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, we propose a unified framework of methods that consider a regularization-penalization-active set method to solve the MPCC, which possesses the best known convergence properties. In this paper, we extend this unified framework to MPVC and OMCC and consider some applications on optimal control problems.

Introduction

In this paper, we study a non-linear optimization model with degenerate constraints including complementarity constraints, vanishing constraints and cardinality constraints.

min x∈R n f (x) s.t. x ∈ X , (1) 
with

X :=        x ∈ R n g(x) ≤ 0, 0 ≤ G 1 (x) ⊥ H 1 (x) ≥ 0, H 2 (x) ≥ 0, G 2 (x) • H 2 (x) ≤ 0, H 3 (x) ≥ 0, G 3 (x) • H 3 (x) = 0,       
, where f : R n → R, g : R n → R p , G 1 , H 1 : R n → R q1 , G 2 , H 2 : R n → R q2 , G 3 , H 3 : R n → R q3 . • denotes the component-wise product of two vectors also known as Hadamard product.

We decide to skip classical equality constraints h(x) = 0 in order to simplify the presentation, although they could be successfully added without loss of generality in a straightforward way.

Problem (1) can be equivalently written as a special case of an optimization problem with geometric constraints min x∈R n f (x) s.t. F (x) ∈ Γ, This general form obviously includes Mathematical Programs with Complementarity Constraints (MPCC) [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF][START_REF] Migot | How to compute a local minimum of the MPCC[END_REF][START_REF] Michael | On M-stationary points for mathematical programs with equilibrium constraints[END_REF][START_REF] Guo | Notes on some constraint qualifications for mathematical programs with equilibrium constraints[END_REF][START_REF] Jane | Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints[END_REF][START_REF] Jane | Necessary optimality conditions for optimization problems with variational inequality constraints[END_REF][START_REF] Kadrani | A globally convergent algorithm for MPCC[END_REF][START_REF] Kanzow | A New Regularization Method for Mathematical Programs with Complementarity Constraints with Strong Convergence Properties[END_REF], Mathematical Programs with Vanshing Constraints (MPVC) [START_REF] Dussault | Mathematical programs with vanishing constraints: Constraint qualifications, their applications and a new regularization method[END_REF][START_REF] Hoheisel | Mathematical programs with vanishing constraints: a new regularization approach with strong convergence properties[END_REF][START_REF] Kirches | A parametric active set method for quadratic programs with vanishing constraints[END_REF][START_REF] Achtziger | Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications[END_REF] and a more general form of Optimization Models with Cardinality Constraints (OMCC) [START_REF] Burdakov | On a reformulation of mathematical programs with cardinality constraints[END_REF][START_REF] Burdakov | Mathematical programs with cardinality constraints: Reformulation by complementarity-type conditions and a regularization method[END_REF][START_REF] Branda | Convergence of a scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization[END_REF][START_REF] Červinka | Constraint qualifications and optimality conditions for optimization problems with cardinality constraints[END_REF][START_REF] Feng | Complementarity formulations of l0-norm optimization problems[END_REF]] that we will call "Kink Constraints". These 3 families of constraints are the most popular in the literature among the degenerate non-linear programs. MPVC and OMCC can both be cast as an MPCC. However, this approach leads to several difficulties as pointed out in [START_REF] Achtziger | Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications[END_REF] and in [START_REF] Burdakov | Mathematical programs with cardinality constraints: Reformulation by complementarity-type conditions and a regularization method[END_REF][START_REF] Červinka | Constraint qualifications and optimality conditions for optimization problems with cardinality constraints[END_REF].

Remark 1. The motivation to consider kink constraints is to generalize what have been called cardinality constraints. In [START_REF] Burdakov | Mathematical programs with cardinality constraints: Reformulation by complementarity-type conditions and a regularization method[END_REF] the authors consider the relaxation of the cardinality constraint with x 0 ≤ κ ⇐⇒ e T y ≥ n -κ, y ≥ 0, x • y = 0.

In this case, the kink constraint is simplified, since the right-hand side of the degenerate constraint is an independent variable.

In this context solving the problem means finding a local minimum. Even so, this goal apparently modest is hard to achieve in general due to the degenerate nature of the MPCC. Therefore, numerical methods that consider only first order information may be expected to compute a stationary point.

The wide variety of approaches with this aim computes the KKT conditions, which requires some constraint qualifications to hold at the solution to be an optimality condition. However, it is well-known that these constraint qualifications never hold in general for [START_REF] Achtziger | Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications[END_REF]. For instance, the classical Mangasarian-Fromowitz constraint qualification that is very often used to guarantee convergence of algorithms is violated at any feasible point. This is partly due to the geometry of the complementarity constraint that always has an empty relative interior.

These issues have motivated the definition of enhanced constraint qualifications and optimality conditions for the MPCC, MPVC and OMCC as in [START_REF] Jane | Necessary optimality conditions for optimization problems with variational inequality constraints[END_REF][START_REF] Jane | Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints[END_REF][START_REF] Scheel | Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity[END_REF][START_REF] Michael | On M-stationary points for mathematical programs with equilibrium constraints[END_REF] to cite some of the earliest research on MPCC. In particular, it was shown that the genuine necessary condition for these problems are M-stationary conditions.

In view of the constraint qualifications issues that plague the (1), the relaxation methods provide an intuitive answer. The complementarity constraint is relaxed using a parameter so that the new feasible domain is not thin anymore. It is assumed here that the classical constraints g(x) ≤ 0 are not more difficult to handle than the complementarity constraint. Finally, as the relaxing parameter is reduced, convergence to the feasible set of (1) is obtained similarly to a homotopy technique.

In [START_REF] Migot | How to compute a local minimum of the MPCC[END_REF], the authors introduce a unified framework of regularization methods for the MPCC, which contain most of the methods proposed in the literature with proved convergence to M-stationary points. Our motivation in this paper is to show the straightforward applicability of the unified framework for optimization methods (UFO) for the more general degenerate non-linear program (1).

Applications in Optimal Control Problems

In this section, we discuss some applications of degenerate non-linear programs applied to various optimal control problems. Complementarity constraints appear in a very natural way in many applications involving contact problem (for instance robot system with two modes: contact and no-contact. See optimal control of multiple robot systems with friction [START_REF] Peng | Optimal control of multiple robot systems with friction using mpcc[END_REF]) or change of phase, but also in many optimal control problems [START_REF] Betts | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming[END_REF]. A large family of problems related with a very recent interest in the literature is the optimal control of sweeping process [START_REF] Colombo | Optimal control of the sweeping process over polyhedral controlled sets[END_REF]. For instance, in [START_REF] Vieira | Quadratic optimal control of linear complementarity systems: First order necessary conditions and numerical analysis[END_REF] the authors study the quadratic optimal control problem with a linear complementarity system in the constraints.

Optimal control of the obstacle problem

One of the most typical example is the optimal control of the obstacle problem [START_REF] Meyer | A priori finite element error analysis for optimal control of the obstacle problem[END_REF], which is a mathematical problem governed by variational inequalities in function space.

The distributed optimal control of the obstacle problem with control constraints [START_REF] Wachsmuth | Strong stationarity for optimal control of the obstacle problem with control constraints[END_REF] min

y∈H 1 0 (Ω),u∈L 2 (Ω),ξ∈H -1 (Ω) j(y) + ν 2 u 2 L 2 (Ω) s.t. Ay = u -ξ + f, 0 ≤ ϕ -y ⊥ ξ ≥ 0, u a ≤ u ≤ u b a.e. in Ω.
(

) 2 
Typical assumptions suppose Ω ⊂ R n (n ≥ 1) open and bounded, j(y) a Fréchet-differentiable observation term j : H 1 0 (Ω) → R of the state y of an L 2 (Ω) regularization term with ν > 0. The bounded linear operator A : H 1 0 (Ω) → H -1 (Ω) is assumed to be coercive. The right-hand side f belongs to H -1 (Ω). The control bounds satisfy u a , u b ∈ H 1 (Ω). The obstacle ϕ ∈ H 1 (Ω) satisfies ϕ ≥ 0 on Γ in the sense that min(ϕ, 0) ∈ H 1 0 (Ω). Existence of minimizers of (2) can be shown assuming j to be bounded below and weakly lower semicontinuous [START_REF] Mignot | Optimal control in some variational inequalities[END_REF]Thm 2.1]. The study of stationary conditions of (2) has been focused on S-stationary conditions assuming additional assumptions on the set of admissible controls. In [START_REF] Meyer | A priori finite element error analysis for optimal control of the obstacle problem[END_REF], the authors consider a discretized version of this problem to prove existence of solutions and study the stationary properties of this problem. The satisfaction of this condition had some practical interest for instance in [START_REF] Meyer | A priori finite element error analysis for optimal control of the obstacle problem[END_REF] to prove convergence of the discretization scheme and discretization error estimates.

Locomotion problem

The locomotion problem is to move from a given start to a given end position without considering individual steps as a human would do them. This macroscopic perspective considers a plant with continuous dynamics that can be described by ordinary differential equations. If combined with a suitable cost function one obtains a standard optimal control problem. The direct approach to optimal control is chosen here and thus a combination of a discretization technique and a non-linear optimization method is used. The goal of the considered inverse optimal control task is to determine a cost function within a given parametrized family of cost functions such that the corresponding optimal control result has minimal distance to given data. In consequence, this problem is a special bilevel optimal control problem where the lower level is the optimal control problem and the upper level is the inversion problem.

In [START_REF] Albrecht | Mathematical programs with complementarity constraints in the context of inverse optimal control for locomotion[END_REF], the authors consider numerical methods to solve this problem using relaxation method SS and SU as well as some lifting approach to solve the corresponding MPCC.

Robot motion planning

The complementarity constraint is the most popular degenerate constraint, but the vanishing constraint also appears in a very natural way, since it can be used to express logic implication, i.e. for some index i

(G i (x)H i (x) ≤ 0, H i (x) ≥ 0) ⇐⇒ (0 < H i (x) =⇒ G i (x) ≤ 0) .
One example of logic constraints in a real-world application arises in robot motion planning [START_REF] Latombe | Robot motion planning[END_REF]. Here, a communication network of a given density needs to be maintained among a swarm of independent mobile robots. For each pair (i, j) of robots, H i,j (x) > 0 indicates that the pair is communicating. Then, 0 ≤ G i,j (x) must be satisfied to ensure that the distance between robots i and j actually allows for communication. Conversely, this distance constraint vanishes for each pair (i, j) of robots with H i,j (x) = 0 which do not communicate. The study of an active-set approach for the related MPVC as well as numerical results have been shown in [START_REF] Kirches | A parametric active set method for quadratic programs with vanishing constraints[END_REF].

Preliminaries

In this section, we introduce some definitions, some preliminary notions and their consequences.

Given x * ∈ X , we denote In a comprehensive way, we denote I 00 CC = I 00 ∩ I CC . The polar cone of a cone K is a closed and convex cone defined by K

I +0 := {i | G i (x * ) > 0 and H i (x * ) = 0}, I -0 := {i | G i (x * ) < 0 and H i (x * ) = 0}, I ±0 := I +0 ∪ I -0 , I -+ := {i | G i (x * ) < 0 and H i (x * ) > 0}, I 0+ := {i | G i (x * ) = 0 and H i (x * ) > 0}, I 00 := {i | G i (x * ) = 0 and H i (x * ) = 0}.
• := {d | d T x ≤ 0 ∀x ∈ K}.
The tangent cone of a set Ω at x * ∈ Ω is a closed cone defined by

T Ω (x * ) := {d | d = lim k→∞ t k (x k -x * ) with t k ≥ 0 and x k → x * with x k ∈ Ω}.
The regular (or Fréchet) normal cone of a set Ω at x * ∈ Ω is a closed cone defined by

NΩ (x * ) := {d | d T (x -x * ) ≤ o( x -x * ) ∀x ∈ Ω}.
The limiting (or Mordukhovich) normal cone of a set Ω at x * ∈ Ω is a closed cone defined by

N Ω (x * ) := {d | d = lim k→∞ d k with d k ∈ NΩ (x k ) and x k → x * with x k ∈ Ω}.
We consider the specialized sets

L M P CC (x * ) := {d | 0 ≤ ∇G 1i (x * ) T d ⊥ ∇H 1i (x * ) T d ≥ 0 (i ∈ I 00 ), ∇G 1i (x * ) T d ≥ 0 (i ∈ I +0 ), ∇H 1i (x * ) T d ≥ 0 (i ∈ I 0+ )}, L M P V C (x * ) := {d | ∇H 2i (x * ) T d = 0 (i ∈ I +0 ), ∇H 2i (x * ) T d ≥ 0 (i ∈ I 00 ∪ I -0 ), ∇G 2i (x * ) T d ≤ 0 (i ∈ I 0+ ), (∇H 2i (x * ) T d)(∇G 2i (x * ) T d) ≤ 0 (i ∈ I 00 )},
and

L OM CC (x * ) := {d | d T ∇H 3i (x * ) = 0 (i ∈ I ±0 ), d T ∇H 3i (x * ) ≥ 0 (i ∈ I 00 ), d T ∇G 3i (x * ) = 0 (i ∈ I 0+ ), (d T ∇G 3i (x * ))(d T ∇H 3i (x * )) = 0 (i ∈ I 00 )}.
The generalized linearized cone of (1) at x * ∈ X is the closed cone defined by

L X := {d | ∇g(x * ) T d ≤ 0} ∩ L M P CC (x * ) ∩ L M P V C (x * ) ∩ L OM CC (x * ).
Note that this cone is not polyhedral and is in general not convex. However, we denote it linearized cone since it can be interpreted as a first order approximation of the tangent cone of X at x * .

Definition 3.1. A point x * ∈ X is said B-stationary if -∇f (x * ) ∈ L X (x * ) • .
We see from this definition that a B-stationary point is closely linked with local minima of a linearization of (1). This is formalized in the following result. Theorem 3.2. Let x * ∈ X be a local minimum of (1) that satisfies the following constraint qualification:

T X (x * ) • = L X (x * ) • . (3) 
Then, x * is a B-stationary point.

Proof. It follows from local optimality of x * that

∇f (x * ) T d ≥ 0, ∀d ∈ T X (x * ), which implies -∇f (x * ) ∈ T X (x * ) • .
Using the constraint qualification (3), x * is then a B-stationary point.

Obviously, computing a B-stationary point is already a very hard problem. Thus, in the next section, we define some other optimality conditions that are more tractable from a computational point of view.

Optimality Conditions and Constraint Qualifications

We introduce two conditions that we will show are interesting optimality conditions for this problem. We use here the following notation ∇F (

x * )N X (F (x * )) = {∇F (x * )ν | ν ∈ N X (F (x * ))}. Definition 4.1. A point x * ∈ X is said • M-stationary if -∇f (x * ) ∈ ∇F (x * )N X (F (x * )); • S-stationary if -∇f (x * ) ∈ ∇F (x * ) NX (F (x * )).
We observe that S-stationarity implies M-stationarity. In the special case where q1 + q2 + q3 = 0, the problem ( 1) is reduced to a classical non-linear program. In this case, it is well-known that under a classical constraint qualification, for instance Guignard Constraint Qualification (GCQ) T X (x * ) • = L X (x * ) • , a good optimality condition is given by the KKT condition. We say that x * ∈ X is a KKT point if there exists

λ g ∈ R p + with λ G i = 0 ∀i / ∈ I g (x *
) such that -∇f (x * ) = ∇g(x * )λ g . The following result shows the link between S-stationary points and KKT points of (1). The Lagrangian function associated to (1) at x * is given by

L(x * ) := f (x * ) + λ g g(x * ) -ν G ∇G(x * ) -ν H ∇H(x * ), where (λ, ν G , ν H ) ∈ R p × R q × R q . Theorem 4.2.
x * is a KKT point of (1) ⇐⇒ x * is an S-stationary point.

Furthermore, this condition can be explicitly written as

                           ∇L(x * ) = 0, λ g i = 0 (i / ∈ I g ), λ g i ≥ 0 (i ∈ I g ), ν G i = 0 (i ∈ I +0 CC ), ν H i = 0 (i ∈ I 0+ CC ), ν G i ≥ 0, ν H i ≥ 0 (i ∈ I 00 CC ). ν G i = 0 (i ∈ I ±0 V C ∪ I -+ V C ), ν G i ≤ 0 (i ∈ I 0+ V C ), ν H i = 0 (i ∈ I 0+ V C ∪ I -+ V C ), ν H i ≥ 0 (i ∈ I -0 V C ) ν H i ≥ 0, ν G i = 0 (i ∈ I 00 V C ), ν H i = 0 (i ∈ I 0+ KC ), ν G i = 0 (i ∈ I ±0 KC ), ν G i = 0, ν H i ≥ 0 (i ∈ I 00 KC ). (4) 
Proof. The condition ( 4) is obtained in a straightforward way from the definition of KKT point. It remains to show that it is equivalent to the Definition 4.1.

We know that for a given finite collection of sets Γ = ∩ i Γ i ⊂ R n it holds true that NΓ (x * ) = ∩ i NΓi (x * ) by [START_REF] Rockafellar | Variational analysis[END_REF]Proposition 6.41]. Thus, it is sufficient to compute NC1 (x * ), NC2 (x * ) and NC3 (x * ):

• For C 1 , it has been pointed out in [14, Proposition 2.1] that NC1 (a, b) =    (d 1 , d 2 ) d 1 = 0, d 2 ∈ R if a = 0 < b, d 1 ∈ R, d 2 = 0 if a > 0 = b, d 1 ≤ 0, d 2 ≤ 0 if a = b = 0    , • For C 2 , direct computation gives NC2 (a, b) =            (d 1 , d 2 ) d 1 = 0, d 2 ≤ 0 if a < 0 = b, d 1 = 0, d 2 ∈ R if a > 0 = b, d 1 ≥ 0, d 2 = 0 if a = 0 < b, d 1 = 0, d 2 = 0 if a < 0 < b, d 1 = 0, d 2 ≤ 0 if a = b = 0            , • For C 3 , direct computation gives NC3 (a, b) =    (d 1 , d 2 ) d 1 ∈ R, d 2 = 0 if a = 0 < b, d 1 = 0, d 2 ∈ R if a = 0 = b, d 1 = 0, d 2 ≤ 0 if a = b = 0    .
This concludes the proof.

In the special case of q1 = q2 = 0, i.e. only OMCC, with

n 1 = n -q3 such that x, y ∈ R n1 × R q3 and G 3 (x, y) = x, H(x, y) = y and f (x, y) = f (x) we get: -∇f (x * ) = λ g ∇g(x * ) -ν G ∇G(x * ) -ν H ∇H(x * ), λ g i = 0 (i / ∈ I g (x * )), ν H = 0 (i ∈ I 0+ ), ν H ≥ 0 (i ∈ I 00 ), ν G = 0 (i ∈ I 00 ∪ I +0 ∪ I -0 ). ( 5 
)
This condition corresponds to the definition of S-stationary point for OMCC in [START_REF] Burdakov | Mathematical programs with cardinality constraints: Reformulation by complementarity-type conditions and a regularization method[END_REF]. In the mentioned paper, the authors prove that under a weak constraint qualification a local minimum of the problem satisfies (5). However, this is no longer true in our more general context of kink constraints as illustrated by the following example.

Example 1. Consider the following three dimensional example:

min x∈R 3 x 2 -x 3 s.t. x 3 -4x 1 ≤ 0, x 3 -4x 2 ≤ 0, x 2 ≥ 0, x 1 • x 2 = 0.
S-stationary condition for this problem at the local minimum x * = (0, 0, 0) T yields to

  0 -1 1   = λ 1   -4 0 1   + λ 2   0 -4 1   -ν G   1 0 0   -ν H   0 1 0   , λ 1 ≥ 0, λ 2 ≥ 0, ν G = 0, ν H ≥ 0.
However, the only solution in the above equation is

λ 1 = 0, λ 2 = 1, ν G = 0, ν H = -3,
which is a contradiction with the sign of the multiplier ν H .

Similar examples can be found for MPCC and MPVC in the literature. This phenomenon is generic from degenerate non-linear program as [START_REF] Achtziger | Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications[END_REF].

Theorem 4.3. The M-stationarity condition at x * ∈ X is equivalent to                            ∇L(x * ) = 0, λ g i = 0 (i / ∈ I g ), λ g i ≥ 0 (i ∈ I g ), ν G i = 0 (i ∈ I +0 CC ), ν H i = 0 (i ∈ I 0+ CC ), ν G i ν H i = 0 or ν G i > 0, ν H i > 0 (i ∈ I 00 CC ), ν G i = 0 (i ∈ I ±0 V C ∪ I -+ V C ), ν G i ≤ 0 (i ∈ I 0+ V C ), ν H i = 0 (i ∈ I 0+ V C ∪ I -+ V C ), ν H i ≥ 0 (i ∈ I -0 V C ) ν G i ν H i = 0, ν G i ≤ 0 (i ∈ I 00 V C ), ν H i = 0 (i ∈ I 0+ KC ), ν G i = 0 (i ∈ I ±0 KC ), ν G i ν H i = 0 (i ∈ I 00 KC ). (6) 
Proof. We proceed in a similar way as in Theorem 4.2.

We know that for a given finite collection of sets Γ =

∩ i Γ i ⊂ R n it holds true that N Γ (x * ) = ∩ i N Γi (x *
) by [START_REF] Rockafellar | Variational analysis[END_REF]Proposition 6.41]. Thus, it is sufficient to compute N C1 (x * ),N C2 (x * ) and N C3 (x * ). It can be noted here that these sets only differ for indices i ∈ I 00 compared to those from the proof of Theorem 4.2.

• For C 1 , it has been proved in [14, Proposition 2.1] that N C1 (a, b) =    (d 1 , d 2 ) d 1 = 0, d 2 ∈ R if a = 0 < b, d 1 ∈ R, d 2 = 0 if a > 0 = b, either d 1 d 2 = 0 or d 1 ≤ 0, d 2 ≤ 0 if a = b = 0    . • For C 2 , direct computation gives NC2 (a, b) =            (d 1 , d 2 ) d 1 = 0, d 2 ≤ 0 if a < 0 = b, d 1 = 0, d 2 ∈ R if a > 0 = b, d 1 ≥ 0, d 2 = 0 if a = 0 < b, d 1 = 0, d 2 = 0 if a < 0 < b, d 1 d 2 = 0, d 1 ≥ 0 if a = b = 0            , • For C 3 , direct computation gives NC3 (a, b) =    (d 1 , d 2 ) d 1 ∈ R, d 2 = 0 if a = 0 < b, d 1 = 0, d 2 ∈ R if a = 0 = b, d 1 d 2 = 0 if a = b = 0    .
This concludes the proof.

The observation that S-stationarity may not hold at a local minimum has motivated the following key result.

Theorem 4.4. Let x * ∈ X be a local minimum of (1) that satisfies the following constraint qualification:

T X (x * ) • ⊂ ∇F (x * )N X (F (x * )). ( 7 
)
Then, x * is an M-stationary point. Conversely, if x * ∈ X is an M-stationary point, then (7) holds.

Proof. The first part of the proof follows the exact same steps of Theorem 3.2. We now prove the converse. Let x * be an M-stationary point. For any d ∈ T X (x * ), by [START_REF] Gould | A necessary and sufficient qualification for constrained optimization[END_REF], there exists a smooth function ϕ such that x * is a local optimum of min x∈X ϕ(x) and -∇ϕ(x * ) = d. It follows that x * is an M-stationary point of min x∈X ϕ(x) and hence, by Definition 4.1, we have

d = -∇ϕ(x * ) ⊂ ∇F (x * )N X (F (x * )).
Since, we choose arbitrarily d, we have

T X (x * ) • ⊂ ∇F (x * )N X (F (x * )).
We know from [START_REF] Guo | Notes on some constraint qualifications for mathematical programs with equilibrium constraints[END_REF] and [START_REF] Dussault | Mathematical programs with vanishing constraints: Constraint qualifications, their applications and a new regularization method[END_REF] respectively for MPCC and MPVC that the condition [START_REF] Červinka | Constraint qualifications and optimality conditions for optimization problems with cardinality constraints[END_REF] is the weakest constraint qualification that ensures such result. Besides, in [START_REF] Dussault | Mathematical programs with vanishing constraints: Constraint qualifications, their applications and a new regularization method[END_REF] the authors give an explicit formulation of this condition. It is to be noted that both constraint qualifications in Theorem 3.2 and Theorem 4.4 are independent from the choice of the objective function.

We conclude this section by showing that condition (3) given in Theorem 3.2 is stronger than condition [START_REF] Červinka | Constraint qualifications and optimality conditions for optimization problems with cardinality constraints[END_REF] given in Theorem 4.4.

Theorem 4.5. Let x * ∈ X satisfies (3), then it also satisfies [START_REF] Červinka | Constraint qualifications and optimality conditions for optimization problems with cardinality constraints[END_REF].

Example 3.1 in [START_REF] Guo | Notes on some constraint qualifications for mathematical programs with equilibrium constraints[END_REF] in the context of MPCC shows that this result is sharp, since we do not have the equality in general.

Remark 2. Another degenerate kind of constraint that could have been considered is the "cross constraint", i.e.

{x | G(x) • H(x) = 0}.

In this case, a remarkable phenomenon arises, since the Fréchet normal cone is then reduced to the singleton 0, while the limiting normal cone gives

{(d 1 , d 2 ) | d 1 d 2 = 0}.
So, the S-stationary condition does not give any pertinent information.

A Constraint Qualification to Show Convergence of the Regularization Methods

In the previous sections, we introduced very weak constraint qualifications that have been used to provide optimality conditions. In particular, Theorem 4.4 shows that our goal is to define a numerical method, which converges to M-stationary points. However, both constraint qualifications are very hard to check in practice, and they may not be sufficient to prove useful algorithmic properties. In this section, we introduce a new constraint qualification and prove that it is useful in an algorithmic context.

Definition 5.1. G-GCRSC holds at x * if for any partition

I 00 CC = A CC ∪ B CC ∪ C CC , I 00 V C = A V C ∪ B V C , I 00 KC = A KC ∪ B KC , such that p i=1 ν g i ∇g i (x * ) - q i=1 ν G i ∇G i (x * ) - q i=1 ν H i ∇H i (x * ) = 0, with 
ν g i = 0 (i / ∈ I g ), ν G i = 0 (i / ∈ I 0+ CC ∪ A CC ∪ I 0+ V C ∪ A V C ∪ I 0+ KC ∪ A KC ), ν H i = 0 (i / ∈ I +0 CC ∪ A CC ∪ I ±0 V C ∪ B V C ∪ I ±0 KC ∪ B KC ),
and

ν g i ≥ 0 (i ∈ I g (x * )), ν G i and ν H i ≥ 0 (i ∈ A CC ), ν G i > 0 (i ∈ C CC ), ν H i (i ∈ B CC ) > 0, ν G i ≤ 0 (i ∈ I 0+ V C ∪ A V C ), ν H i ≥ 0 (i ∈ I -0 V C
), there exists δ > 0 such that the family of gradients

{∇g i (x) (i ∈ I 1 ), ∇G i (x) (i ∈ I 3 ), ∇H i (x) (i ∈ I 4 )}
has the same rank for every x ∈ B δ (x * ), where

I 1 := {i ∈ I g (x * )| -∇g i (x * ) ∈ P}, I 3 := I 0+ CC ∪ C CC ∪ I 0+ KC ∪ A KC ∪ {i ∈ A CC ∪ I 0+ V C ∪ A V C |∇G i (x * ) ∈ P}, I 4 := I +0 ∪ B ∪ I -0 KC ∪ {i ∈ A CC |∇H i (x * ) ∈ P} ∪ {i ∈ I -0 V C | -∇H i (x * ) ∈ P},
with the notations

P = ∇F (x * )N X (F (x * )) and B = B CC ∪ B V C ∪ B KC .
In the special case where there is no partition of I 00 that satisfies the condition of the definition above, the gradients are obviously linearly independent (G-LICQ).

Furthermore, G-GCRSC is weaker than assuming constant rank of the family of gradients of active constraints in a neighborhood (G-CRCQ), since the G-GCRSC condition considers only the family of gradients that are linearly dependent with coefficients that have M-stationary signs.

During the process of an iterative algorithm, we are interested in the study of accumulation points of sequences computed by the relaxation method. It is common to compute sequences that satisfy the following assumptions.

Assumption 5.1. Let {x k } and 0 = {ν k } ∈ R p + × R q1+q2+q3 × R q1+q2+q3 be such that x k → x * and (i) ∇f (x k ) + p i=1 ν g,k i ∇g i (x k ) - q i=1 ν G,k i ∇G i (x k ) - q i=1 ν H,k i ∇H i (x k ) → 0, with ν g,k ≥ 0 (i ∈ I g ), ν G i ≤ 0 (i ∈ I 0+ V C ),ν H i ≥ 0 (i ∈ I -0 V C ). (ii)    lim k→∞ ν g,k i ν k ∞ = 0 (i / ∈ I g ), lim k→∞ ν G,k i ν k ∞ = 0 (i / ∈ I 0+ CC ∪ I 0+ V C ∪ I 0+ KC ) and lim k→∞ ν H,k i ν k ∞ = 0 (i / ∈ I +0 CC ∪ I ±0 V C ∪ I ±0 KC ), (iii)            lim k→∞ ν G,k i ν H,k i ν k 2 ∞ = 0 or lim k→∞ ν G,k i ν k ∞ > 0, lim k→∞ ν H,k i ν k ∞ > 0 (i ∈ I 00 CC ), lim k→∞ ν G,k i ν H,k i ν k 2 ∞ = 0 or lim k→∞ ν G,k i ν k ∞ < 0 (i ∈ I 00 V C ), lim k→∞ ν G,k i ν H,k i ν k 2 ∞ = 0 (i / ∈ I 00 KC ),
(iv) the family of gradients of non-vanishing multipliers in (i) are linearly independent.

This condition may correspond to some kind of sequential optimality conditions.

Remark 3. Note that assumption (iv) is not restrictive. According to [START_REF] Schwartz | Mathematical programs with complementarity constraints: Theory, methods, and applications[END_REF]Lemma 7.1], we can build a sequence of multipliers that satisfies (i), (ii) and (iii), such that the gradients corresponding to non-vanishing multipliers in equation (i) are linearly independent for all k ∈ N. This may change the multipliers, but previously positive ones will stay at least non-negative and vanishing multipliers will remain zero.

The first step in our analysis is to prove that the sequences of multipliers satisfying Assumption 5.1 are bounded.

Theorem 5.2. Given two sequences {x k },{ν k } that satisfy Assumption 5.1. Suppose that x k → x * ∈ X , and G-CRSC holds at x * . Then, the sequence {ν k } is bounded.

The proof is skipped here, since it is a straightforward extension of the ones presented for MPCC and MPVC respectively in [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF] and [START_REF] Dussault | Mathematical programs with vanishing constraints: Constraint qualifications, their applications and a new regularization method[END_REF].

A major consequence of the previous result is now stated.

Corollary 1. Given two sequences {x k },{ν k } that satisfy Assumption 5.1. Suppose that x k → x * ∈ X , and G-CRSC holds at x * . Then, x * is an M-stationary point of (1).

Up to this point, it could be noticed that boundedness is not necessary to obtain Corollary 1, however, it will be of importance in the study of the convergence of the relaxation method.

6 UFO : Unified Framework of Optimization Methods

Regularization Methods for (1)

Consider the following non-linear parametric program R t (x) parametrized by the vector t:

min x∈R n f (x) s.t. g(x) ≤ 0, h(x) = 0, G(x) ≥ -tG , H(x) ≥ -tH , Φ(G(x), H(x); t) ≤ 0, (R t (x))
with tG , tH : R l + → (R + ∪ {+∞}) q1+q2+q3 such that tG i = ∞ for i ∈ I V C ∪ I KC and t(t) = tG I CC = tH I CC ∪I V C ∪I KC and t : R l + → R + such that lim t →0 t(t) → 0 and the relaxation map Φ : R n → R q1+q2+2q3 . In the sequel we skip the dependency in t and denote t to simplify the notation. It is to be noted here that t is a vector of an arbitrary size denoted l as for instance in [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF] where l = 2. Remark 4. Note here that the length of the relaxation map has been augmented due to the cardinality constraints, which requires a special care. We make the following assumption for i ∈ I KC that the cardinality constraint is relaxed through two relaxation maps:

Φ i (G(x), H(x); t) ≤ 0, Φ i (-G(x), H(x); t) ≤ 0. ( 8 
)
The generalized Lagrangian function of (R t (x)) is defined for η

∈ R p × R m × R q1+q2+q3 × R q1+q2+q3 × R q1+q2+2q3 as L r Rt (x, η) := rf (x) + g(x) T η g -G(x) T η G -H(x) T η H + Φ(G(x), H(x); t) T η Φ .
Let I Φ be the set of active indices for the constraint Φ(G(x), H(x); t) ≤ 0, i.e.

I Φ (x; t) := {i | Φ i (G(x), H(x); t) = 0} ∪ {i | Φ i (-G(x), H(x); t) = 0}.
The definition of a generic relaxation scheme is completed by the following hypotheses:

• Φ(G(x), H(x); t) is a continuously differentiable real valued map extended component by component, so that

Φ i (G(x), H(x); t) := Φ(G i (x), H i (x); t). (H1) 
• Direct computations give that the gradient with respect to x for i ∈ {1, . . . , q1 + q2 + 2q3} of Φ i (G(x), H(x); t) for all x ∈ R n is given by

∇ x Φ i (G(x), H(x); t) = ∇G i (x)α H i (x; t) + ∇H i (x)α G i (x; t),
where α H (x; t) and α G (x; t) are continuous maps by smoothness assumption on Φ(G(x), H(x); t), which we assume satisfy ∀x ∈ X

lim t →0 α H (x; t) = H(x) and lim t →0 α G (x; t) = G(x). (H2) 
• At the limit when t goes to 0, the feasible set of the non-linear parametric program (R t (x)) must converge to the feasible set of (1). In other words, given F(t) the feasible set of (R t (x)) it holds that lim

t →0 {x | Φ(G(x), H(x); t) ≤ 0} = {x | G(x) • H(x) ≤ 0}, ( H3 
)
where the limit is assumed pointwise.

• At the boundary of the feasible set of the relaxation of the complementarity constraint it holds that for all i ∈ {1, . . . , q1

+ q2 + 2q3} Φ i (G(x), H(x); t) = 0 =⇒ F Gi (x; t) = 0 or F H i (x; t) = 0, ( H4 
)
where

F G (x; t) := G(x) -ψ(H(x); t), F H (x; t) := H(x) -ψ(G(x); t), (9) 
and ψ is a continuously differentiable real valued function extended component by component. Note that the function ψ may be two different functions in [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF] as long as they satisfy the assumptions below. Those functions ψ(H(x); t), ψ(G(x); t) are non-negative for all

x ∈ {x ∈ R n | Φ(G(x), H(x); t) = 0} and satisfy ∀z ∈ R q1+q2+q3 lim t →0 ψ(z; t) = 0. ( H5 
)
Remark 5. These assumptions are not restrictive and motivated by the fact that Φ(G(x), H(x); t) is an approximation (at the limit) of G(x) • H(x) as shown by (H3). (H1) is coherent with the C 1 assumptions on all the functions involved in [START_REF] Achtziger | Mathematical programs with vanishing constraints: Optimality conditions and constraint qualifications[END_REF]. By construction of Φ and regularity assumption, (H2) is logical. Finally, (H4) gives a structure of the relaxation map, where (H5) is coherent with (H3).

Remark 6. According to (8), we also consider Φ i (-G(x), H(x); t). We clarify here how the hypotheses extend to this case. The gradient of the relaxation map in (H2) becomes

∇ x Φ i (G(x), H(x); t) = -∇G i (x)α H i (x; t) -∇H i (x)α G i (x; t),
while in (H4) we get

Φ i (G(x), H(x); t) = 0 =⇒ -F Gi (x; t) = 0 or F H i (x; t) = 0.
We will prove in Theorem 6.4 that this generic relaxation scheme for (1) converges to an M-stationary point requiring the following essential assumption on the functions ψ. As t goes to 0 the derivative with respect to the first variable of

ψ satisfies ∀z ∈ R q1+q2+q3 lim t →0 ∂ψ(x; t) ∂x x=z = 0. ( H6 
)
As a direct consequence of these assumptions, we can compute an explicit formula for the relaxation map at the boundary of the feasible set. Lemma 6.1. Given Φ(G(x), H(x); t) be such that for all i ∈ I Φ (x; t)

Φ i (G(x), H(x); t) = F Gi (x; t)F H i (x; t).
The gradient with respect to x of Φ i (G(x), H(x); t) for i ∈ I Φ (x; t) is given by

∇ x Φ i (G(x), H(x); t) := ∇G i (x)α H i (x; t) + ∇H i (x)α G i (x; t), with α G i (x; t) = F Gi (x; t) - ∂ψ(x; t) ∂x x=Hi(x) F H i (x; t), α H i (x; t) = F H i (x; t) - ∂ψ(x; t) ∂x x=Gi(x)
F Gi (x; t).

We now give some examples of functions ψ.

Example 2. Some examples of functions ψ are:

• ψ(x; t) = t as in [START_REF] Kanzow | A New Regularization Method for Mathematical Programs with Complementarity Constraints with Strong Convergence Properties[END_REF][START_REF] Hoheisel | Mathematical programs with vanishing constraints: a new regularization approach with strong convergence properties[END_REF][START_REF] Burdakov | Mathematical programs with cardinality constraints: Reformulation by complementarity-type conditions and a regularization method[END_REF] or [START_REF] Kadrani | A new regularization scheme for mathematical programs with complementarity constraints[END_REF].

• ψ(x; t) = t 1 θ t2 (G(x))
, where θ t2 : R →] -∞, 1] are continuously differentiable non-decreasing concave function with θ(0) = 0 and lim t2→0 θ t2 (x) = 1 ∀x ∈ R ++ completed in a smooth way for negative values.

This method considered in [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF][START_REF] Dussault | Mathematical programs with vanishing constraints: Constraint qualifications, their applications and a new regularization method[END_REF] was called butterfly relaxation in the aforementioned papers.

It should be noted that ψ in F G and F H can be different, to get an asymmetric regularization as in [START_REF] Dussault | Mathematical programs with vanishing constraints: Constraint qualifications, their applications and a new regularization method[END_REF].

Theorem 6.2. Assume that the relaxation map Φ satisfies all the above assumption with the construction in [START_REF] Colombo | Optimal control of the sweeping process over polyhedral controlled sets[END_REF]. Then,

lim t →0 F(t) = X ,
where the limit is assumed pointwise.

The proof is straightforward, using that lim t →0 t(t) = 0 and the combination of (H3) with [START_REF] Colombo | Optimal control of the sweeping process over polyhedral controlled sets[END_REF].

Table 1: Feasible sets of the butterfly relaxation for the three families of degenerate constraints.

Convergence Properties of the Regularization Methods

The previous section introduces a large class of regularization methods for (1). The algorithmic scheme compute a sequence of approximate stationary points for each value of a sequence of parameters {t k } decreasing to zero.

The main difficulty here is that convergence property are deteriorated by the approximate computation of the stationary points. It has been shown in [START_REF] Kanzow | The Price of Inexactness: Convergence Properties of Relaxation Methods for Mathematical Programs with Complementarity Constraints Revisited[END_REF]Theorem 9 and 12] or [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF]Theorem 4.3] for the KDB, L-shape and butterfly relaxations that under this definition, sequences of epsilon-stationary points only converge to weak-stationary point without additional hypothesis.

In order to attain our goal to compute an M-stationary point with a realistic method, we introduce a specific definition of approximate stationary point. The definition of epsilon-stationary point called strong epsilon-stationary point, which is more stringent regarding the complementarity constraint.

In the sequel, we prove the strong convergence property of the regularization methods with this notion (Theorem 6.4) and give an algorithm (Algorithm 1).

Definition 6.3. x k is a strong epsilon-stationary point for (R t (x)) with k ≥ 0 if there exists η k ∈ R p × R m × R 3q such that ∇L 1 Rt (x k , η k ; t k ) ∞ ≤ k and g i (x k ) ≤ k , η g,k i ≥ 0, |g i (x k )η g,k i | ≤ k ∀i ∈ {1, . . . , p}, |h(x k )| ≤ tk + O( k ) ∀i ∈ {1, . . . , m}, G i (x k ) + tG k,i ≥ -k , η G,k i ≥ 0, η G,k i (G i (x k ) + tG k,i ) ≤ k ∀i ∈ {1, . . . , q}, H i (x k ) + tH k,i ≥ -k , η H,k i ≥ 0, η H,k i (H i (x k ) + tH k,i ) ≤ k ∀i ∈ {1, . . . , q}, Φ i (G(x k ), H(x k ); t k ) ≤ 0, η Φ,k i ≥ 0, η Φ,k i Φ i (G(x k ), H(x k ); t k ) = 0 ∀i ∈ {1, . . . , q}.
We use here the convention that

|η G i tG i | ≤ for tG i = ∞ =⇒ η Φ i = 0. The representation of ∇Φ gives that ∇L 1 Rt (x, η; t) = ∇f (x) + p i=1 η g i ∇g i (x) - q i=1 ν G i ∇G i (x) - q i=1 ν H i ∇H i (x), (10) 
where (η g , η G , η H , η Φ ) ≥ 0 and ν g := η g ,

ν G i :=      η G i -η Φ i α H i (x; t), if i ∈ I CC , -η Φ i α H i (x; t), if i ∈ I V C , -(η Φ i -η Φ i+q3 )α H i (x; t), if i ∈ I KC ,
and

ν H i :=      η H i -η Φ i α G i (x; t), if i ∈ I CC , η H i -η Φ i α G i (x; t), if i ∈ I V C , η H i -(η Φ i -η Φ i+q3 )α G i (x; t), if i ∈ I KC . (11) 
The following theorem is a direct consequence of both previous lemmas and is our main statement.

Theorem 6.4. Given {t k } a sequence of parameters and { k } a sequence of non-negative parameters such that both sequences decrease to zero as k ∈ N goes to infinity. Assume that k = o( tk ). Let {x k , η k } be a sequence of strong epsilon-stationary points of (R t (x)) according to definition 6.3 for all k ∈ N with x k → x * such that G-CRSC holds at x * . Then, x * is an M-stationary point of (1).

Proof. The proof relies on the use of Corollary 1. So, it is sufficient to check that up to some sufficiently large k the sequence {x k } and the sequence {ν k } defined in (11) satisfy Assumption 5.1. In particular, we choose a sequence ν k that satisfies condition (iv) of Assumption 5.1. This is always possible according to Remark 3. We denote

ν k ∞ := ν g,k , ν G,k , ν H,k
∞ that without loss of generality we assume to be non-zero for k large.

• By definition of the sequence, it holds that

∇L 1 Rt (x k , ν k ; t k ) ∞ ≤ k , thus as k → ∞ we obtain ∇L 1 Rt (x k , ν k ; t k ) → 0. A same argument gives that ν g,k ≥ 0. We now show that for k sufficiently large any ν G,k i ≤ 0 for i ∈ I 0+ V C and ν H,k i ≥ 0 for i ∈ I -0 V C . Let i ∈ I 0+ V C , by assumption (H2), α H i (x k ; t k ) → H i (x * ) > 0. Thus, for k sufficiently large α H i (x k ; t k ) > 0 and since η Φ,k i ≥ 0 we get ν G,k i ≤ 0.
A straightforward adaptation of this reasoning can be used to show that ν H,k i ≥ 0 for i ∈ I -0 V C . So, Assumption 5.1 (i) is checked.

• It is clear by the complementarity condition in Definition 6.3 that ν g,k i → 0 for all i / ∈ I g .

Let us now consider

i / ∈ I 0+ CC ∪ I 0+ V C ∪ I 0+ KC , i.e. G i (x * ) = 0. It follows that G i (x k ) + tk → G i (x * ) = 0.
By the complementarity condition in Definition 6.3, we obtain that η G,k i = 0 for k sufficiently large.

We now consider η Φ,k i > 0 for k sufficiently large, otherwise the proof of this case is completed (ν G,k i = 0). By Definition 6.3, it implies that i ∈ I Φ and so either F Gi (x k ; t k ) = 0 or F H i (x k ; t k ) = 0 according to (H4). However, F Gi (x k ; t k ) = 0 is not possible, since F Gi (x k ; t k ) → G i (x * ) = 0 by (H5). So, F H i (x k ; t k ) = 0 and by [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF] we have η H,k i → 0 as ψ is non-negative and k = o( tk ). We can now use Lemma 6.1 to obtain

α G i (x k ; t k ) = F Gi (x k ; t k ), and α H i (x k ; t k ) = - ∂ψ(x; t k ) ∂x x=Gi(x k ) F Gi (x k ; t k ).
This yields to the following inequalities for k sufficiently large

ν k ∞ ≥ ν H,k i = ν G,k i ∂ψ(x;t k ) ∂x x=Gi(x k )
.

It follows that lim

k→∞ ν G,k i ν k ∞ = 0.
By the exact same way, we can prove that lim

k→∞ ν H,k i ν k ∞ = 0 for all i / ∈ I +0 CC ∪I ±0 V C ∪I ±0
KC , which concludes this part and Assumption 5.1 (ii) is checked.

• Let i ∈ I 00 . It is sufficient to consider the case i ∈ I Φ for k sufficiently large and in particular {η Φ,k } is unbounded, otherwise this case is directly satisfied. By Definition 6.3, it implies that i ∈ I Φ and so either F Gi (x k ; t k ) = 0 or F H i (x k ; t k ) = 0 according to (H4). We consider F H i (x k ; t k ) = 0 (the other case is a straightforward adaptation) and we can now use Lemma 6.1 to obtain

α G i (x k ; t k ) = F Gi (x k ; t k ), and α H i (x k ; t k ) = - ∂ψ(x; t k ) ∂x x=Gi(x k ) F Gi (x k ; t k ).
Since F H i (x k ; t k ) = 0, by [START_REF] Dussault | The new butterfly relaxation methods for mathematical program with complementarity constraint[END_REF] we have η H,k i → 0 as ψ is non-negative and k = o( tk ).

Let 0 = C < ∞ such that lim k→∞ ν H,k i / ν ∞ = C.
If C = 0, the result would follow as lim

k→∞ |ν H,k i |/ ν ∞ ≤ ∞.
So, assume that C = 0. Then, lim k→∞

-∂ψ(x;t k ) ∂x x=Gi(x k ) ν H,k i
/ η ∞ = 0 by (H6). Thus, we get

lim k→∞ ν G,k i / ν ∞ = lim k→∞ η G,k i / ν ∞ ≥ 0.
We conclude by examining two cases: either G i (x k ) ≥ 0 or

G i (x k ) ≤ 0. If G i (x k
) ≥ 0 the product of the limit is vanishing, since the complementarity condition and k = o( tk ) gives that lim

k→∞ ν G,k i / ν ∞ = lim k→∞ η G,k i = 0. It is the same argument if G i (x k ) ≤ 0 and lim k→∞ η G,k i = 0. Finally, if G i (x k ) ≤ 0 and lim k→∞ ν G,k i / ν ∞ = lim k→∞ η G,k i > 0, we get C ≥ 0 since G(x k ) ≤ 0 implies F G (x k ; t k ) ≤ 0 and ν H,k i = -η Φ,k i F G (x k ; t k ).
This proves that Assumption 5.1 (iii) is verified.

Finally, we can apply Corollary 1 to get the result.

Theorem (6.4) attains the ultimate goal. However it is not a trivial task to compute such a sequence of epsilon-stationary points. This is discussed in the following section.

Remark 7. Although we do not study the existence of strong epsilon-stationary points here. The same behavior as the one explained in [START_REF] Migot | How to compute a local minimum of the MPCC[END_REF] has to be expected and the proofs can be extended. In [START_REF] Migot | How to compute a local minimum of the MPCC[END_REF]Thm 9.1 and Thm 9.2], the authors prove that reformulating (1) with slack variables for the degenerate constraints and then (R t (x)) possesses strong-epsilon stationary points in the neighbourhood of an M-stationary point. It was illustrated in the aforementioned paper that this result is no longer true without slack variables.

The Algorithm to Compute Strong Epsilon-Stationary Points

The previous section underlines the interest of considering strong epsilon-stationary points (Definition 6.3). However, it is far from obvious to see how to compute such a point in practice. We answer this essential question in this section.

Problem transformation

We make two transformations of (R t (x)) that do not alter the theoretical properties but ease the numerical approach.

First, we add slack variables on the relaxed constraints in order to satisfy the feasibility exactly as in Definition 6.3. Consider the following non-linear parametric program R t (x, s) parametrized by t:

min (x,s)∈R n ×R 2q f (x) s.t. g(x) ≤ 0, h(x) = 0, s G = G(x), s H = H(x), s G ≥ tG , s H ≥ -tH , Φ(s G , s H ; t) ≤ 0, (R s t (x, s))
with lim t →0 t = 0 + and the relaxation map Φ(s G , s H ; t) : R q1+q2+q3 × R q1+q2+q3 → R q1+q2+q3 is defined by replacing G(x) and H(x) by s G and s H in the map Φ(G(x), H(x); t).

We now penalize all the constraints that can be approximately satisfied in the Definition 6.3. The following minimization problem aims at finding (

x, s) ∈ R n × R q1+q2+q3 × R q1+q2+q3 so that min x,s Ψ ρ (x, s) := f (x) + 1 2ρ φ(x, s) s.t. s G ≥ -tG , s H ≥ -tH , Φ(s G , s H ; t) ≤ 0, (P t ρ (x, s))
where φ is the penalty function

φ(x, s) := max(g(x), 0), h(x), G(x) -s G , H(x) -s H 2 .
An adaptation of Theorem 6.4 gives the following result that validates the use of slack variables and the penalization approach.

Corollary 2. Given a decreasing sequence {ρ k } of positive parameters and { k } a sequence of non-negative parameters that decrease to zero as k ∈ N goes to infinity. Assume that k = o( tk ). Let {x k , η k } be a sequence of strong epsilon-stationary points of (P t ρ (x, s)) according to definition 6.3 for all k ∈ N with x k → x * such that G-CRSC holds at x * . If x * is feasible, then it is an M-stationary point of (1).

Proof. Assuming that x * is feasible for (1), the result is a straightforward adaptation of Theorem 6.4.

The strong assumption on the previous theorem that x * must be feasible is hard to avoid. Indeed, it is a classical pitfall of penalization methods in optimization to possibly compute a limit point that minimizes the linear combination of the constraints.

Active-Set Algorithm

We discuss here an active set method to solve the penalized problem (P t ρ (x, s)). This method is an extension of the method proposed in [START_REF] Kadrani | A globally convergent algorithm for MPCC[END_REF].

The set of points that satisfy the constraints of (R s t (x, s)) is denoted by F t, t and β t (x, s) denotes the measure of feasibility

β t (x, s) := φ(x, s) + (-s G + tG ) + 2 + (-s H + tH ) + 2 + (-Φ(s G , s H ; t)) + 2 .
Let W(s; t, t) be the set of active constraints among the constraints

s G ≥ -tG , s H ≥ -tH , Φ(s G , s H ; t) ≤ 0, (12) 
and F R t, t denotes the set of points that satisfy those constraints. We can be even more specific when for some i ∈ {1, . . . , q} the relaxed constraint is active since

Φ i (s G , s H ; t) = 0 =⇒ s H,i = ψ(s G,i ; t) or s G,i = ψ(s H,i ; t).
Remark 8. It is essential to note here that active constraints act almost like bound constraints since an active constraint means that for some i ∈ {1, . . . , q} one (possibly both) of the two cases holds

s G,i = -t or ψ(s H,i ; t), or s H,i = -t or ψ(s G,i ; t).
Considering the relaxation from Kanzow & Schwartz it is obviously a bound constraint since ψ(s G,i ; t) = ψ(s H,i ; t) = t. The butterfly relaxation gives ψ(s G,i ; t) = t 1 θ t2 (s H,i ) and ψ(s H,i ; t) = t 1 θ t2 (s G,i ). This is not can rewrite the problem in a subspace of the initial domain. Thus, we consider the following minimization problem min

(x,s)∈R n ×R |S G |+|S H | Ψ ρ (x, s S G ∪S H ) s.t. s G,i ≥ -t for i ∈ S G , s H,i ≥ -t for i ∈ S H , Φ i (s G , s H ; t) ≤ 0 for i ∈ S G ∪ S H , (14) 
where we denote

I G := {i | s Gi = -t}, I H := {i | s H i = -t}, I 0+ GH := {i | s H i = ψ(s G ; t)}, I +0 GH := {i | s Gi = ψ(s H ; t)}, I 00 GH := {i | s Gi = s H i = ψ(0; t)}, S G := {i}}\(I G ∪ I +0 GH ∪ I 00 GH ), S H := {i}}\(I H ∪ I 0+ GH ∪ I 00 GH ).
S G and S H respectively denote the set of indices where the variables s G and s H are free. Some of the fixed variables are replaced by a constant and others are replaced by an expression that depends on the free variables. It is rather clear from this observation that the use of slack variables is an essential tool to handle the non-linear bounds.

A major consequence here is that the gradient of Ψ in this subspace can be done using the composition of the derivative formula:

∇Ψ Wj ρ (x, s S G ∪S H ) = J T Wj ∇Ψ ρ (x, s), (15) 
where J Wj is an (n + 2q) × (n + #S G + #S H ) matrix defined such that

J Wj :=    J x Wj J s G Wj J s H Wj    .
The three sub-matrices used to define J Wj are computed in the following way GH , where J Wj ,i denotes the i-th line of a matrix and e i is a vector of zero whose i-th component is one. We may proceed in a similar way to compute the hessian matrix of Ψ ρ (x, s S G ∪S H ).

J x Wj = Id n , J s G Wj ,i =        e T i ,
The feasible direction d j is constructed to lie in a subspace defined by the working set and satisfying the sufficient-descent direction conditions for z j ∈ R n+|S G |+|S H | : ∇Ψ Wj (z j ) T d j ≤ -µ 0 ∇Ψ Wj (z j ) 2 , d j ≤ µ 1 ∇Ψ Wj (z j ) , (SDD)

where µ 0 > 0, µ 1 > 0.

The step length α j ∈ (0, ᾱ] is respectively computed to satisfy the Armijo and Wolfe conditions for z j ∈ R n+|S G |+|S H | : Ψ(z j + α j d j ) ≤ Ψ(z j ) + τ 0 α j ∇Ψ Wj (z j ) T d j , τ 0 ∈ (0, 1), ( 16)

∇Ψ Wj (z j + α j d j ) T d j ≥ τ 1 ∇Ψ Wj (z j ) T d j , τ 1 ∈ (τ 0 , 1). [START_REF] Jane | Necessary optimality conditions for optimization problems with variational inequality constraints[END_REF] If ᾱ satisfies the Armijo condition [START_REF] Jane | Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints[END_REF], the active set strategy adds a new active constraint and the Wolfe condition ( 17) is not enforced. Otherwise, the Armijo condition requires α < ᾱ and the Wolfe condition is enforced.

The relaxing rule is given by the following scheme : Relax some constraint i 0 if and only if the two following conditions are fulfilled:

1. η j i0 < 0;

2. No constraint was added at the arrival point (x k,j , s k,j ) and no constraint was deleted at the previous iteration.

The convergence will rely on the fact that at least one step satisfying Wolfe's condition will be performed before removing an active constraint.

Regularization scheme

Along this paper, we analyze an algorithm to solve (1) through a regularization scheme and an active setpenalization method to solve the sub-problems. The latter has been described in the previous sections. We now formally defined the regularization scheme in Algorithm 2.

Data: Let z 0 = (x 0 , s 0 ) be an initial point; Let ρ 0 be an initial value of the penalty parameter; Choose a sequence of precision { k }, a desired precision ∞ and a safeguard min ; Set k = 0 ; 6 until min(G(x k+1 ), H(x k+1 )) ∞ ≤ ∞ and φ(z k+1 ) ≤ ∞ or k < min ; 7 return: f opt := f (x k+1 ) the optimal value at the solution x opt := x k+1 or a decision of infeasibility or unboundedness. Algorithm 2: Relaxation method for Problem (1). As a consequence of Corollary 2, if the final point of the sequence computed by Algorithm 2 is feasible for (1) and satisfies G-CRSC, then it is an M-stationary point up to some precision. Convergence of Algorithm 1 deserves a specific treatment that has been proved in [START_REF] Migot | How to compute a local minimum of the MPCC[END_REF] in the context of complementarity constraints.

Conclusion

In this article, we focus on the study of popular classes of degenerate non-linear programs including MPCC, MPVC and the new Optimization Models with Kink Constraints, which generalize the OMCC. These problems are frequently encountered in many applications including several from optimal control as motivated here. We give theoretical results on optimality conditions, constraint qualification with their algorithmic application.
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A generalized framework presented in this article is used to analyze relaxation methods that aim to converge to M-stationary points. Motivated by the approximate resolution of the sub-problems we defined a new notion of approximate stationary point. We prove existence of such approximate point in the neighborhood of an M-stationary point and provide an algorithmic strategy to compute such point.

Further research concern the implementation of this algorithmic strategy in the language Julia and its application in real-world problems.

This research was partially supported by NSERC grant.

a bound constraint but we can easily use a substitution technique. This key observation is another motivation to use a formulation with slack variables.

Furthermore, a careful choice of the function ψ may allow to get an analytical solution of the following equation in α for given values of s G , s H , d s G , d s H :

Solving exactly this equation is very useful while computing the largest step so that the iterates remain feasible along a given direction. For the butterfly relaxation with θ t2 (x) = x x+t2 , the equation above is reduced to the following second order polynomial equation if s H,i + αd s H,i ≥ 0:

Algorithm 1 presents an active-set scheme to solve (P t ρ (x, s)), which is described in depth in the sequel of this section. Apart from some specific parameters most of the input data are given in this algorithm through the relaxation loop that will be discussed in Algorithm 2 (page 19).

Data:

Input Data: x k-1 , s k-1 ; precision > 0 ; ρ 0 > 0 initial value of ρ, ρ min lower bound on the penalty parameter ; Algorithm Parameters: σ ρ ∈ (0, 1) update in ρ; τ vio ∈ (0, 1); sat:=true; Initial estimate of the multiplier ν 0 ; 1 Begin ; 2 Set j := 0, ρ := ρ 0 ; 3 (x k,0 , s k,0 , W 0 , A 0 )=Projection of (x k-1 , s k-1 ) if not feasible for (P t ρ (x, s)) ; 4 while sat and ∇L

Substitution of the variables that are fixed by the active constraints in W j ;
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Compute a feasible direction d j that lies in the subspace defined by the working set W j (see [START_REF] Hoheisel | Mathematical programs with vanishing constraints: a new regularization approach with strong convergence properties[END_REF]) and satisfies the conditions (SDD);

Compute ᾱ the maximum non-negative feasible step along d j ᾱ := sup{α : (x k,j , s k,j ) + αd j ∈ F t, t} Compute a step length α j ≤ ᾱ (see [START_REF] Gould | A necessary and sufficient qualification for constrained optimization[END_REF]) such that Armijo condition ( 16) holds ;

Update the working set → W j+1 and compute A j+1 the matrix of gradients of active constraints 10 (x k,j+1 , s k,j+1 ) = (x k,j , s k,j ) + α j d j ; 11 j:=j+1 ;

) ≥ max(τ vio β t k , tk (x k,j , s k,j ), ) then 18 return: x k , s k , ρ or a decision of unboundedness. Algorithm 1: Active-Set Penalization Algorithm for the relaxed non-linear program (P t ρ (x, s)). At each step, the set W j denotes the set of active constraints of the current iterate s k,j . As pointed out in Remark 8, these active constraints fix some of the variables. Therefore, by replacing these fixed variables we