted here
that t is a vector of an arbitrary size denoted l as for instance in [9] where l = 2.

Remark 4. Note here that the length of the relaxation map has been augmented due to the cardinality con-
straints, which requires a special care. We make the following assumption for i ∈ IKC that the cardinality
constraint is relaxed through two relaxation maps:

Φi(G(x), H(x); t) ≤ 0, Φi(−G(x), H(x); t) ≤ 0. (8)
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The generalized Lagrangian function of (Rt(x)) is defined for η ∈ Rp × Rm × Rq1+q2+q3 × Rq1+q2+q3 ×
Rq1+q2+2q3 as

LrRt
(x, η) := rf(x) + g(x)T ηg −G(x)T ηG −H(x)T ηH + Φ(G(x), H(x); t)T ηΦ.

Let IΦ be the set of active indices for the constraint Φ(G(x), H(x); t) ≤ 0, i.e.

IΦ(x; t) := {i | Φi(G(x), H(x); t) = 0} ∪ {i | Φi(−G(x), H(x); t) = 0}.

The definition of a generic relaxation scheme is completed by the following hypotheses:

• Φ(G(x), H(x); t) is a continuously differentiable real valued map extended component by component,
so that

Φi(G(x), H(x); t) := Φ(Gi(x), Hi(x); t). (H1)

• Direct computations give that the gradient with respect to x for i ∈ {1, . . . , q1 + q2 + 2q3} of
Φi(G(x), H(x); t) for all x ∈ Rn is given by

∇xΦi(G(x), H(x); t) = ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

where αH(x; t) and αG(x; t) are continuous maps by smoothness assumption on Φ(G(x), H(x); t), which
we assume satisfy ∀x ∈ X

lim
‖t‖→0

αH(x; t) = H(x) and lim
‖t‖→0

αG(x; t) = G(x). (H2)

• At the limit when ‖t‖ goes to 0, the feasible set of the non-linear parametric program (Rt(x)) must
converge to the feasible set of (1). In other words, given F(t) the feasible set of (Rt(x)) it holds that

lim
‖t‖→0

{x | Φ(G(x), H(x); t) ≤ 0} = {x |G(x) ◦H(x) ≤ 0}, (H3)

where the limit is assumed pointwise.

• At the boundary of the feasible set of the relaxation of the complementarity constraint it holds that
for all i ∈ {1, . . . , q1 + q2 + 2q3}

Φi(G(x), H(x); t) = 0 =⇒ FGi(x; t) = 0 or FHi(x; t) = 0, (H4)

where

FG(x; t) := G(x)− ψ(H(x); t),

FH(x; t) := H(x)− ψ(G(x); t),
(9)

and ψ is a continuously differentiable real valued function extended component by component. Note
that the function ψ may be two different functions in (9) as long as they satisfy the assumptions below.
Those functions ψ(H(x); t), ψ(G(x); t) are non-negative for all x ∈ {x ∈ Rn | Φ(G(x), H(x); t) = 0}
and satisfy ∀z ∈ Rq1+q2+q3

lim
‖t‖→0

ψ(z; t) = 0. (H5)

Remark 5. These assumptions are not restrictive and motivated by the fact that Φ(G(x), H(x); t) is an
approximation (at the limit) of G(x) ◦H(x) as shown by (H3). (H1) is coherent with the C1 assumptions on
all the functions involved in (1). By construction of Φ and regularity assumption, (H2) is logical. Finally,
(H4) gives a structure of the relaxation map, where (H5) is coherent with (H3).
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Remark 6. According to (8), we also consider Φi(−G(x), H(x); t). We clarify here how the hypotheses
extend to this case. The gradient of the relaxation map in (H2) becomes

∇xΦi(G(x), H(x); t) = −∇Gi(x)αHi (x; t)−∇Hi(x)αGi (x; t),

while in (H4) we get

Φi(G(x), H(x); t) = 0 =⇒ −FGi(x; t) = 0 or FHi(x; t) = 0.

We will prove in Theorem 6.4 that this generic relaxation scheme for (1) converges to an M-stationary
point requiring the following essential assumption on the functions ψ. As t goes to 0 the derivative with
respect to the first variable of ψ satisfies ∀z ∈ Rq1+q2+q3

lim
‖t‖→0

∂ψ(x; t)

∂x

∣∣∣∣
x=z

= 0. (H6)

As a direct consequence of these assumptions, we can compute an explicit formula for the relaxation map
at the boundary of the feasible set.

Lemma 6.1. Given Φ(G(x), H(x); t) be such that for all i ∈ IΦ(x; t)

Φi(G(x), H(x); t) = FGi(x; t)FHi(x; t).

The gradient with respect to x of Φi(G(x), H(x); t) for i ∈ IΦ(x; t) is given by

∇xΦi(G(x), H(x); t) := ∇Gi(x)αHi (x; t) +∇Hi(x)αGi (x; t),

with

αGi (x; t) = FGi(x; t)− ∂ψ(x; t)

∂x

∣∣∣∣
x=Hi(x)

FHi(x; t),

αHi (x; t) = FHi(x; t)− ∂ψ(x; t)

∂x

∣∣∣∣
x=Gi(x)

FGi(x; t).

We now give some examples of functions ψ.

Example 2. Some examples of functions ψ are:

• ψ(x; t) = t as in [20, 15, 6] or [18].

• ψ(x; t) = t1θt2(G(x)), where θt2 : R →]−∞, 1] are continuously differentiable non-decreasing concave
function with θ(0) = 0 and lim

t2→0
θt2(x) = 1 ∀x ∈ R++ completed in a smooth way for negative values.

This method considered in [9, 10] was called butterfly relaxation in the aforementioned papers.

It should be noted that ψ in FG and FH can be different, to get an asymmetric regularization as in [10].

Theorem 6.2. Assume that the relaxation map Φ satisfies all the above assumption with the construction
in (8). Then,

lim
‖t‖→0

F(t) = X ,

where the limit is assumed pointwise.

The proof is straightforward, using that lim
‖t‖→0

t̄(t) = 0 and the combination of (H3) with (8).

12



Table 1: Feasible sets of the butterfly relaxation for the three families of degenerate constraints.

6.2 Convergence Properties of the Regularization Methods

The previous section introduces a large class of regularization methods for (1). The algorithmic scheme com-
pute a sequence of approximate stationary points for each value of a sequence of parameters {tk} decreasing
to zero.

The main difficulty here is that convergence property are deteriorated by the approximate computation of
the stationary points. It has been shown in [21, Theorem 9 and 12] or [9, Theorem 4.3] for the KDB, L-shape
and butterfly relaxations that under this definition, sequences of epsilon-stationary points only converge to
weak-stationary point without additional hypothesis.

In order to attain our goal to compute an M-stationary point with a realistic method, we introduce a
specific definition of approximate stationary point. The definition of epsilon-stationary point called strong
epsilon-stationary point, which is more stringent regarding the complementarity constraint.

In the sequel, we prove the strong convergence property of the regularization methods with this notion
(Theorem 6.4) and give an algorithm (Algorithm 1).

Definition 6.3. xk is a strong epsilon-stationary point for (Rt(x)) with εk ≥ 0 if there exists ηk ∈ Rp ×
Rm × R3q such that ∥∥∇L1

Rt
(xk, ηk; tk)

∥∥
∞ ≤ εk

and

gi(x
k) ≤ εk, ηg,ki ≥ 0, |gi(xk)ηg,ki | ≤ εk ∀i ∈ {1, . . . , p},

|h(xk)| ≤ t̄k +O(εk) ∀i ∈ {1, . . . ,m},

Gi(x
k) + t̄Gk,i ≥ −εk, η

G,k
i ≥ 0,

∣∣∣ηG,ki (Gi(x
k) + t̄Gk,i)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Hi(x

k) + t̄Hk,i ≥ −εk, η
H,k
i ≥ 0,

∣∣∣ηH,ki (Hi(x
k) + t̄Hk,i)

∣∣∣ ≤ εk ∀i ∈ {1, . . . , q},
Φi(G(xk), H(xk); tk) ≤ 0, ηΦ,k

i ≥ 0,
∣∣∣ηΦ,k
i Φi(G(xk), H(xk); tk)

∣∣∣ = 0 ∀i ∈ {1, . . . , q}.

We use here the convention that |ηGi t̄Gi | ≤ ε for t̄Gi =∞ =⇒ ηΦ
i = 0.

The representation of ∇Φ gives that

∇L1
Rt

(x, η; t) = ∇f(x) +

p∑
i=1

ηgi∇gi(x)−
q∑
i=1

νGi ∇Gi(x)−
q∑
i=1

νHi ∇Hi(x), (10)
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where (ηg, ηG, ηH , ηΦ) ≥ 0 and νg := ηg,

νGi :=


ηGi − ηΦ

i α
H
i (x; t), if i ∈ ICC ,

−ηΦ
i α

H
i (x; t), if i ∈ IV C ,

−(ηΦ
i − ηΦ

i+q3)αHi (x; t), if i ∈ IKC ,
and

νHi :=


ηHi − ηΦ

i α
G
i (x; t), if i ∈ ICC ,

ηHi − ηΦ
i α

G
i (x; t), if i ∈ IV C ,

ηHi − (ηΦ
i − ηΦ

i+q3)αGi (x; t), if i ∈ IKC .

(11)

The following theorem is a direct consequence of both previous lemmas and is our main statement.

Theorem 6.4. Given {tk} a sequence of parameters and {εk} a sequence of non-negative parameters such
that both sequences decrease to zero as k ∈ N goes to infinity. Assume that εk = o(t̄k). Let {xk, ηk} be a
sequence of strong epsilon-stationary points of (Rt(x)) according to definition 6.3 for all k ∈ N with xk → x∗

such that G-CRSC holds at x∗. Then, x∗ is an M-stationary point of (1).

Proof. The proof relies on the use of Corollary 1. So, it is sufficient to check that up to some sufficiently
large k the sequence {xk} and the sequence {νk} defined in (11) satisfy Assumption 5.1. In particular, we
choose a sequence νk that satisfies condition (iv) of Assumption 5.1. This is always possible according to
Remark 3.

We denote ‖νk‖∞ := ‖νg,k, νG,k, νH,k‖∞ that without loss of generality we assume to be non-zero for k
large.

• By definition of the sequence, it holds that
∥∥∇L1

Rt
(xk, νk; tk)

∥∥
∞ ≤ εk, thus as k → ∞ we obtain

∇L1
Rt

(xk, νk; tk)→ 0. A same argument gives that νg,k ≥ 0.

We now show that for k sufficiently large any νG,ki ≤ 0 for i ∈ I0+
V C and νH,ki ≥ 0 for i ∈ I−0

V C . Let
i ∈ I0+

V C , by assumption (H2), αHi (xk; tk) → Hi(x
∗) > 0. Thus, for k sufficiently large αHi (xk; tk) > 0

and since ηΦ,k
i ≥ 0 we get νG,ki ≤ 0. A straightforward adaptation of this reasoning can be used to

show that νH,ki ≥ 0 for i ∈ I−0
V C . So, Assumption 5.1 (i) is checked.

• It is clear by the complementarity condition in Definition 6.3 that νg,ki → 0 for all i /∈ Ig.
Let us now consider i /∈ I0+

CC ∪ I
0+
V C ∪ I

0+
KC , i.e. Gi(x

∗) 6= 0. It follows that Gi(x
k) + t̄k → Gi(x

∗) 6= 0.

By the complementarity condition in Definition 6.3, we obtain that ηG,ki = 0 for k sufficiently large.

We now consider ηΦ,k
i > 0 for k sufficiently large, otherwise the proof of this case is completed (νG,ki =

0). By Definition 6.3, it implies that i ∈ IΦ and so either FGi(x
k; tk) = 0 or FHi(x

k; tk) = 0 according
to (H4). However, FGi(x

k; tk) = 0 is not possible, since FGi(x
k; tk) → Gi(x

∗) 6= 0 by (H5). So,

FHi(x
k; tk) = 0 and by (9) we have ηH,ki → 0 as ψ is non-negative and εk = o(t̄k). We can now use

Lemma 6.1 to obtain

αGi (xk; tk) = FGi(x
k; tk), and αHi (xk; tk) = − ∂ψ(x; tk)

∂x

∣∣∣∣
x=Gi(xk)

FGi(x
k; tk).

This yields to the following inequalities for k sufficiently large

‖νk‖∞ ≥ νH,ki =

∣∣∣∣∣∣∣
νG,ki

∂ψ(x;tk)
∂x

∣∣∣
x=Gi(xk)

∣∣∣∣∣∣∣ .
It follows that lim

k→∞
νG,k
i

‖νk‖∞ = 0.

By the exact same way, we can prove that lim
k→∞

νH,k
i

‖νk‖∞ = 0 for all i /∈ I+0
CC∪I

±0
V C∪I

±0
KC , which concludes

this part and Assumption 5.1 (ii) is checked.
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• Let i ∈ I00. It is sufficient to consider the case i ∈ IΦ for k sufficiently large and in particular {ηΦ,k}
is unbounded, otherwise this case is directly satisfied. By Definition 6.3, it implies that i ∈ IΦ and so
either FGi(x

k; tk) = 0 or FHi(x
k; tk) = 0 according to (H4). We consider FHi(x

k; tk) = 0 (the other
case is a straightforward adaptation) and we can now use Lemma 6.1 to obtain

αGi (xk; tk) = FGi(x
k; tk), and αHi (xk; tk) = − ∂ψ(x; tk)

∂x

∣∣∣∣
x=Gi(xk)

FGi(x
k; tk).

Since FHi(x
k; tk) = 0, by (9) we have ηH,ki → 0 as ψ is non-negative and εk = o(t̄k).

Let 0 6= C <∞ such that lim
k→∞

νH,ki /‖ν‖∞ = C.

If C = 0, the result would follow as lim
k→∞

|νH,ki |/‖ν‖∞ ≤ ∞.

So, assume that C 6= 0. Then, lim
k→∞

− ∂ψ(x;tk)
∂x

∣∣∣
x=Gi(xk)

νH,ki /‖η‖∞ = 0 by (H6). Thus, we get

lim
k→∞

νG,ki /‖ν‖∞ = lim
k→∞

ηG,ki /‖ν‖∞ ≥ 0. We conclude by examining two cases: either Gi(x
k) ≥ 0 or

Gi(x
k) ≤ 0. If Gi(x

k) ≥ 0 the product of the limit is vanishing, since the complementarity condition

and εk = o(t̄k) gives that lim
k→∞

νG,ki /‖ν‖∞ = lim
k→∞

ηG,ki = 0. It is the same argument if Gi(x
k) ≤ 0

and lim
k→∞

ηG,ki = 0. Finally, if Gi(x
k) ≤ 0 and lim

k→∞
νG,ki /‖ν‖∞ = lim

k→∞
ηG,ki > 0, we get C ≥ 0 since

G(xk) ≤ 0 implies FG(xk; tk) ≤ 0 and νH,ki = −ηΦ,k
i FG(xk; tk).

This proves that Assumption 5.1 (iii) is verified.

Finally, we can apply Corollary 1 to get the result.

Theorem (6.4) attains the ultimate goal. However it is not a trivial task to compute such a sequence of
epsilon-stationary points. This is discussed in the following section.

Remark 7. Although we do not study the existence of strong epsilon-stationary points here. The same
behavior as the one explained in [26] has to be expected and the proofs can be extended. In [26, Thm 9.1
and Thm 9.2], the authors prove that reformulating (1) with slack variables for the degenerate constraints
and then (Rt(x)) possesses strong-epsilon stationary points in the neighbourhood of an M-stationary point.
It was illustrated in the aforementioned paper that this result is no longer true without slack variables.

6.3 The Algorithm to Compute Strong Epsilon-Stationary Points

The previous section underlines the interest of considering strong epsilon-stationary points (Definition 6.3).
However, it is far from obvious to see how to compute such a point in practice. We answer this essential
question in this section.

6.3.1 Problem transformation

We make two transformations of (Rt(x)) that do not alter the theoretical properties but ease the numerical
approach.

First, we add slack variables on the relaxed constraints in order to satisfy the feasibility exactly as in
Definition 6.3. Consider the following non-linear parametric program Rt(x, s) parametrized by t:

min
(x,s)∈Rn×R2q

f(x)

s.t. g(x) ≤ 0, h(x) = 0,

sG = G(x), sH = H(x),

sG ≥ t̄G, sH ≥ −t̄H , Φ(sG, sH ; t) ≤ 0,

(Rst (x, s))
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with lim‖t‖→0 t̄ = 0+ and the relaxation map Φ(sG, sH ; t) : Rq1+q2+q3 × Rq1+q2+q3 → Rq1+q2+q3 is defined
by replacing G(x) and H(x) by sG and sH in the map Φ(G(x), H(x); t).

We now penalize all the constraints that can be approximately satisfied in the Definition 6.3. The
following minimization problem aims at finding (x, s) ∈ Rn × Rq1+q2+q3 × Rq1+q2+q3 so that

min
x,s

Ψρ(x, s) := f(x) +
1

2ρ
φ(x, s)

s.t. sG ≥ −t̄G, sH ≥ −t̄H , Φ(sG, sH ; t) ≤ 0,

(P tρ(x, s))

where φ is the penalty function

φ(x, s) := ‖max(g(x), 0), h(x), G(x)− sG, H(x)− sH‖2.

An adaptation of Theorem 6.4 gives the following result that validates the use of slack variables and the
penalization approach.

Corollary 2. Given a decreasing sequence {ρk} of positive parameters and {εk} a sequence of non-negative
parameters that decrease to zero as k ∈ N goes to infinity. Assume that εk = o(t̄k). Let {xk, ηk} be a sequence
of strong epsilon-stationary points of (P tρ(x, s)) according to definition 6.3 for all k ∈ N with xk → x∗ such
that G-CRSC holds at x∗. If x∗ is feasible, then it is an M-stationary point of (1).

Proof. Assuming that x∗ is feasible for (1), the result is a straightforward adaptation of Theorem 6.4.

The strong assumption on the previous theorem that x∗ must be feasible is hard to avoid. Indeed, it is
a classical pitfall of penalization methods in optimization to possibly compute a limit point that minimizes
the linear combination of the constraints.

6.3.2 Active-Set Algorithm

We discuss here an active set method to solve the penalized problem (P tρ(x, s)). This method is an extension
of the method proposed in [19].

The set of points that satisfy the constraints of (Rst (x, s)) is denoted by Ft,t̄ and βt(x, s) denotes the
measure of feasibility

βt(x, s) := φ(x, s) + ‖(−sG + t̄G)+‖2 + ‖(−sH + t̄H)+‖2 + ‖(−Φ(sG, sH ; t))+‖2.

Let W(s; t, t̄) be the set of active constraints among the constraints

sG ≥ −t̄G, sH ≥ −t̄H , Φ(sG, sH ; t) ≤ 0, (12)

and FRt,t̄ denotes the set of points that satisfy those constraints. We can be even more specific when for some

i ∈ {1, . . . , q} the relaxed constraint is active since

Φi(sG, sH ; t) = 0 =⇒ sH,i = ψ(sG,i; t) or sG,i = ψ(sH,i; t).

Remark 8. It is essential to note here that active constraints act almost like bound constraints since an
active constraint means that for some i ∈ {1, . . . , q} one (possibly both) of the two cases holds

sG,i =− t̄ or ψ(sH,i; t),

or

sH,i =− t̄ or ψ(sG,i; t).

Considering the relaxation from Kanzow & Schwartz it is obviously a bound constraint since ψ(sG,i; t) =
ψ(sH,i; t) = t. The butterfly relaxation gives ψ(sG,i; t) = t1θt2(sH,i) and ψ(sH,i; t) = t1θt2(sG,i). This is not
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a bound constraint but we can easily use a substitution technique. This key observation is another motivation
to use a formulation with slack variables.

Furthermore, a careful choice of the function ψ may allow to get an analytical solution of the following
equation in α for given values of sG, sH , dsG , dsH :

sG,i + αdsG,i
− ψ(sH,i + αdsH,i

; t) = 0.

Solving exactly this equation is very useful while computing the largest step so that the iterates remain feasible
along a given direction. For the butterfly relaxation with θt2(x) = x

x+t2
, the equation above is reduced to the

following second order polynomial equation if sH,i + αdsH,i
≥ 0:

(sH,i + αdsH,i
+ t2)(sG,i + αdsG,i

)− t1(sH,i + αdsH,i
) = 0. (13)

Algorithm 1 presents an active-set scheme to solve (P tρ(x, s)), which is described in depth in the sequel of
this section. Apart from some specific parameters most of the input data are given in this algorithm through
the relaxation loop that will be discussed in Algorithm 2 (page 19).

Data:
Input Data: xk−1, sk−1; precision ε > 0 ;
ρ0 > 0 initial value of ρ, ρmin lower bound on the penalty parameter ;
Algorithm Parameters: σρ ∈ (0, 1) update in ρ; τvio ∈ (0, 1); sat:=true;
Initial estimate of the multiplier ν0;

1 Begin ;
2 Set j := 0, ρ := ρ0 ;

3 (xk,0, sk,0,W0, A0)=Projection of (xk−1, sk−1) if not feasible for (P tρ(x, s)) ;

4 while sat and
(
‖∇L1

Rt
(xk,j , sk,j , ηj ; tk))‖2∞ > ε‖ηj‖∞ or min(ηj) < 0 or βtk(xk,j , sk,j) > ε

)
do

5 Substitution of the variables that are fixed by the active constraints in Wj ;
6 Compute a feasible direction dj that lies in the subspace defined by the working set Wj (see (15))

and satisfies the conditions (SDD);
7 Compute ᾱ the maximum non-negative feasible step along dj

ᾱ := sup{α : (xk,j , sk,j) + αdj ∈ Ft,t̄}

Compute a step length αj ≤ ᾱ (see (13)) such that Armijo condition (16) holds ;
8 if αj = ᾱ then
9 Update the working set →Wj+1 and compute Aj+1 the matrix of gradients of active

constraints
10 (xk,j+1, sk,j+1) = (xk,j , sk,j) + αjd

j ;
11 j:=j+1 ;

12 if βtk,t̄k(xk,j+1, sk,j+1) ≥ max(τvioβtk,t̄k(xk,j , sk,j), ε) then
13 ρ := max(σρρ, ρmin)
14 else
15 Determine the approximate multipliers ηj+1 = (ηG, ηH , ηΦ) by solving

ηj+1 ∈ arg min
ν∈R|Wj |

‖ATj+1η −∇Ψρ(x
k,j , sk,j)‖2

Relaxing rule : if ∃ i, ηj+1
i < 0 and (satisfy (17) or αj = 0 ) then

16 Update of the working set Wj+1 (with an anti-cycling rule) ;

17 sat:=‖dj‖ > ε

18 return: xk, sk, ρ or a decision of unboundedness.

Algorithm 1: Active-Set Penalization Algorithm for the relaxed non-linear program (P tρ(x, s)).

At each step, the setWj denotes the set of active constraints of the current iterate sk,j . As pointed out in
Remark 8, these active constraints fix some of the variables. Therefore, by replacing these fixed variables we
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can rewrite the problem in a subspace of the initial domain. Thus, we consider the following minimization
problem

min
(x,s)∈Rn×R|SG|+|SH |

Ψρ(x, sSG∪SH )

s.t. sG,i ≥ −t̄ for i ∈ SG, sH,i ≥ −t̄ for i ∈ SH ,
Φi(sG, sH ; t) ≤ 0 for i ∈ SG ∪ SH ,

(14)

where we denote

IG := {i | sGi = −t̄},
IH := {i | sHi = −t̄},
I0+
GH := {i | sHi = ψ(sG; t)},
I+0
GH := {i | sGi = ψ(sH ; t)},
I00
GH := {i | sGi = sHi = ψ(0; t)},
SG := {i}}\(IG ∪ I+0

GH ∪ I
00
GH),

SH := {i}}\(IH ∪ I0+
GH ∪ I

00
GH).

SG and SH respectively denote the set of indices where the variables sG and sH are free.
Some of the fixed variables are replaced by a constant and others are replaced by an expression that

depends on the free variables. It is rather clear from this observation that the use of slack variables is an
essential tool to handle the non-linear bounds.

A major consequence here is that the gradient of Ψ in this subspace can be done using the composition
of the derivative formula:

∇ΨWj
ρ (x, sSG∪SH ) = JTW̄j

∇Ψρ(x, s), (15)

where JW̄j
is an (n+ 2q)× (n+ #SG + #SH) matrix defined such that

JW̄j
:=

 JxW̄j

JsGW̄j

JsHW̄j

 .

The three sub-matrices used to define JW̄j
are computed in the following way

JxW̄j
= Idn,

JsGW̄j ,i
=


eTi , for i ∈ SG,
∂ψ(x;t)
∂x

∣∣∣
x=sH

eTi , for i ∈ I+0
GH ,

0, for i ∈ ({1, . . . , q1}\SG)\I+0
GH ,

JsHW̄j ,i
=


eTi , for i ∈ SH ,
∂ψ(x;t)
∂x

∣∣∣
x=sG

eTi , for i ∈ I0+
GH ,

0, for i ∈ ({1, . . . , q1}\SH)\I0+
GH ,

where JW̄j ,i denotes the i-th line of a matrix and ei is a vector of zero whose i-th component is one. We may
proceed in a similar way to compute the hessian matrix of Ψρ(x, sSG∪SH ).

The feasible direction dj is constructed to lie in a subspace defined by the working set and satisfying the
sufficient-descent direction conditions for zj ∈ Rn+|SG|+|SH |:

∇ΨWj (zj)T dj ≤ −µ0‖∇ΨWj (zj)‖2,
‖dj‖ ≤ µ1‖∇ΨWj (zj)‖,

(SDD)
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where µ0 > 0, µ1 > 0.
The step length αj ∈ (0, ᾱ] is respectively computed to satisfy the Armijo and Wolfe conditions for

zj ∈ Rn+|SG|+|SH |:
Ψ(zj + αjd

j) ≤ Ψ(zj) + τ0αj∇ΨWj (zj)T dj , τ0 ∈ (0, 1), (16)

∇ΨWj (zj + αjd
j)T dj ≥ τ1∇ΨWj (zj)T dj , τ1 ∈ (τ0, 1). (17)

If ᾱ satisfies the Armijo condition (16), the active set strategy adds a new active constraint and the Wolfe
condition (17) is not enforced. Otherwise, the Armijo condition requires α < ᾱ and the Wolfe condition is
enforced.

The relaxing rule is given by the following scheme : Relax some constraint i0 if and only if the two
following conditions are fulfilled:

1. ηji0 < 0;

2. No constraint was added at the arrival point (xk,j , sk,j) and no constraint was deleted at the previous
iteration.

The convergence will rely on the fact that at least one step satisfying Wolfe’s condition will be performed
before removing an active constraint.

6.3.3 Regularization scheme

Along this paper, we analyze an algorithm to solve (1) through a regularization scheme and an active set-
penalization method to solve the sub-problems. The latter has been described in the previous sections. We
now formally defined the regularization scheme in Algorithm 2.

Data: Let z0 = (x0, s0) be an initial point;
Let ρ0 be an initial value of the penalty parameter;
Choose a sequence of precision {εk}, a desired precision ε∞ and a safeguard εmin;
Set k = 0 ;

1 Begin ;
2 repeat
3 (tk, t̄k, ρmin,k):=Oracle(εk) ;

4 zk+1, ρk+1 = Algorithm1(zk, εk, ρk, ρmin,k): from the starting point zk, use Algorithm 1 to

compute zk+1 an approximate stationary point of (P tρ(x, s)) with penalty parameter

ρk ≥ ρk+1 ≥ ρmin,k;
5 Set k ← k + 1;

6 until
(
‖min(G(xk+1), H(xk+1))‖∞ ≤ ε∞ and φ(zk+1) ≤ ε∞

)
or εk < εmin;

7 return: fopt := f(xk+1) the optimal value at the solution xopt := xk+1 or a decision of infeasibility or
unboundedness.

Algorithm 2: Relaxation method for Problem (1).

As a consequence of Corollary 2, if the final point of the sequence computed by Algorithm 2 is feasible for
(1) and satisfies G-CRSC, then it is an M-stationary point up to some precision. Convergence of Algorithm 1
deserves a specific treatment that has been proved in [26] in the context of complementarity constraints.

Conclusion

In this article, we focus on the study of popular classes of degenerate non-linear programs including MPCC,
MPVC and the new Optimization Models with Kink Constraints, which generalize the OMCC. These prob-
lems are frequently encountered in many applications including several from optimal control as motivated
here. We give theoretical results on optimality conditions, constraint qualification with their algorithmic
application.
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A generalized framework presented in this article is used to analyze relaxation methods that aim to con-
verge to M-stationary points. Motivated by the approximate resolution of the sub-problems we defined a new
notion of approximate stationary point. We prove existence of such approximate point in the neighborhood
of an M-stationary point and provide an algorithmic strategy to compute such point.

Further research concern the implementation of this algorithmic strategy in the language Julia and its
application in real-world problems.
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