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The modelling of discrete regulatory networks combines a graph specifying the pairwise influences between the variables of the system, and a parametrisation from which can be derived a discrete transition system. Given the influence graph only, the exploration of admissible parametrisations and the behaviours they enable is computationally demanding due to the combinatorial explosions of both parametrisation and reachable state space.

This article introduces an abstraction of the parametrisation space and its refinement to account for the existence of given transitions, and for constraints on the sign and observability of influences. The abstraction uses a convex sublattice containing the concrete parametrisation space specified by its infimum and supremum parametrisations. It is shown that the computed abstractions are optimal, i.e., no smaller convex sublattice exists. Although the abstraction may introduce over-approximation, it has been proven to be conservative with respect to reachability of states.

Then, an unfolding semantics for Parametric Regulatory Networks is defined, taking advantage of concurrency between transitions to provide a compact representation of reachable transitions. A prototype implementation is provided: it has been applied to several examples of Boolean and multi-valued networks, showing its tractability for networks with numerous components.

Introduction

Qualitative models of dynamics of biological regulatory networks form a convenient framework for systems biology as they require little parametrisation on top of knowledge available in the literature. Regulatory networks account for the intertwined influences, positive and negative, between components of a system. In systems biology, these networks usually relate to gene regulation and signalling pathways. As it has been widely studied in the literature, the architecture of these networks, and in particular the presence of feedback loops, contributes to a complex emerging behaviour [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-ii. immunity control in bacteriophage lambda[END_REF][START_REF] Albert | The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster[END_REF][START_REF] Demongeot | Genetic regulation networks: circuits, regulons and attractors[END_REF].

The modelling of regulatory networks is classically done in two steps: at first, an influence graph is built from data available in the literature. This directed graph, where nodes are the components/species of the system, relates the pairwise influences, positive and/or negative. In a second step, a dynamical model is built from this influence graph. In this paper, we focus on discrete models, where the state of each node has a finite discrete domain, typically of very small size, if not Boolean [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF][START_REF] Jong | Modeling and simulation of genetic regulatory systems: A literature review[END_REF][START_REF] Laubenbacher | A computational algebra approach to the reverse engineering of gene regulatory networks[END_REF][START_REF] Bernot | Semantics of biological regulatory networks[END_REF][START_REF] Wang | Boolean modeling in systems biology: an overview of methodology and applications[END_REF].

The specification of a discrete regulatory network requires additional parameters on top of the influence graph. Indeed, whereas the influence graph establishes the potential dependencies (possibly signed) between the node value changes, they are not sufficient to determine the function which associates each node with its next value, given the global state of the network. In other words, it may be known that two species both have positive influence on the activity of a third species. However, it is rarely known if both of the activators must be present to activate the target or if just one is sufficient. In general, an arbitrary logical function may govern the joint influences. Hence, the individual target values of a node in possible combinations of its regulators' activity are (discrete) parameters; the full set of parameters required to define a concrete regulatory network is referred to as a parametrisation.

A Parametric Regulatory Network (PRN) is thus a formal model constructed to represent exactly the available biological knowledge. It contains all the influence information available in the literature, however, no assumptions are made on the unknown specifics retaining all possibilities via different parametetrisations.

The analysis of PRNs is therefore necessary to identify which parametrisations give a model satisfying given dynamical properties (existence of particular sequences of state changes, attractors, etc.). However, the exploration of possible dynamics of PRNs is hindered by dual combinatorial explosion limiting its scalability. Indeed, not only is the state space exponential in the number of nodes in the network, but the number of parametrisations is in the worst case doubly exponential in the number of nodes.

Contribution. The aim of this paper is to define an abstract semantics for PRNs to address the combinatorial explosion of the parametrisation space and of possible traces.

First, we propose an abstraction of the parametrisation space by the means of a convex sublattice that we specify by its bounds. Our abstraction can then be refined to account for possible state transitions. This leads to an abstract semantics of PRNs, where each state of the network is combined with the (abstracted) set of possible parametrisations.

We extend our method to account for monotonicity and observability constraints issued from the influence graph. Monotonicity constraints derive from the sign of influences: if a node is influenced positively (resp. negatively) by another node, a decrease (resp. increase) of the latter cannot cause the increase of the former. Observability constraints specify that there should exist states in which the related influences have an impact on the dynamics of the regulated node. Indeed, in general, even if a node is marked as regulated by another in the influence graph, we admit parametrisations where the state of the latter node never affects the value of the regulated node. Marking an influence as observable prevents such a case.

In both settings, we prove that our refinement operators lead to the best possible abstraction of the parametrisation set by the means of a single convex sublattice. This result ensures that, if a state is reached in our abstract semantics, there exists at least one parametrisation which allows a sequence of concrete transitions leading to this state. Therefore, whereas our approach relies on an over-approximation of the parametrisation set, our method does not introduce spurious transitions.

Finally, we define an unfolding semantics for PRNs which allows building a partial order representation of all the possible traces (or processes) a PRN can generate from a given initial state. Our unfolding semantics associates each process with the (abstracted) set of parametrisations that can generate it. Overall, this allows a compact representation of the possible traces of a PRN, both by exploiting concurrency to avoid redundant exploration of ordering of independent transitions; and by sharing prefixes of processes that are identical for different parametrisations.

A prototype implementation is provided to compute the finite complete prefix of the unfolding of PRNs with abstract parametrisation space.

Related work. The first systematic approach for exploring the parametrisation space of multi-valued regulatory networks has been introduced by Bernot et al. [START_REF] Bernot | Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic[END_REF], and uses an explicit enumeration of admissible parametrisations, which are then verified individually against temporal properties, expressed in CTL (Computational Tree Logic [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching-time temporal logic[END_REF]).

Several works aim at improving the scalability of parameter identification, which verify a given temporal logic property afterwards. In [START_REF] Barnat | On parameter synthesis by parallel model checking[END_REF][START_REF] Klarner | Computational Methods in Systems Biology: 10th International Conference, CMSB 2012[END_REF][START_REF] Brim | Parameter synthesis by parallel coloured CTL model checking[END_REF] the method called coloured model checking is used to capitalise on many parametrisations sharing some parts of their behaviour for checking LTL or CTL. The parametrisations are explicitly represented by colours (bits) in a binary vector and the model checking is extended to binary vector operations to keep track of the satisfying behaviours. The approach in [START_REF] Gallet | Formal Methods and Software Engineering: 16th International Conference on Formal Engineering Methods, ICFEM 2014[END_REF] explores the state space represented symbolically in the form of execution trees, coupled with an LTL formula, which also aims at avoiding redundant analysis of different parametrisations having identical behaviours. Other methods employ symbolic representations of the parametrisation space to enumerate valid parametrisations with respect to expected behaviours, either with Boolean constraints [START_REF] Fromentin | Analysing gene regulatory networks by both constraint programming and model-checking[END_REF] or with logic programming [START_REF] Corblin | Applications of a formal approach to decipher discrete genetic networks[END_REF][START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF]. Finally, [START_REF] Bernot | A genetically modified Hoare logic that identifies the parameters of a gene network[END_REF] extends the Hoare logic to build a symbolic representation of the parametrisation from (partial) trace specifications.

Contrary to our approach, all the above mentioned methods but [START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF] rely on an exact representation of the parametrisation space, either explicitly [START_REF] Bernot | Application of formal methods to biological regulatory networks: extending Thomas' asynchronous logical approach with temporal logic[END_REF][START_REF] Barnat | On parameter synthesis by parallel model checking[END_REF][START_REF] Klarner | Computational Methods in Systems Biology: 10th International Conference, CMSB 2012[END_REF], or symbolically [START_REF] Fromentin | Analysing gene regulatory networks by both constraint programming and model-checking[END_REF][START_REF] Corblin | Applications of a formal approach to decipher discrete genetic networks[END_REF][START_REF] Gallet | Formal Methods and Software Engineering: 16th International Conference on Formal Engineering Methods, ICFEM 2014[END_REF][START_REF] Bernot | A genetically modified Hoare logic that identifies the parameters of a gene network[END_REF]; the approach in [START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF] is dedicated to Boolean networks and does not allow a representation of all the possible processes.

The work in [START_REF] Gallet | Formal Methods and Software Engineering: 16th International Conference on Formal Engineering Methods, ICFEM 2014[END_REF] is closest to our work since their symbolic representation of possible traces is acyclic, similarly to unfoldings. The encoding of parametrisations is performed using Boolean formulas. Contrary to our fixed-size encoding, however, the formula continues to expand during the exploration as a more detailed encoding of parametrisations is required.

In this paper, the results of the workshop paper [START_REF] Kolčák | Unfolding of Parametric Boolean Networks[END_REF] are significantly extended by generalising the framework to multi-valued regulatory networks (instead of only Boolean) and providing a proof of optimality of the computed abstraction. The generalisation also requires stronger abstraction refinement operators to account for monotonicity and observability constraints in order to guarantee the optimal abstraction. Outline. Sect. 2 settles the main definitions of influence graph and Parametric Regulatory Network (PRN). Sect. 3 introduces our abstraction of the parametrisation space and shows its optimality for abstract interpretation of traces of PRNs. Sect. 4 extends our abstract interpretation to account for a priori constraints on admissible parametrisation, namely monotonicity and observability. Again, we show that the abstraction of the parametrisation set we compute is the best possible abstraction. Sect. 5 establishes the unfolding semantics of PRNs abstract interpretation. Sect. 6 applies a prototype implementation of our unfolding of PRNs with abstracted parametrisation space to several biological models from literature and compares the size of the obtained complete finite prefix with the symbolic execution tree obtained with the tool from [START_REF] Gallet | Formal Methods and Software Engineering: 16th International Conference on Formal Engineering Methods, ICFEM 2014[END_REF]. Finally, Sect. 7 discusses our results and sketches future research directions.

Notations. We use to build Cartesian products between sets. As the ordering of components matters, is not a commutative operator. Therefore, we write ≤ x∈X for the product over elements in X according to a total order ≤. To ease notations, when the order is clear from the context, or when either X is a set of integers, or a set of integer vectors, on which we use the lexicographic ordering, we simply write x∈X .

Given a sequence of n elements π = (π i ) 1≤i≤n , we write π

∆ = {π i | 1 ≤ i ≤ n} the set of its elements.
We denote by itefix x0 f the fixpoint of the iteration of the monotonic function f initially applied on x 0 .

Given a vector v = v 1 , . . . , v n , we write v [i →y] for the vector equal to v except on the component i, which is equal to y. Moreover, we write v [i += y] and v [i -= y] for the vector equal to v except on component i, which is equal to v i + y and v i -y.

Definitions

This section settles the definitions of influence graph, parametric regulatory network, and their concrete semantics. Our framework is general enough to subsume most of the usual definitions of Boolean and multi-valued networks with asynchronous semantics. Note that, at this stage, we do not consider influences to be signed (i.e., negative/positive). These will be introduced in Sect. [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF].

An influence graph is a classical directed graph, where nodes define the variables of the system. Definition 1. An Influence Graph (IG) is a tuple G = (V, I) where V = {1, . . . , n} is the finite set of n nodes (components) and I ⊆ V × V is the set of directed edges (influences).

For each v ∈ V we denote the set of incoming nodes, also referred to as regulators, as n

-(v), n -(v) ∆ = {u ∈ V | (u, v) ∈ I}.
Given an influence graph G = (V, I) of size n, we define a vector m of n dimensions which associates to each node v ∈ V , its maximum value m v ≥ 0. 1A parametric regulatory network (G, m), also denoted as G m , is an influence graph G coupled with a vector m of maximal values of each node of G.

Let us denote by

Ω v ∆ = u∈n -(v) {0, .
. . , m u } the set of regulator states of v. A parameter associates to each node v and to each of its regulator states a value in {0, . . . , m v }. Intuitively, a parameter v, ω specifies the value towards which the node v evolves when its regulators are in state ω. The set of parameters of a network is then given by Ω ∆ = v∈V ({v} × Ω v ). Let us define the total order on Ω as follows:

v 1 , ω 1 v 2 , ω 2 ∆ ⇔ v 1 < v 2 ∨ (v 1 = v 2 ∧ ω 1 ω 2 )
where is the vector order.

The set of parametrisations of a network is then the set of vectors of dimension |Ω| where each coordinate v, ω ∈ Ω, ω ∈ Ω v , has value in {0, . . . , m v }:

P(G m ) ∆ = v,ω ∈Ω {0, . . . , m v }
Given a parametrisation P ∈ P(G m ), a node v ∈ V , and a context ω ∈ Ω v , P v,ω ∈ {0, . . . , m v } is the coordinate v, ω of the vector P . A Parametric Regulatory Network (PRN, Def. 2) is therefore defined by an influence graph G and the maximum values m for the nodes from which derives the set of all parametrisations P(G m ). A PRN allows to define the set of node states S(G m ) and the set of transitions ∆(G m ) which correspond to the unitary increase or decrease of one and only one node (asynchronous updating mode). Definition 2. A Parametric Regulatory Network (PRN) is a couple (G, m), also denoted G m , where G = (V, I) is an influence graph and m ∈ N n is the vector of the maximum value of each node.

• The set of states of G m is denoted by S(G m ) ∆ = v∈V {0, . . . , m v }. • The set of transitions of G m is denoted ∆(G m ) and defined as a relation ∆(G m ) ⊆ S(G m ) × S(G m ) such that x → y ∈ ∆(G m ) ∆ ⇔ ∃v ∈ V :(x v < m v ∧ y = x [v →xv+1] ) ∨(x v > 0 ∧ y = x [v →xv-1] ) Given a transition x → y ∈ ∆(G m ), we write x v,+ --→ y if y = x [v →xv+1] and x v,- --→ y if y = x [v →xv-1] .
A Discrete Regulatory Network (DRN, Def. 3) can then be defined as a PRN G m associated with a unique parametrisation P ∈ P(G m ). The transition relation ∆(G m , P ) ⊆ ∆(G m ) contains only transitions that modify the value of a node in a direction consistent with parameter values given by P . Definition 3. A Discrete Regulatory Network (DRN) is a couple (G m , P ) where G m is a PRN with G = (V, I), and P ∈ P(G m ) a parametrisation.

The transition relation

∆(G m , P ) ⊆ ∆(G m ) is defined as, ∀x ∈ S(G m ), ∀v ∈ V , x v,+ --→ y ∈ ∆(G m , P ) ∆ ⇔ P v,ωv(x) > x v x v,- --→ y ∈ ∆(G m , P ) ∆ ⇔ P v,ωv(x) < x v where ω v : S(G m ) → Ω v with ω v (x) ∆ = u∈n -(v) {x u }
is the projection of the state to the regulators of v.

Note that ∆(G m ) is by definition the set of all possible transitions. This is justified by the existence of at least one P ∈ P(G m ) : t ∈ ∆(G m , P ) for any possible transition t.

Example. Fig. 1 gives the influence graph G = (V, I) and parametrisation space of the PRN G m with node a having three values, and nodes b and c being Boolean. Each parametrisation is composed of 11 parameters. In total P(G m ) contains 3 3 • 2 2 • 2 6 = 6, 912 different parametrisations. An instance of DRN (G m , P ) is given with its set of transitions ∆(G m , P ). For example, the transition 000 a,+ --→ 100 derives from the fact that ω a (000) = a = 0 (or simply 0 ) and as P a, 0 = 2, the node a can increase its value.

To demonstrate the constructions used within the paper clearly and concisely, we use a toy example which generates sufficiently simple behaviour, as opposed to real-world biological systems. However, interplay of several regulators, the centrepiece of out example, is common in biology.

Abstraction of Parametrisation Sets

The number of candidate parametrisations being exponential with the number of parameters (which is exponential with the in-degree of nodes), the concrete representation of parametrisation set is a typical bottleneck. For readability, we use letters instead of numbers for nodes, and write explicitly the component name in vectors. In the rest of the paper, we also use shorter notations, e.g., P c, 2,1 instead of P c, a=2,b=1 . (c) Transitions of the DRN with parametrisation P = 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1 corresponding to the right column of (b). Nodes are states S(Gm) in the order a, b, c.

In this section, we introduce an abstraction of a parametrisation set by the means of a bounded convex sublattice of the lattice of all parametrisations P(G m ) with respect to the parametrisation order with k = |Ω| (Def. 4) and study its restriction with respect to transitions. A bounded convex sublattice can be specified solely by its least and its greatest elements L ∈ P(G m ), respectively U ∈ P(G m ), allowing us to uniquely represent a parametrisation set by only two parametrisations (L, U ). Furthermore, we show that our abstraction introduces no over-approximation of the parametrisation set unless the model is refined with a set of constraints (Section 4). Definition 4. The parametrisation order ≤ on vectors of integers of length k is a partial order such that ∀v, w ∈ N k :

v ≤ w ∆ ⇔ ∀i ∈ {0, . . . , k} : v i ≤ w i
First, we consider in Sect. 3.1 the restriction of a concrete parametrisation set for a given set of transitions and we analyse its algebraical properties. Such a restriction allows defining the semantics of Parametric Regulatory Networks, where states of nodes are coupled with a parametrisation set, and transitions restrict the latter. Sect. 3.2 presents its abstract counterpart, and demonstrates that the abstraction is exact: it preserves all parametrisations for any subset of transitions and introduces no over-approximation.

Concrete parametrisation space

From DRN semantics (Def. 3), we define P t the subset of parametrisations of a PRN enabling a transition t (Def. 5). Given a set of transitions T , the concrete set of parametrisations enabling all the transitions in T is the intersection of all the P t for t ∈ T . We denote by p(T ) the obtained parametrisation set (Def. 6).

Definition 5. Let G m be a PRN and t ∈ ∆(G m ) a transition. The parametrisation set enabling t, denoted P t , is defined as follows:

P x v,+ --→y ∆ = {P ∈ P(G m ) | P v,ωv(x) ≥ x v + 1}, P x v,- --→y ∆ = {P ∈ P(G m ) | P v,ωv(x) ≤ x v -1}.

Definition 6 (p(T ))

. Let G m be a PRN. Given a set of transitions T ⊆ ∆(G m ), the concrete parametrisation set enabling T , denoted p(T ), is defined as follows:

p(∅) ∆ = P(G m ), p(T ) ∆ = t∈T P t if T = ∅.
Given any sequence of transitions π = x → • • • → y, it follows that p( π) = ∅ if and only if there exists a DRN (G m , P ) where π ⊆ ∆(G m , P ), i.e., the DRN can produce the trace π. This leads to the definition of realisable traces of PRNs.

Definition 7 (Concrete semantics of PRNs

). Given a PRN G m , a sequence π of transitions in ∆(G m ) is realisable if and only if p( π) = ∅.
It is important to remark that the set of parametrisations P(G m ) is a bounded lattice with respect to the parametrisation ordering. It comes from the fact that the set of parametrisations is always finite. This property is naturally extended to a parametrisation set enabling any set of transitions T . Property 1. p(T ) is a bounded convex sublattice of P(G m ).

Proof. Let t = x v,+ --→ y ∈ T and P, P , P ∈ P(G m ) be arbitrary parametrisations such that P ≤ P ≤ P and P , P ∈ P t . From P ∈ P t we know P v,ωv(x) ≥ y v and since P ≥ P we get P v,ωv(x) ≥ P v,ωv(x) thus P v,ωv(x) ≥ y v .

A symmetric proof can be constructed for decreasing transitions (t = x v,---→ y ∈ T ) using P to arrive at P v,ωv(x) ≤ y v . Surely then, P must belong to P t , therefore for all t ∈ T , P t is a convex sublattice of P(G m ). The intersection of convex sublattices is a convex sublattice. Boundedness follows from the fact that P(G m ) is finite.

Abstract parametrisation space

A bounded convex sublattice is fully determined by its least and greatest element. We write (L, U ) to represent the convex sublattice of parametrisation sets, where L, U ∈ P(G m ).

Additional notations. An empty lattice is denoted by ∅. By abuse of notation, we may also write (L, U ) = ∅ to address the fact that (L, U ) represents an empty lattice (¬(L ≤ U )). We use A and A to denote lower and upper bounds (respectively) of a bounded lattice generated by a set of elements A. Given two vectors x, y of length n, we denote max(x, y)

∆ = max(x i , y i ) | n ∈ {1, . . . , n} and min(x, y) ∆ = min(x i , y i ) | n ∈ {1, . . . , n} .
In the concrete domain, we restrict the parameter set p(T ) by a transition t / ∈ T to obtain p(T ) ∩ P t = p(T ∪ {t}). In order to obtain the abstract counterpart of the restriction, we define a narrowing operator ∇ t which refines an abstract parametrisation space (L, U ) according to the specified transition t (Def. 8). If the transition increases the value of x v , necessarily, all parametrisations P should satisfy P v,ωv(x) ≥ x v + 1. Therefore, the lower bound L of the parametrisation set at v, ω v (x) -coordinate is at least x v + 1. The case when the transition decreases the value of v leads to an analogous refinement of the upper bound U . Definition 8. Let (L, U ) ∈ P(G m ) 2 be the abstraction of parametrisation set of a PRN G m , and t ∈ ∆(G m ) be a transition. The narrowing of (L, U ) by t, ∇ t : P(G m ) 2 → P(G m ) 2 , is defined in the following way:

∇ x v,+ --→y (L, U ) ∆ = max L, P(G m ) [v,ωv(x) →xv+1] , U , (1) 
∇ x v,- --→y (L, U ) ∆ = L, min U, P(G m ) [v,ωv(x) →xv-1] . (2) 
We can then define the abstract counterpart p # (T ) of p(T ) by iteratively applying ∇ t for each t ∈ T starting from the lower and upper bounds of P(G m ). Iterative application of ∇ t for all t ∈ T implicitly requires an order on transitions in T . Due to the use of min and max in Def. 8, however, the same result is obtained regardless of the order by which transitions in T are explored. We show that p # (T ) = p(T ) (Theorem 1) as a consequence of Property 1.

Definition 9 (p # (T ))

. Let G m be a PRN and T ⊆ ∆(G m ) a set of transitions. The abstract parametrisation set p # (T ) is defined inductively as follows:

p # (∅) ∆ = ( P(G m ) , P(G m ) ), p # (T ∪ {t}) ∆ = ∇ t (p # (T )).
Theorem 1. Given a PRN G m and transitions T ⊆ ∆(G m ), p # (T ) = p(T ).

Proof. Let p # (T ) = (L, U ). By Def. 8 and 9, for each v ∈ V and each ω ∈ Ω v :

L v,ω = max({0} ∪ {x v + 1 | x v,+ --→ y ∈ T ∧ ω = ω v (x)}) and, U v,ω = min({m v } ∪ {x v -1 | x v,- --→ y ∈ T ∧ ω = ω v (x)}).
By Def. 5 and 6, for each v ∈ V and each ω ∈ Ω v , any parametrisation P ∈ p(T ) satisfies L v,ω ≤ P v,ω ≤ U v,ω . Moreover, for each v ∈ V and each ω ∈ Ω v , there exist P, P ∈ p(T ) such that P v,ω = L v,ω and

P v,ω = U v,ω
From this theorem derives the fact that the abstraction of the parametrisation set for a sequence of transitions is not empty if and only if there exists a concrete parametrisation which enables these transitions. --→ 111 imposes that P c, a=1,b=1 ≥ 1, hence the lower bound of the parametrisation space is adjusted to 00000000100 ; and the transition 111 b,---→ 101 imposes that P b, b=1 ≤ 0 which allows to refine the upper bound to 22210111111 . Theorem 1 states that p # (T ) = p(T ), i.e., the set of parametrisations of G m enabling T is exactly the set of parametrisations with the adjusted bounds of the convex sublattice (see the light blue area in Figure 2).

Corollary 1. Given a sequence of transitions π = x → • • • → y in ∆(G m ), p # ( π) = ∅ ⇐⇒ p( π) = ∅ Example.

Global Constraints on Parametrisations

The results of Sect. 3 apply on PRNs having an influence graph without signs on edges. In general, there is usually partial knowledge of sign of some influences as well as knowledge on the necessity of some influences, the latter to be referred to as observability.

Signed influences lead to global constraints on the admissible parametrisations in the form of monotonicity constraints [START_REF] Bernot | Semantics of biological regulatory networks[END_REF]: the sole activation of a positive (resp. negative) regulator u of node v cannot cause a decrease (resp. increase) of its value. This imposes inequality restrictions among parameters. Similarly, an observable influence of u on v imposes that, in some state, a change in the value of u should change the value of v. This is again translated as inequality constraints among parameters [START_REF] Klarner | Computational Methods in Systems Biology: 10th International Conference, CMSB 2012[END_REF].
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This section extends our abstraction to account for such constraints.

Definitions

Given a PRN G m with G = (V, I), we define a well-formed 2 In this setting, (u, v, +1) means that the influence of u on v is positive-monotonic; (u, v, -1) means that the influence of u on v is negative-monotonic; and (u, v, o) means that the influence of u on v is observable.

set of influence constraints R ⊆ V × V × {+1, -1, o} such that ∀(u, v, c) ∈ R, u ∈ n -(v), and ∀u, v ∈ V, {(u, v, +1), (u, v, -1)} ⊆ R.
We say that u has a positive-monotonic influence on v only if, for any

P ∈ P, ∀ω ∈ Ω v ∀x u ∈ {1, • • • m u }, P v,ω [u →xu] ≥ P v,ω [u →xu-1]
i.e., the sole increase of the activator u cannot cause a decrease of the regulated node v.

Similarly, u has a negative-monotonic influence on v only if, for any P ∈ P,

∀ω ∈ Ω v ∀x u ∈ {1, • • • m u }, P v,ω [u →xu] ≤ P v,ω [u →xu-1]
i.e., the sole increase of the inhibitor u cannot cause an increase of the regulated node v.

Finally, we say that u has an observable influence on v only if, for any

P ∈ P, ∃ω ∈ Ω v ∃x u ∈ {1, • • • m u }, P v,ω [u →xu] = P v,ω [u →xu-1]
i.e., there exists a state where the sole change of the regulator u triggers a change of the regulated node v.

Note that the definitions are complementary, it is indeed often the case in biology that an influence is both monotonic (either positive or negative) and observable.

The concrete set of parametrisations satisfying a constraint r ∈ R is therefore characterised as follows.

Definition 10 (P r ). Given r ∈ R, P r ⊆ P(G m ) is the subset of parametrisations satisfying the influence constraint r with:

P (u,v,+1) ∆ = {P ∈ P(G m ) | ∀ω ∈ Ω v , ∀x u ∈ {1, . . . , m u }, P v,ω [u →xu] ≥ P v,ω [u →xu-1] } P (u,v,-1) ∆ = {P ∈ P(G m ) | ∀ω ∈ Ω v , ∀x u ∈ {1, . . . , m u }, P v,ω [u →xu] ≤ P v,ω [u →xu-1] } P (u,v,o) ∆ = {P ∈ P(G m ) | ∃ω ∈ Ω v , ∃x u ∈ {1, . . . , m u }, P v,ω [u →xu] = P v,ω [u →xu-1] }
Given a node v, the monotonicity constraints allow to define a partial order over its regulator states Ω v : ω ∈ Ω v is v -smaller than ω ∈ Ω v if for every parametrisation P that satisfies the monotonicity constraints we have P v,ω ≤ P v,ω .

Definition 11 ( v ). Let R be an arbitrary well-formed set of constraints. The monotonicity order v ⊆ Ω v 2 on the regulatory contexts of v is the partial order such that ∀ω, ω ∈ Ω v :

ω v ω ∆ ⇔ ∀u ∈ n -(v),      ω u ≤ ω u if (u, v, +1) ∈ R ω u ≥ ω u if (u, v, -1) ∈ R ω u = ω u otherwise.
We write ω v ω if and only if ω and ω are not comparable according to v . This is the case notably when ω u = ω u for some u such that the influence (u, v) is not monotonic.

Concrete parametrisation space

The set of parametrisations which satisfy both constraints R and enable a set of transitions T can be directly derived by the intersection of p(T ) (Def. 6) with the parametrisations satisfying R (Def. 10).

Definition 12. Let G m be a PRN, and R a well-formed set of influence constraints. Given a set of transitions T ⊆ ∆(G m ), the parametrisation set enabling T under R, denoted p R (T ), is given by:

p R (T ) ∆ = p(T ) ∩ (u,v,s)∈R P (u,v,s)
Remark. p R (T ) is no longer a convex sublattice.

Abstract parametrisation space

Given the lower and upper bounds (L, U ) of the convex sublattice of parametrisations, this section introduces narrowing operators ∇ r to account for the influence constraints r ∈ R and adjust these boundaries accordingly. We demonstrate that the narrowing operators lead to the optimal abstraction of the concrete parametrisation set, i.e., it is equal to the smallest convex sublattice which includes p R (T ).

Ensure monotonicity. Given an influence constraint (u, v, s) ∈ R with s ∈ {+1, -1} we define the operator ∇ (u,v,s) : P(G m ) 2 → P(G m ) 2 which increases the lower bound and decreases the upper bound until the s-monotonicity constraint is satisfied:

∇ (u,v,s) (L, U ) ∆ = itefix (L,U ) f (3) 
where

f (L, U ) ∆ = (L , U ) with ∀ω ∈ Ω v , L v,ω = max {L v,ω } ∪ L v,ω [u →ωu-s] | ω u -s ∈ {0, . . . , m u } U v,ω = min {U v,ω } ∪ U v,ω [u →ωu+s] | ω u + s ∈ {0, . . . , m u }
and for all a ∈ V, a = v, and for all ω ∈ Ω a , L a,ω = L a,ω and U a,ω = U a,ω . By iterating over regulator states Ω v in v order, the fixpoint of L can be computed in |Ω v | steps; and similarly for the fixpoint of U by following the antiv order.

Ensure observability. Given an influence constraint (u, v, o) and the boundaries (L, U ) of the convex sublattice of parametrisations, the operator ∇ (u,v,o) : P(G m ) 2 → P(G m ) 2 refines (L, U ) to ensure the satisfiability of the observability constraint.

In its simplest form, the observability criterion can be applied when for all the regulator states ω ∈ Ω v but one, L v,ω = U v,ω = cst where cst ∈ {0, . . . , m v }: in that case, it should be ensured that for the remaining unique regulator state ω ∈ Ω v , L v,ω = cst and U v,ω = cst. Intuitively, if all parameters of v but one are fixed to the same value cst, the remaining parameter should take a different value, and hence, neither its upper or lower bound can be equal to cst. Although this simple measure ensures all influences of v are observable, it is only applicable in cases where having the value of the last not fixed regulator state ω set to cst would lead to no influence of v being observable.

Our definition generalises this reasoning to take into account the state of other regulators of v and the monotonicity constraints. This is especially true for the case when an influence (u, v) is both observable and monotonic. In such a case it is enough to ensure that the v -minimal element ω has a lower value than the v -maximal element ω , which can be achieved by increasing the value of L v,ω and/or decreasing the value of U v,ω .

The formal definition is a little technical as it also accommodates the case when an observable (u, v) is not monotonic, which is achieved similarly to the simple case described in the beginning:

∇ (u,v,o) (L, U ) ∆ = ∅ if A u,v (L, U ) = ∅ (L , U ) otherwise, (4) 
where

A u,v (L, U ) ∆ = {ω ∈ Ω v | ∃x u ∈ {1, . . . , m u } : L v,ω [u →xu] < U v,ω [u →xu-1] ∨ U v,ω [u →xu] > L v,ω [u →xu-1] } and L = L [v,ω += 1] if B = {ω} L otherwise and U = U [v,ω -= 1] if B = {ω} U otherwise , with B ∆ = {ω ∈ A u,v (L, U ) | L v,ω < U v,ω ∧ ∀ω ∈ A u,v (L, U ) : L v,ω = L v,ω ∧ (ω v ω ∨ ω v ω )} B ∆ = {ω ∈ A u,v (L, U ) | L v,ω < U v,ω ∧ ∀ω ∈ A u,v (L, U ) : U v,ω = U v,ω ∧ (ω v ω ∨ ω v ω )}
The set A u,v (L, U ) is the set of regulator states ω ∈ Ω v for which there exist parametrisations within (L, U ) where changing the value of u changes the value of v. Note that if this set is empty, u has no observable influence: the empty lattice is then returned.

B (resp. B) is the set of v -maximal (resp. v -minimal) elements ω ∈ A u,v (L, U ) such that L v,ω < U v,ω
, or an empty set if regulator states in A u,v (L, U ) do not have the same lower (resp. upper) bound value. Increasing (resp. decreasing) the lower (resp. upper) bound of any v -maximal (resp. v -minimal) element in A u,v (L, U ) ensures observability of (u, v) while respecting the monotonicity restrictions. No restriction is made in case several maximal (resp. minimal) regulator states exist, in order to preserve all possible behaviours at the cost of an over-approximation. Thus, the lower (resp. upper) bound is only modified if a unique v -maximal (resp. v -minimal) element exists. Note that v -maximal (resp. v -minimal) ω such that L v,ω = U v,ω are excluded since their lower (resp. upper) bound cannot be increased (resp. decreased) any further.

The condition for all lower (resp. upper) bounds of regulator states in A u,v (L, U ) to be equal is in place to prevent restrictions if (u, v) is already observable under L (resp. U ). More precisely, (u, v) is observable under L (resp. U ) when lower (resp. upper) bounds of elements in A u,v (L, U ) differ and there exists a unique v -maximal (resp.

v -minimal) regulatory state ω ∈ A u,v (L, U ) such that L v,ω < U v,ω . We can, however, assume the existence of such ω without loss of generality, as no restriction takes place otherwise, regardless of lower (resp. upper) bound equality.

Example. Consider the PRN from figure 1 with the simple modification of node a being boolean. We enrich the PRN with a set of constraints R = {(b, c, o)} such that only the interaction (b, c) is observable. Let us assume that the boundary parametrisations L, U have the following values for parameters of node c regulation:

ω a ω b L c,ω U c,ω 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 1
As (b, c) interaction is observable, there exists no admissible parametrisation with P c, 00 = 0 (otherwise the value of b never has an effect on the value of c). Therefore L c, 00 should be changed to 1. With our definition, A b,c (L, U ) = { 00 , 01 }, B = { 00 } and B = ∅. Observe that since no influences are monotonic in this case, all the elements of A u,v (L, U ) are v -maximal and minimal at the same time. The observability enforcement, therefore, defaults to the simple mode of choosing the last regulator state with different lower and upper bounds, 00 . B remains empty as not all regulator states in A u,v (L, U ) share the same upper bound.

Let us now consider the same example, but with larger set of constraints R = {(a, c, +1), (b, c, +1), (b, c, o)}, i.e., a and b now have a positive-monotonic influence on c. Let us again assume boundary parametrisations:

ω a ω b L c,ω U c,ω 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0 1 In this case A b,c (L, U ) = Ω c .
Remark that all the lower and upper bounds are identical. Due to the monotonicity constraints, 00 is the unique c -minimal element of Ω c , and 11 is the unique c -maximal element. Hence B = { 11 } and B = { 00 }. Therefore, L c, 11 is set to 1 and U c, 00 is set to 0.

Ensure influence constraints R. Finally, given the full set of influence constraints R, the narrowing operator ∇ R : P(G m ) 2 → P(G m ) 2 iteratively applies the operators ∇ r for reach r ∈ R until fixpoint:

∇ R (L, U ) ∆ = itefix (L,U ) (u,v,r)∈R ∇ (u,v,r) (5) 
where e∈{e1,...,en} f e

∆ = f e1 • • • • • f en .
Remark. The fixpoint is unique and is reachable in at most |Ω v | mv+1 iterations.

The abstract counterpart p # R (T ) of p R (T ) is then defined as follows.

Definition 13 (p # R (T )). Let G m be a PRN with well-formed influence constraints R. The abstraction of the parametrisation set enabling a set of transitions T ⊆ ∆(G m ) is defined inductively as follows:

p # R (∅) ∆ = ∇ R ( P(G m ) , P(G m ) ) p # R (T ∪ {t = x v,s --→ y}) ∆ = ∇ {(u,v ,r)∈R|v=v } ∇ t (p # R (T ))
As stated in the following theorem, the defined narrowing operators actually lead to the best possible abstraction of the concrete p R (T ) by the means of a convex sublattice.

Theorem 2. p # R (T ) is the smallest convex sublattice including p R (T )
The theorem can be proven using mathematical induction on the size of the set T . The induction corresponds to the actual application where restrictions generally happen by adding one transition at a time. Within the induction step, the proof is split into two branches. First containing the proof of soundness (i.e. the smallest convex sublattice containing p R (T ) is included within p # R (T )), once again using induction on application of ∇ r for individual constraints r ∈ R. The inner induction step details a discussion showing that for every restriction that occurs, the smallest convex sublattice must also be accordingly smaller compared to the one obtained for one transition less. The second branch proves that p # R (T ) is the best over-approximation (i.e. p # R (T ) is contained within the smallest convex sublattice containing p R (T )). Here the discussion goes the other way saying that if the smallest convex sublattice with the extra transition is smaller, then a restriction must have occurred to reflect the change in p # R (T ). Together the two branches give the coveted equality.

The proof relies on several properties of the interplay between the parametrisation set and influence constraints. Namely, a very important property could be referred to as the density of the parametrisation set. More precisely, given a parametrisation set p R (T ) for some T , two arbitrary regulator states ω, ω ∈ Ω v for some v and arbitrary parameter values k ∈ { p R (T ) v,ω , . . . , p R (T ) v,ω } for ω and l ∈ { p R (T ) v,ω , . . . , p R (T ) v,ω } for ω , it is only under specific conditions imposed by the constraints in R, that no parametrisation P such that P v,ω = k and P v,ω = l belongs to p R (T ).

As the proof contains a considerable amount of technical discussion on different constraint types and constraint-transition relations it has been omitted within this section and is instead given in Appendix A alongside auxiliary lemmas.

Because of the optimality of the abstraction, one can then derive that p # R (T ) is not the empty lattice if and only if p R (T ) is not empty: for any set of transitions T ⊆ ∆(G m ), there exists a parametrisation P such that T ⊆ ∆(G m , P ) if and only if

p # R (T ) = ∅ ⇔ p R (T ) = ∅. Corollary 2. Given a sequence of transitions π = x → • • • → y in ∆(G m ), p # R (π) = ∅ ⇐⇒ p R (π) = ∅
Contrary to the case without influence constraints, there is no guarantee that each parametrisation within the convex sublattice is in p R (T ). However, it is guaranteed that all the parametrisations in p R (T ) are in p # R (T ).

Example. Let us reconsider the example at the end of Sect. No further adjustments can be made based on (a, c, +1) at this point, thus the observability constraint (b, b, o) is applied. Because L b, 1 = U b, 1 = 0, the operator ∇ (b,b,o) increases the lower bound L b, 0 from 0 to 1. At this point we should return to (a, c, +1) to check if the intermediate modifications allow for more restrictions, however, in this example, the fixed point is reached with ∇ r being applied only once for both constraints in R.

It results that p # R (T ) = ( 00010000101 , 22210111111 ), which is illustrated by the yellow area in Fig. 2.

Unfolding Semantics for Parametric Regulatory Networks

Unfolding semantics [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF] for (safe) Petri nets are used for exploring feasible sequences of transitions without the redundancy of investigating different interleavings of the same process which differ only in the ordering of concurrent transitions. Here, we say that two distinct transitions t and t are concurrent if, from any state that enables both of them, one may fire t followed by t , t followed by t, or both at the same time, and still reach the same final state. Unfoldings simply keep track of such concurrent occurrences by storing them in a partial order built recursively from a representation of the initial marking by a set of places, and applying the Petri net dynamics locally; see below for a formal definition. The resulting structure is called an occurrence net: a bipartite, acyclic graph with some additional properties, giving a partial order representation of the net's semantics.

Large biological networks are expected to show a high degree of concurrency, as the value of each node typically depends on only a few nodes compared to the size of the network. Therefore, concurrency-aware methods can enhance greatly the tractability of the analysis of the reachable state space [START_REF] Chatain | Computational methods in systems biology: 12th international conference, cmsb 2014[END_REF].

In this section, we introduce an unfolding semantics for Parametric Regulatory Networks with the aim of exploring the reachable transitions and associated parametrisation sets while avoiding the combinatorial explosion of interleaving due to concurrent transitions.

Sect. 5.1 gives the definition of an occurrence net which will be generated from PRNs unfolding semantics. Sect. 5.2 establishes the unfolding semantics of PRNs with concrete and abstract parametrisation space. Usually, an unfolding is infinite (as soon as a cycle is possible). Sect. 5.3 details how a complete finite prefix of this unfolding can be derived in order to obtain a finite occurrence net from which can be extracted all reachable states and associated concrete or abstract parametrisation space.

Occurrence net: events, conditions, and configurations

Here we give a brief definition of occurence net as a special type of event structure [START_REF] Nielsen | Petri nets, event structures and domains, part i[END_REF].

Definition 14. An occurrence net O = E, C, F, C 0 is a bipartite acyclic di- graph between events E and conditions C with edges F ⊆ (E × C) ∪ (C × E)
and set of initial conditions C 0 ⊆ C on which we define:

• the pre-set and post-set of a node n ∈ E ∪ C as • n ∆ = {m ∈ E ∪ C | (m, n) ∈ F } and n • ∆ = {m ∈ E ∪ C | (n, m) ∈ F }, respectively;
• the causal relation ≺ ⊆ E × E among events such that e ≺ e ∆ ⇔ there exists a non-empty path from e to e in F ;

• the conflict relation # ⊆ E ×E among events such that e #e ∆ ⇔ ∃u, v ∈ E s.t. u = v, u = e ∨ u ≺ e , and v = e ∨ v ≺ e with • u ∩ • v = ∅;
and which satisfy:

• for all conditions c ∈ C, | • c| ≤ 1; and • c = ∅ ⇔ c ∈ C 0 ; • ∀e ∈ E, ¬(e#e).
A set of events E ⊆ E is a configuration if and only if for all events e ∈ E, {e ∈ E | e < e} ⊆ E and for all events e, e ∈ E, ¬(e#e ). Given an event e ∈ E, we denote the minimal configuration containing e by e = {e ∈ E | e ≤ e}.

We extend pre-and post-set notations to sets of nodes: for any

N ⊆ E ∪ C, • N ∆ = ∪ n∈N • n and N • ∆ = ∪ n∈N n • .

Application to PRNs

Let us assume a PRN G m with G = (V, I) and influence constraints R.

A condition c ∈ C is characterised by a triplet e, v, j where e ∈ E ∪ {⊥} is the parent event of c, or ⊥ if c ∈ C 0 , v ∈ V is a node of the PRN, and j ∈ {0, . . . , m v } one of its possible values.

An event e ∈ E corresponds to the increase or decrease of a node value, and is characterised by a triplet C , v, s where C ⊆ C is the set of parents conditions of e, referred to as pre-conditions, v ∈ V is a node of the PRN, and s ∈ {+1, -1}, which satisfy:

• |C | = |{v} ∪ n -(v)|, i.e.
, the number of pre-conditions is the number of regulators of v plus v itself;

• ∀u ∈ n -(v)
, ∃ e , u , j ∈ C with u = u , i.e., for each regulator u of v there is a corresponding condition in C ;

• ∃ e , v , j ∈ C with v = v and such that j + s ∈ {0, . . . , m v }, i.e., there is a pre-condition corresponding to a value of v which allows the change by s.

We denote by ω v (C )

∆ = u∈n -(v) {j | (e , u, j) ∈ C } ∈ Ω v the state of regulators of v. Remark that from every state x ∈ S(G m ) of the PRN G m where ω v (x) = ω v (C ) and x v = j with e , v, j ∈ C , t = x v,s --→ x [v →xv+s]
is a transition of the PRN. Moreover, remark that since the value of s is fixed by e, any such t has the same P t and ∇ t as both values depend solely on ω v (C ) contrary to the whole state. Therefore, we use P e and ∇ e to refer to the common values of P t and ∇ t respectively.

Subsequently, given any configuration E, we use p(E), p R (E), p # (E), and p # R (E) to denote the corresponding p(T ), p R (T ), p # (T ), and p # R (T ). Finally, we denote the terminal set of conditions of a configuration E ⊆ E as cut(E) = (C 0 ∪ E • ) \ • E. Remark that due to the nature of the events, there is a unique condition in the cut(E) for every node of the PRN. This allows us to define the state reached by application of a configuration E ⊆ E as X(E)

∆ = x ∈ S(G m ) such that ∀ e, v, j ∈ cut(E), x v = j.

Unfolding of Parametric Regulatory Networks

Given an initial state x 0 ∈ S(G m ) of the PRN G m with influence constraints R, its unfolding is the unique maximal occurrence net

U = E, C, F, C 0 with C 0 = { ⊥, v, x 0 v | v ∈ V }, C 0 ⊆ C,
and such that for any event e ∈ E, p R ( e ) = ∅ [START_REF] Engelfriet | Branching processes of petri nets[END_REF].

The unfolding U is typically infinite, and its set of events E and conditions C can be defined inductively as follows: Remark that p R ( e ) can be computed inductively as:

p R ( e = C , v, s ) = P e ∩ c∈C p R ( • c )
Therefore, one can store with each event e its parametrisation space p R ( e ) and re-use it when computing causally related events. Similarly, we can relax p R with its abstraction p # R . Also remark that p # R ( e ) can be computed inductively as:

p # R ( e = C , v, s ) = ∇ {(u,v ,r)∈R|v=v } ∇ e c∈C p # R ( • c ) where (L, U ) ∩ (L , U ) ∆ = (max(L, L ), min(U, U )).
The construction ensures that for each sequence of transitions π = x 0 → • • • → y which is realisable for the concrete semantics of PRNs with constraints R, i.e., such that p R ( π) = ∅, there exists a configuration E of U composed of the corresponding events and such that X(E) = y and p R (E) = ∅, or equivalently,

p # R (E) = ∅.
Example. Fig. 3 shows a partial unfolding of the PRN G m from Fig. 1 with the influence constraints R = {(a, a, -), (b, b, -), (a, c, +), (b, c, +)}, i.e., a and b auto-inhibit themselves and both activate c.

First, notice that events e 1 and e 2 are concurrent: one can apply them in any order and end in the state a = 1, b = 1, c = 0 . In a classical state graph computation, this would generate 4 transitions (a+ then b+; b+ then a+) instead of these two events. The states reached by each of these two events are X({e 1 }) = 1, 0, 0 and X({e 2 }) = 0, 1, 0 .

Let us consider the configuration e 3 = {e 1 , e 2 , e 3 }. The abstract parametrisation space p # R ( e 3 ) = (L e3 , U e3 ) results in L e3 a, 0 = 1 (due to e 1 ), L e3 b, 0 = U e3 b, 0 = 1 (due to e 2 ), L e3 c, 1,1 = U e3 b, 1,1 = 1 (due to e 3 ), and

L e3 c, 2,1 = U e3 b, 2,1 = 1 (due to (a, c, +) ∈ R).
Then, let us consider the configuration e 4 = {e 2 , e 4 }. The abstract parametrisation space p # R ( e 4 ) = (L e4 , U e4 ) results in L e3 b, 0 = U e3 b, 0 = 1 (due to e 2 ), L e3 c, 0,1 = U e3 b, 0,1 = 1 (due to e 4 ), and,

L e3 c, 1,1 = U e3 b, 1,1 = L e3 c, 2,1 = U e3 b, 2,1 = 1 (due to (a, c, +) ∈ R).
It results that p # R ( e 3 ) and p # R ( e 4 ) are incomparable: indeed, whereas the first has more restrictions on the parameters of node a, the latter has more constraints on the parameter P c, 0,1 , i.e., when b is active and not a. Intuitively, the configuration e 4 corresponds to the case when the logic of c activation is a disjunction between a and b; where e 3 matches with an and logic for c activation, but has observed an increase of a.

Finally, the extension of e 4 with e 5 leads to a parametrisation space included in p # R ( e 3 ): indeed, p # R ( e 5 ) refines the lower bound of p # R ( e 4 ) for the parameter P a, 0 , similarly to p # R ( e 1 ). Moreover, remark that X( e 3 ) = X( e 5 ) = 1, 1, 1 . Therefore, to any extension of e 5 corresponds an equivalent extension of e 3 .

Complete finite prefix

In the general case, the unfolding of a PRN is infinite. As the unfolding is a representation of all the processes of the network and the number of states is finite, there exist finite prefixes of the unfolding from which all the configurations can be reconstructed, and in particular all reachable states can be recovered. As in [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF], we refer to such a prefix as a complete finite prefix (CFP), and show below a possible construction.

Our construction follows the same principle as the construction of CFP for safe Petri nets [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF], with the additional care of parametrisation spaces. Essentially, the main idea is to detect during the construction configurations from which can be derived the equivalent extensions. In such cases, only one configuration should be extended, and the others stopped: their last event is marked as a cut-off. As demonstrated in [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF], the completeness of a prefix can be guaranteed as soon as the computation of extensions and cut-offs is performed in a specific order, so-called total adequate order.

In the remainder of this section, we extend the total adequate order and cut-off used for safe Petri net unfolding to the PRN unfolding, which results in an algorithm for the CFP of PRN unfolding.

A total adequate ordering of PRN configurations

We construct a total adequate order of PRN unfolding configurations based on the total adequate order over configurations of Petri net unfolding as introduced in [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF]. The Petri net total adequate order relies on recording the number of instances of each Petri net transition in the configuration in a structure similar to a Parikh vector. Furthermore, Foata normal forms are used to refine the records with respect to causality in cases where records of two configurations are identical. Our approach differs solely in recording the number of node v value changes per regulatory context ω, for each (v, ω) ∈ Ω instead of keeping record for each Petri net transition.

We define ϕ(E) as the Parikh vector associated to a configuration E ⊆ E as a |Ω| dimensional vector, where, for each (v, ω) ∈ Ω, we associate the number of corresponding events in E:

ϕ(E) v,ω ∆ = |{ C , v, s ∈ E | ω = ω v (C )}|
The Foata normal form serves to distinguish between configurations based on causal constraints. Before the definition of Foata normal form, we introduce a partition of a configuration E into causal layers defined iteratively as follows:

(i) E E 1 ∆ = {e ∈ E | ∀e ∈ E : ¬(e ≺ e)} (ii) For 1 < i ∈ N : E E i = {e ∈ E \ j<i E E j | ∀e ∈ E : e ≺ e ⇒ e ∈ j<i E E j }
The Foata normal form of a configuration E is defined as a vector F C(E)

∆ = (ϕ(E E 1 ), . . . , ϕ(E E k )),
where k ∈ N is the larget natural number such that E E k = ∅. Such k is guaranteed to exist as E is finite. Intuitively, the Foata normal form F C(E) is a layered representation of E in respect to causality relation and represents steps in which events of E can fire if all concurrent events fire synchronously.

We can then define the total ordering over configurations of U as follows, where we use the lexicographic order < to compare Parikh vectors and Foata normal forms.

Definition 15 ( ⊂ 2 E × 2 E ). Let U = E, C, F, C 0 be the unfolding of PRN G m and let E 1 , E 2 ⊆ E
be two finite configurations of U. We say that E 1 E 2 iff one of the following conditions holds:

|E 1 | < |E 2 |, |E 1 | = |E 2 | ∧ ϕ(E 1 ) < ϕ(E 2 ), |E 1 | = |E 2 | ∧ ϕ(E 1 ) = ϕ(E 2 ) ∧ F C(E 1 ) < F C(E 2 ). Property 2.
is an adequate order, i.e., is well-founded,

E 1 ⊂ E 2 implies E 1 E 2 , and, if E 1 E 2 and X E1 = X E2 , then for any extension e of E 1 and f of E 2 such that e ≡ f , E 1 ∪ {e} E 2 ∪ {f } where C 1 , v 1 , s 1 ≡ C 2 , v 2 , s 2 ∆ ⇔ v 1 = v 2 ∧ s 1 = s 2 ∧ ω v1 (C 1 ) = ω v2 (C 2 ).
The total adequate order introduced here is identical to the total adequate order used by Esparza et al. [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF]. The only difference is the use of regulator states v, ω instead of transitions for Parikh vectors, which has ultimately no influence on the properties of the order itself.

Cut-offs

Let us consider two events e, e of the unfolding such that X( e ) = X( e ) and p # ( e ) ⊆ p # ( e ). Let us assume there exists an event f = C 1 , v, s being an extension of e , i.e., C 1 ⊂ cut( e ), or equivalently ω v (C 1 ) = ω v (X( e )), and p # ( f ) = ∅. It derives that there exists an isomorphic event

f = C 2 , v, s with ω v (C 2 ) = ω v (C 1 ) = ω v (X( e )) being an extension of e , p # ( f ) = ∅, and X( f ) = X( f ).
Therefore, every extension of e has a counterpart extension of e . It is then sufficient to compute the extension of the -smallest of two events to preserve the completeness of the reachable states [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF].

This leads to the definition of a cut-off event during PRN unfolding which extends the usual definition for Petri nets with the additional requirement of inclusion of parametrisation space.

Definition 16 (Cut-off ). An event e ∈ E is considered a cut-off event if there exists a different event e ∈ E such that:

X( e ) = X( e ), p # R ( e ) ⊆ p # R ( e ).
Example. In Fig. 3, the event e 5 is a cut-off due to e 3 as X( e 3 ) = ( 1 Note that e 3 e 5 does not necessarily have to hold. Even if e 5 e 3 holds, event e 5 is declared cut-off once e 3 is added to the unfolding.

Algorithm

The computation of the CFP extends the one of the unfolding of Sect. 5.2 by visiting the candidate extensions following order, and by declaring cut-off events from which no extension is possible.

Following our unfolding semantics, an event e is an extension of an occurrence net only if e is a configuration and p # R ( e ) = ∅ (or equivalently p( e ) = ∅). Additionally, in the case of CFP computation, we require that e is not an extension of a cut-off event.

The CFP N = E, C, F, C 0 , cutoffs is inductively defined as follows, starting with C := C 0 , E := ∅, cutoffs := ∅. Repeat until no possible extension of N exists:

(i) Let e = C , v, s be the -smallest extension of N (ii) For each e ∈ E, e = e s.t. X( e ) = X( e )

• if p # R ( e ) ⊆ p # R ( e )
, mark e as a cut-off (cutoffs

= cutoffs ∪ {e}) • if p # R ( e ) p # R ( e )
, mark e as a cut-off (cutoffs = cutoffs ∪ {e }) The latter statement takes care of declaring cut-off events e due to the newly added extension e. This case can occur as the total adequate order does not correlate with set inclusion order over parametrisation spaces. In other words, E 1 E 2 does not guarantee p(E 1 ) ⊆ p(E 2 ) and conversely. Hence, by a posteriori declaring e cut-off, we ensure that none of its extensions will be considered, as they are redundant.

Following [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF], as is a total adequate order, N is complete, i.e., any configuration of the unfolding U can be reconstructed from N . In particular, any state reachable by a configuration of U is reachable by a configuration of N .

Example. Fig. 4 gives a complete finite prefix of the PRN G m from Fig. 1, with R = {(a, a, -), (b, b, -), (a, c, +), (b, c, +), (a, a, o), (b, b, o), (a, c, o), (b, c, o)}, i.e., a and b auto-inhibit themselves, both activate c, and all influences are observable.

The completeness property, coupled with the result on optimal abstraction of parametrisation space (Theorem 2), ensures that:

• for any configuration of prefix, there exists a sequence of transitions in ∆(G m ) realisable with respect to the concrete semantics of PRNs (Def. 7), i.e., there exists a parametrisation P ∈ P(G m ) such that all the transitions are in ∆(G m , P ).

• for any parametrisation P ∈ P(G m ), for any realisable sequence of transitions in ∆(G m , P ), one can reconstruct from the prefix (with the cut-off events) a configuration E which contains the corresponding events and such that P ∈ p # R (E).

Standard complete finite prefixes of Petri nets computed using a total adequate order for extensions have a number of non-cut-off events which does not {(a,a,(b,b,(a,c,+),(b,c,+),(a,a,o),(b,b,o),(a,c,o),(b,c, o)}. Cut-off events are not represented.

exceed the number of reachable states [START_REF] Esparza | An improvement of McMillan's unfolding algorithm[END_REF]. This claim does not hold in our setting, because several events with the same state can exist in our CFP of PBNs (the cut-offs depend also on the parametrisation space). However, because of the resulting partial ordering of transitions in the CFP, one can easily argue that the number of configurations in the CFP is smaller than the number of concrete traces. Future work may consider defining an ordering encompassing both configurations and parametrisation space to avoid redundant exploration of configurations for the prefix computation.

Experiments

Algorithms presented in previous sections have been implemented in a prototype tool Pawn written in Python. 3 In this section, we provide its experimental evaluation performed on several well-known Boolean and multi-valued regulatory networks that have been studied in the literature. This study extends the preliminary evaluation provided in [START_REF] Kolčák | Unfolding of Parametric Boolean Networks[END_REF].

Experiment Description

Several parametrised models were selected varying in size of the network, in average connectivity of nodes, and in the network type (Boolean vs. multivalued). Each experiment is conducted in the way that for a given initial state the size of its unfolding is computed with respect to full parameter space provided that all regulations are considered monotonic and observable. The size of the unfolding is characterised by the number of non-cut-off events. This number gives a good figure of the effect of compaction achieved. In models where the reachable state space is sensitive to the initial state, we re-run the experiment for different initial states. By default, we have considered initial states as set in the original model.

To clarify the compaction achieved with unfoldings, we compare the size of the unfoldings with the size of the complete symbolic execution tree achieved from the same initial state. To this end, we employ the tool SPuTNIk [START_REF] Gallet | Formal Methods and Software Engineering: 16th International Conference on Formal Engineering Methods, ICFEM 2014[END_REF] that implements automata-based LTL model checking of parametric regulatory networks by (finite) symbolic execution of the product automaton. SPuTNIk explicitly traverses the product states in DFS manner while symbolically executing the transitions representing constraints on parameters. To achieve exactly the reachable states of the model state transition graph, we use a Büchi automaton with a single state looping over an atomic proposition satisfied in every state of the model.

SPuTNIk implements an additional parameter constraint called Min-Max. It states that in a state where all the activators (resp. inhibitors) are enabled and all of the inhibitors (resp. activators) are disabled at the same time, then the regulated node must be at its maximum (resp. minimum) level. Apparently, in our parameter encoding, it means that the only valid parameter context for such a state is the maximal (or minimal) in the respective component. To this end, we have also included the Min-Max constraint in Pawn.

Models

In all considered models, all regulations are defined with observability and monotonicity restrictions. The additional Min-Max constraint is employed only when explicitly noted.

First, we use a Boolean model of the gene regulatory network underlying mammalian cortical area development [START_REF] Giacomantonio | A boolean model of the gene regulatory network underlying mammalian cortical area development[END_REF]. The network is depicted in Figure 5 (left). The unfolding has been computed with respect to two different initial states -all species inactive (Fgf8=0) and all species inactive with the only exception of Fgf8 (Fgf8=1).

The smallest multi-valued model we have analysed is the well-studied regulatory network of bacteriophage λ life cycle [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-ii. immunity control in bacteriophage lambda[END_REF] (λ-switch) also analysed in [START_REF] Gallet | Formal Methods and Software Engineering: 16th International Conference on Formal Engineering Methods, ICFEM 2014[END_REF][START_REF] Klarner | Computational Methods in Systems Biology: 10th International Conference, CMSB 2012[END_REF]. The network structure is shown in Figure 5 (right). The initial state is 0 for all nodes. The model is considered in two configurations, with and without the Min-Max constraint.

As an example of a larger Boolean model, we consider a model of EGF-TNFα signalling pathway [START_REF] Macnamara | State-time spectrum of signal transduction logic models[END_REF][START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF] (Figure 5 (bottom)). In this case the initial state is set to tnfa and egf nodes active whereas all other nodes are considered inactive.

We have also considered two larger multi-valued models (> 10 nodes). First, we have analysed a model published in [START_REF] Mbodj | Logical modelling of drosophila signalling pathways[END_REF]. It represents several key signalling pathways of Drosophila including cross-talks. The network has the size of 15 nodes and its structure is shown in Figure 6 (left).

Second, we have analysed a model describing the control of the developmental process in primary sex determination of placental mammals. The model has been recently published in [START_REF] Sánchez | Primary sex determination of placental mammals: a modelling study uncovers dynamical developmental constraints in the formation of sertoli and granulosa cells[END_REF]. The network is multi-valued and has 14 nodes but in contrast to the Drosophila model, it is highly interconnected. In Figure 6 (right) there is shown its basic topology including the information about considered initial states.

Results

Computations conducted on all the defined models have led to results shown in Table 1. Unfoldings constructed by Pawn are characterised by their size with and without cut-off events. The number of symbolically executed states computed by SPuTNIk is given for comparison.

Since both tools are implemented as prototypes without any optimisations, we do not include computation times but rather focus on space which is crucial in this case. However, in all models with the only exception of the Primary Sex Determination model, Pawn has computed the results in a couple of minutes. In case of the Primary Sex Determination model, Pawn computed the unfolding in 2 hours whereas sputnik has been stopped in 3 days without achieving results. In case of the Drosophila model, SPuTNIk has been stopped after 2 days of computations whereas Pawn needed a couple of minutes to compute the unfolding. SPuTNIk reached a symbolic execution tree of size at least 7, 000, 000 before being timed out in all three relevant cases.

Concurrency-aware semantics shows a great improvement in the compactness of the resulting structure. It is striking in the case of models of signalling 2) are marked in blue (resp. red). All nodes considered initally non-zero have been set to their maximal level. (right) Multi-valued network of mammalian primary sex development. The states with initial value 1 are marked in blue. All the unmarked nodes are initiated 0. Edge labels are ommitted for sake of simplicity. Table 1: Comparison of the size of the obtained structures between unfolding and the symbolic representation for different models. The number of unfolding events is specified as a total number of non-cut-off events. The number including cut-off events is given in brackets. Sym. exec. size is the number of states of the complete execution tree constructed by SPuTNIk. The notation '>7,000,000' means the size was at least 7, 000, 000 when the particular experiment has been stopped after 2 days of computation.

pathway cross-talks (Drosophila and EGF-TNF) where concurrency is high due to the low connectivity of the influence graph. The size of unfolding prefixes remains very compact even in cases with more interwoven topology. It is worth noting that the constructed unfoldings preserve the set of reachable states, and any process can be reconstructed from them, with an additional computation cost [START_REF] Esparza | Unfolding based algorithms for the reachability problem[END_REF].

Cortical Development model provides another interesting observation -the unfolding can be sensitive to the initial state. In this model, the considered initial states give the same reachable state space. However, depending on the initial state, the respective unfoldings have substantially different size.

Theorem 2 ensures that the set of reachable states in the prefix is exact despite the over-approximation (for each reachable state there exists at least one true positive within the computed parametrisation set). Future work may be aimed at evaluation of the rate of false positives among the parametrisations for the purposes of parameter identification.

Discussion

This article introduces an abstraction of the parametrisation space of Parametric Regulatory Networks (PRNs) by the means of two parametrisations, defining the greatest lower bound and least upper bound of convex sublattice. We defined narrowing operators to refine the abstracted parametrisation space according to the existence of transitions, as well as influence monotonicity and observability constraints. We demonstrate that our operators lead to the smallest approximation of the concrete parametrisation space attainable by the means of convex lattice.

Our results guarantee that the abstract interpretation of PRN semantics introduce no over-approximation over the realisable sequences of transitions: any sequence of transitions allowed by the abstract semantics of PRNs is a realisable sequence of transitions for the concrete semantics of PRNs, i.e., there exists at least one Discrete Regulatory Network in which the trace exists.

We also introduce an unfolding semantics for PRNs which takes advantage of the concurrency between transitions to provide a compact representation of possible behaviours. The unfolding semantics is built equivalently on the concrete and abstract semantics of PRNs.

Thanks to the compact abstraction of parametrisation spaces and to the unfolding semantics, preliminary experiments show that our method can explore the full dynamics of PRNs for multi-valued networks with a dozen of components.

Our approach naturally extends to Gene Regulatory Networks with multiplexes [START_REF] Bernot | Gene regulatory networks with multiplexes[END_REF] as parameters of multiplex nodes are fully determined (their lower bound and upper bound parameter values are equal). Yet, future work may consider extensions of our approach to account for partial parameters specifications and arbitrary constraints on parametrisations. Another research direction is the application of our semantics for the parameter identification problem from temporal properties expressed as LTL or CTL specifications.

(∀ω ∈ Ω v : ω v ω v ω ⇒ ω = ω ∨ ω = ω) ⇒ P v,ω ≤ P v,ω ⇐⇒ by transitivity of v , ≤ ∀ω, ω ∈ Ω v : ω v ω ⇒ P v,ω ≤ P v,ω
Lemma 2. The lower and upper boundary parametrisations, L and U respectively, of the smallest convex sublattice covering the concrete parametrisation set p R (T ) for some transition set T have, for every node v and any couple ω, ω

∈ Ω v such that ω v ω , L v,ω ≤ L v,ω and U v,ω ≤ U v,ω .
Formally, for a set of transitions T such that p R (T ) = ∅ and (L, U ) = [p R (T )], and an arbitrary node v:

∀ω, ω ∈ Ω v : ω v ω ⇒ L v,ω ≤ L v,ω ∧ U v,ω ≤ U v,ω Proof. Let ω, ω ∈ Ω v : ω ≺ v ω be arbitrary.
We know ∀P ∈ p R (T ) that P v,ω ≥ L v,ω . Furthermore by lemma 1 we have P v,ω ≥ P v,ω and thus P v,ω ≥ L v,ω . Since this holds for all P ∈ p R (T ), it must also hold that L v,ω ≥ L v,ω .

The proof for the upper boundary parametrisation U is symmetrical.

Lemma 3, on the other hand, captures a very important property of the obeservability constraint. The property slightly resembles parity, as given some influence of node v not observable under a parametrisation P , changing the value of an arbitrary single parameter of node v regulation in P results in a parametrisation P such that all influences of v are observable under P . The connection with parity is especially apparent in case of Boolean networks, where parameters can only have values 0 or 1. In the Boolean case, every influence of v is observable under any parametrisation that has odd number of node v regulation parameters valued 1. The reverse does not apply, however, as odd parity of parameters valued 1 is sufficient, but not necessary condition for observability of all influences in Boolean PRNs. Lemma 3. Given a parametrisation P ∈ P(G m ) and a constraint r = (u, v, o) ∈ R such that P / ∈ P r , then for every other parametrisation P that differs from P in value of exactly one ω ∈ Ω v , and for all observability constraints r = (u , v, o) ∈ R on v, P ∈ P r .

Formally, for a parametrisation P ∈ P(G m ) and a constraint r = (u, v, o) ∈ R such that P / ∈ P r :

∀ω ∈ Ω v , ∀x v ∈ {0, . . . , m v } : x v = P v,ω ⇒ ∀(u , v, o) ∈ R : P [v,ω →xv] ∈ P (u ,v,o)
Proof. Let P ∈ P(G m ) and r = (u, v, o) ∈ R be such that P / ∈ P r and let ω ∈ Ω v , x v ∈ {0, . . . , m v } be arbitrary such that P v,ω = x v .

We denote the modified parametrisation as P = P [v,ω →xv] and a regulator state identical to ω up to value of u as ω = ω [u →ωu+k] where k = 1 ω u = 0 -1 otherwise .

For r we get P v,ω = P v,ω = P v,ω = P v,ω and thus P ∈ P r . Now let us assume v has at least two (observable) influences and let r = (u , v, o) ∈ R be arbitrary.

First, we introduce two additional regulator states. The regulator state identical to ω up to the value u , denoted ω = ω [u →ω u +k ] and the regulator state identical to ω up to the values of both u and u , denoted ω = ω[u →ω u +k ] .

Where k = 1 ω u = 0 -1 otherwise .

The regulator states ω, ω, ω and ω are now used to show that (u , v) is indeed observable under P . This is achieved by showing that either P v,ω = P v,ω or P v,ω = P v,ω as both ω, ω and ω, ω differ only in the value of u . We also use the analogous fact that ω, ω and ω , ω differ only in the value of u.

The result is trivial if x v = P v,ω as x v = P v,ω = P v,ω = P v,ω . Thus, P ∈ P r .

Let us therefore assume P v,ω = x v = P v,ω . Since P / ∈ P r we know that P v,ω = P v,ω and P v,ω = P v,ω . As P only differs from P on ω, we can expand the previous to obtain P v,ω = P v,ω = P v,ω = P v,ω and P v,ω = P v,ω = P v,ω = P v,ω . Here we use our assumption P v,ω = P v,ω to obtain P v,ω = P v,ω = P v,ω = P v,ω = P v,ω giving us the coveted P v,ω = P v,ω . Thus, P ∈ P r .

A crucial property of the monotonicity and observability constraints is captured in theorem 3. Given a smallest convex sublattice (L, U ) = [p R (T )] covering a parameter set for some T , there are strict limits on the conditions under which there may exist values k, k ∈ {0, . . . , m v } for a couple of regulator states ω, ω ∈ Ω v , respectively, such that L v,ω ≤ k ≤ U v,ω and L v,ω ≤ k ≤ U v,ω , but there is no parametrisation P ∈ p R (T ) with P v,ω = k and P v,ω = k . The case when no parametrisation with values k, k for ω and ω , respectively, exists in the concrete set solely due to monotonicity constraints, i.e. ω v ω and k > k , is trivial and is not considered in the theorem.

In other words, theorem 3 ensures a sort of density of the concrete parametrisation set p R (T ), meaning that by constructing the smallest convex sublattice, the parametrisations included to satisfy convexity are limited and the observability constraint disqualifying them from the concrete set can be identified. This result is used in the proof of theorem 2 to show that if the smallest convex sublattice covering p R (T ) grows smaller with the inclusion of a new transition t, the abstract counterpart p # R (T ) will reflect the change via restrictions ∇ t and namely ∇ R . Theorem 3. Given a PRN G m , a set of transitions T ⊆ ∆(G m ) and a wellformed set of constraints R such that (L, U ) = [p R (T )] = ∅. Then ∀v ∈ V and Finally, we conduct the proof of theorem 2 itself:

p # R (T ) = [p R (T )]
Proof. Let G m be a PRN with well-formed set of constraints R and let node v be arbitrary. The proof uses mathematical induction on the size of T .

Base case T = ∅: Let us first remark that p(∅) = [p(∅)] = P(G m ) contains all possible parametrisations. Likewise, no restriction by transition, ∇ t , is called on the abstract counterpart ( P(G m ) , P(G m ) ) = p # (∅) = P(G m ). Therefore, only edge constraints in R may be responsible for p R

(∅) = P(G m ) or p # R (∅) = P(G m ). For any couple of regulator states ω, ω ∈ Ω v , it holds that P(G m ) v,ω = P(G m ) v,ω = 0 and P(G m ) v,ω = P(G m ) v,ω = m v .
As such, it is easy to see that any monotonicity constraint is satisfied by both P(G m ) and P(G m ) . Therefore if all constraints in R are monotonic, both P(G m ) ∈ p R (∅) and

P(G m ) ∈ p R (∅) and [p R (∅)] = P(G m ) = p # R (∅)
, the latter equality being derived from lemma 4.

Let us now consider there exists at least one observability constraint r = (u, v, o) ∈ R on influences of v. Surely the influence (u, v) is not observable under P(G m ) and P(G m ) so the previous argument does not apply.

During the computation of ∇ r , the set of all regulator states that allow the value of v to change with the change of value of u, A u,v (L, U ) = P(G m ) becomes the whole possible parametrisation set. (Exluding the pathological case when m v = 0 and thus node v cannot change value. If m v = 0, |P(G m )| = 1 and A u,v (L, U ) = ∅ for any u ∈ n -(v). It is then easy to see that p R (∅) = ∅ ⇔ p # R (∅) = ∅ ⇔ there exists an observable influence of v.)

As mentioned above, The parameter values of both P(G m ) and P(G m ) are equal for all regulator states of v. The sets B and B thus contain all the vmaximal, respectively v -minimal, elements of Ω v . If there exists an influence (u , v) that is not monotonic, there will exist at least two distinct v -maximal and v -minimal elements since for any ω ∈ Ω

v : ω [u →0] v ω [u →m u ] . As such, no restriction occurs as ∇ r (P(G m )) = P(G m ) = p # R (∅).
The same holds for the concrete parametrisation set, as having two distinct v -maximal elements ω, ω means there exist two parametrisations P = P(G m ) [v,ω = mv] and P = P(G m ) [v,ω = mv] and both P ∈ p R (∅) and P ∈ p R (∅), where constraint satisfaction follows from lemma 1 for monotonicity, and lemma 3 for observability. Thus p R (∅) = P(G m ) as for every ω ∈ Ω v there exists a parametrisation in p R (∅) with parameter value 0 for ω. A symmetrical construction can be done to show that p R (∅) = P(G m ) and thus [p R (∅)] = p # R (∅). Finally, let all the influences of v be monotonic in addition to at least one, (u, v), being observable. All influences being monotonic means that for any couple ω, ω ∈ Ω v we have either ω v ω or ω v ω giving us a unique vminimal and v -maximal elements, or alternatively, |B| = 1 = |B|. As such ∇ r (P(G m )) = (L, U ) will restrict the unique v -maximal ω to have value at least 1, L v,ω = 1, and analogously, the unique v -minimal ω to be at most

m v -1, U v,ω = m v -1.
It is also important to note that both L ∈ p R (∅) and U ∈ p R (∅), constraint satisfaction again by lemmas 1 and 3, as this gives us p # R (∅) ⊆ [p R (∅)]. All that remains to be shown is that [p R (∅)] ⊆ p # R (∅). Let P ∈ P(G m ) be arbitrary parametrisation such that P v,ω = 0. Since ω is the unique vmaximal element P has to have all the other parameter values also equal to 0 in order to meet the monotonic constraints, thus either

P = P(G m ) / ∈ p R (∅) or ∃(u , v, s) ∈ R : P / ∈ P (u ,v,s) ⊇ p R (∅)
where s ∈ {-1, 1}. Again, symmetrical conditions apply to arbitrary parametrisation P with P v,ω = m v to show P / ∈ p R (∅).

We have thus proven the base case

[p R (∅)] = p # R (∅). Induction hypothesis: p # R (T ) = [p R (T )] for any T such that |T | ≤ for some k ∈ N.
We show that p # R (T ∪ {t}) = [p R (T ∪ {t})] for arbitrary transition t / ∈ T . The proof here is split into two separate branches. We first prove soundness of the abstraction, [p R (T ∪ {t})] ⊆ p # R (T ∪ {t}), and subsequently we prove that we achieve the best over-approximation,

p # R (T ∪ {t}) ⊆ [p R (T ∪ {t})]. [p R (T ∪ {t})] ⊆ p # R (T ∪ {t}) (soundness): Let us first remark that if p R (T ∪ {t}) = ∅ the smallest convex sublattice is also empty [p R (T ∪ {t})] = ∅ ⊆ p # R (T ∪ {t})
regardless of the value of the abstract parametrisation set p # R (T ∪ {t}). We therefore assume p R (T ∪ {t}) = ∅. To prove soundness we have to show that if a restriction ∇ t or ∇ R results in a strictly smaller lattice, the change is also reflected in the concrete domain p R (T ∪ {t}) and the smallest convex sublattice covering it [p R (T ∪ {t})].

We first show that [p R (T ∪{t})] is contained by the lattice (L, U ) = ∇ t (p # R (T )), i.e. any restriction imposed by ∇ t is reflected in the concrete parametrisation set.

Let t = x v,s --→ y and let us assume s = 1. By definition of ∇ t , the only change that may occur is the increase of parameter value for ω v (x) in the lower boundary parametrisation. As such, no change occurs if p

# R (T ) ≥ y v and [p R (T ∪{t})] ⊆ [p R (T )] = p # R (T ) = (L, U ).
Let us therefore assume p R (T ) < y v . By definition p R (T ∪ {t}) = p R (T ) ∩ P t . Furthermore, for all parametrisations P ∈ P t it holds that P v,ωv(x) ≥ y v , thus p R (T ∪{t}) contains exactly those parametrisations

P ∈ p R (T ) that have P v,ωv(x) ≥ y v , leading to p R (T ∪ {t}) v,ωv(x) ≥ y v = L v,ωv(x) . Coupled with [p R (T ∪ {t})] ⊆ [p R (T )] we obtain the coveted p R (T ∪ {t}) ≥ L.
The proof of p R (T ∪ {t}) ≤ U in case the transition is decreasing, s = -1, is symmetrical.

To prove that restrictions enforced by ∇ R are also reflected in the concrete parameter set we use induction again. The induction is conducted on the number of calls of ∇ r for individual constraints r ∈ R.

Formally, applying ∇ R to ∇ t (p # R (T )) in order to compute p # R (T ∪ {t}) translates into application of finitely many restrictions ∇ r1 (. . . ∇ r k (∇ t (p # R (T ))) . . . ) this gives us the same value, L v,ω , for all ω ∈ A u,v (L, U ), ω v ω and every parametrisation in (L, U ).

For the case ω v ω, lemma 1 gives us P v,ω ≤ P v,ω for any parametrisation P ∈ (L, U ).

Thus, for any parametrisation P ∈ (L, U ) such that P v,ω = L v,ω it also holds that P v,ω = L v,ω for any ω ∈ A u,v (L, U ). Observability of (u, v) is therefore not satisfied by any such P giving us

P / ∈ p R (T ∪ {t}) and p R (T ∪ {t}) v,ω > L v,ω , thus p R (T ∪ {t}) v,ω ≥ L v,ω .
The proof for the case B = {ω} for some ω ∈ Ω v is symmetrical and results

in p R (T ∪ {t}) v,ω ≤ U v,ω .
Since in case B = ∅ only the lower bound is affected and similarly in case B = ∅ only the upper bound, the combination of the results for both and the fact that L, L and U, U are always equal on all regulator states except ω gives us the coveted [p R (T ∪ {t})] ⊆ (L , U ).

The above discussion concludes the proof of soundness, leaving only the inclusion in opposite direction to be proven. Let us assume the lower bound has changed, p R (T ∪ {t}) v,ω > p R (T ) v,ω , instead of the upper bound and that the transition is increasing, s = 1:

Note that the assumption of existence of ω expects p R (T ∪ {t}) = ∅. We therefore consider the change in lower bound of the value of ω as a disqualification of all parametrisations P ∈ p R (T ) such that P v,ω ≤ p R (T ∪{t}) v,ω , which in case of empty concrete parametrisation set translates to all parametrisations with P v,ω ≤ p R (T ) , or simply all parametrisations in p R (T ). By abuse of notation we continue to use p R (T ∪ {t}) and p R (T ∪ {t}) in this sense even if p R (T ∪ {t}) = ∅. (Recall that we consider a lattice to be empty if the infimum parametrisation is not smaller or equal to supremum parametrisation.)

We now conduct a discussion on the relationship between t and ω to show that a restriction necessarily takes place in the abstract domain to reflect the change in concrete domain.

(i) ω is the regulator state of v in state x, ω = ω v (x) and the new lower bound for ω is the target value of v of transition t, p R (T ∪ {t}) v,ω = y v .

In this case, the change in ω can be attributed to the transition t itself. Since the value for ω changed, we have y v = p R (T ∪ {t}) v,ω > p R (T ) v,ω . By definition of ∇ t , ∇ t (p # R (T )) v,ω = y v and thus p # R (T ∪ {t}) v,ω ≥ y v .

(ii) ω v ω v (x) and p R (T ∪ {t}) v,ω = y v .

In this case the change in ω can be attributed to a combination of monotonicity constraints. Again, since the value of ω changed, y v = p R (T ∪ {t}) v,ω > p R (T ) v,ω = p # R (T ). We already know from the previous point that p # R (T ∪{t}) v,ωv(x) ≥ y v . Thus, by lemma 4 the monotonicity restrictions on ∇ t (p # R (T )) enforce p # R (T ∪ {t}) v,ω ≥ p # R (T ∪ {t}) v,ωv(x) ≥ y v . (iii) For any other ω or p R (T ∪ {t}) v,ω > y v .

In this case, the change in ω can be attributed to an observability constraint. Let (L, U ) be the result of the restrictions discussed in the two previous points, formally (L, U ) = ∇ {(u,v,s)∈R|s∈{-1,1}} (∇ t (p # R (T ))). We now show that the change in the lower bound for ω in the concrete parametrisation set is reflected in the abstract parametrisation set by an observability restriction, and furthermore, that no other restrictions are necessary after the observability restriction fires, i.e. ω is the single regulator state of node v with strictly higher value in p R (T ∪ {t}) compared to L.

Since p R (T ∪ {t}) v,ω > L we know that no parametrisation P ∈ [p R (T )] such that P v,ω(x) = L v,ωv(x) = y v and P v,ω = L v,ω belongs to p R (T ). One can observe that under the assumption ω v (x) = ω the above is easily applicable to theorem 3. In fact, even in the case ω v (x) = ω, by using arbitrary ω ∈ Ω v \ {ω v (x)}, there is no parametrisation in P ∈ [p R (T )] with P v,ω = L v,ω and P v,ω(x) = L v,ω(x) in p R (T ).

As the rest of the proof is independent of whether ω equals ω v (x) we unify the notation for application of theorem 3:

ω v (x) = ω ω v (x) = ω ω = ω v (x) ω = ω ω = ω ω = ω v (x) = ω
Here ω and ω represent the ω and ω , respectively, as used in definition of theorem 3. The values denoted as y v and z v in definition of theorem 3 thus become L v,ω and L v,ω respectively. This assignment is valid as the requirements ω v ω ⇒ L v,ω ≤ L v,ω , respectively ω v ω ⇒ L v,ω ≥ L v,ω , are satisfied by lemma 4.

We thus use theorem 3. As the second part of the implication does not hold in our case, the first part cannot hold either and therefore no additional regulator state ω ∈ Ω v such that p R (T ) v,ω < p R (T ) v,ω exists.

Let us therefore assume L v,ω < U v,ω . This yields ω ∈ A u,v (L, U ). We will now show that B = {ω }.

Let us first remark that under the assumption L v,ω < U v,ω no ω v ω can exist. Recall that as a result of theorem 3 we know U v,ω = L v,ω . This gives us U v,ω < U v,ω which is a contradiction with theorem 4.

We next show that ω v ω ⇒ L v,ω = U v,ω . First remark that the conditions for any ω v ω given by theorem 3 are analogous to those imposed on ω v ω . Thus, no such ω exists if L v,ω < U v,ω . Furthermore as ω v ω there are no monotonic restrictions necessary on ω if value of ω is changed. Thus, parametrisation L [v,ω = Uv,ω] ∈ p R (T ∪ {t}) by lemmas 4,1 and 3 as long as L v,ω < U v,ω holds. Since we know no parametrisation P with P v,ω = L v,ω belongs to p R (T ∪ {t}) it must hold that L v,ω = U v,ω .

By extension, L v,ω = U v,ω gives us the same result, L v,ω = U v,ω , for any ω v -smaller or v -larger than ω. As such, we can simplify the constraints given by theorem 3 to only consider v -relation to ω and treat ω as any other regulator state.

Let now ω ∈ A u,v \ {ω } be arbitrary. The case ω v ω is simple as L v,ω = L v,ω follows directly from the application of theorem 3. We now discuss ω v ω .

We know that L v,ω = U v,ω for any ω v -incomparable to ω . Thus, ω ∈ A u,v (L, U ) requires that (u, v) is not monotonic and ω [u →ω u ] v ω . By previous point L v,ω [u →ω u ] = L v,ω and since L / ∈ P r we know that the lower bounds are equal for any regulator states differing in u only, giving us the coveted L v,ω = L v,ω .

As such, B = {ω } = {ω} and the lower bound of ω is increased by one by observability restriction ∇ r . By lemma 3 we know L [v,ω += 1] satisfies all observability constraints and since ω is v -maximal and L [v,ω += 1] ∈ (L, U ) we have L [v,ω += 1] ∈ p R (T ∪ {t}) by lemmas 4 and 1. As such there may exist no other ω ∈ Ω v such that p R (T ∪ {t}) v,ω > L [v,ω += 1] v,ω . There may be however, an ω ∈ Ω v such that p R (T ∪ {t}) v,ω < U . Such ω can be treated symmetrically to ω to show B = {ω }.

Since the last discussion in the third point is the only case when introducing an increasing transition can decrease the upper bound, the above discussion indeed proves p # R T ∪ {t} ⊆ [p R (T ∪{t})] for an increasing transition t by showing that p # R T ∪ {t} v,ω ≥ p R (T ∪ {t}) v,ω , respectively p # R T ∪ {t} v,ω ≤ p R (T ∪ {t}) v,ω , for arbitrary ω ∈ Ω v

The proof is completely symmetrical for the case when t is decreasing. The regulator state ω being such that p R (T ∪ {t}) v,ω < p R (T ) v,ω , except for the final discussion in the third point, which is again, the only case when a lower bound can increase when introducing a decreasing transition. 
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 1 Figure 1: (a) Influence graph G and (b) parametrisation domain of a PRN Gm with ma = 2, m b = 1, and mc = 1.For readability, we use letters instead of numbers for nodes, and write explicitly the component name in vectors. In the rest of the paper, we also use shorter notations, e.g., P c, 2,1 instead of P c, a=2,b=1 . (c) Transitions of the DRN with parametrisation P = 2, 2, 1, 1, 0, 0, 0, 0, 1, 1, 1 corresponding to the right column of (b). Nodes are states S(Gm) in the order a, b, c.

Fig. 2

 2 gives a sketch of the lattice representation of the parametrisation space of the PRN G m introduced in Fig. 1. The full parametrisation space P(G m ) is completely characterized by the convex sublattice with lower bound L = 00000000000 and upper bound U = 22211111111 . Given the set of transitions T = {110 c,+ --→ 111; 111 b,-1 ---→ 101} ⊂ ∆(G m ), p # (T ) refines the abstraction in the following way: the transition 110 c,+
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 21 Figure 2: Sketch of Hasse diagram of the convex sublattice of P(Gm) for the PRN of Fig. 1 with L = 00000000000 and U = 22211111111 . The two parametrisations with a left bracket correspond to the refined abstraction p # (T ) with T = {110 c,+ --→ 111; 111 b,-1 ---→ 101 }. The two parametrisations underlined correspond to the further refined abstraction p # R (T ) with {(a, c, +1), (b, b, o)} ⊆ R (Sect. 4). The parameter corresponding to b, b = 0 is marked with ; b, b = 1 with ♥; c, a = 1, b = 1 with ♣; and c, a = 2, b = 1 with ♠.

  3 for the PRN G m of Fig. 1 with transitions T = {110 c,+ --→ 111; 111 b,-1 ---→ 101 }. Recall that p # (T ) = (L, U ) = ( 00000000100 , 22210111111 ), as illustrated by Fig. 2. Let us assume the influence constraints R = {(a, c, +1), (b, b, o)}. Considering first the positive-monotonic influence of a on c, it results that P c, 21 should be greater or equal to P c, 11 (in particular 01 c 11 c 21 ). Because L c, 11 = 1, the operator ∇ (a,c,+1) (L, U ) increases the lower bound L c, 21 from 0 to 1 (parametrisation 00000000101 illustrated in Fig. 2, the component c, 21 being marked with ♠).

  (i) Start with C := C 0 and E := ∅. (ii) An event e = C , v, s is a possible extension of the unfolding if and only if C ⊆ C, e is a configuration, and p R ( e ) = ∅. In such a case, e is added as child of each condition c ∈ C , together with new conditions e, u, j for each e , u, j ∈ C , u = v, and the condition e, v, j + s where e , v, j ∈ C , all being children of e.

1 Figure 3 :

 13 Figure3: Excerpt of the unfolding of the PRN from Fig.1with monotonic constraints R = {(a, a, -), (b, b, -), (a, c, +), (b, c, +)}. Conditions are drawn as circles and are labelled with the corresponding node value; events are drawn as boxes and are labelled with the corresponding node value increase or decrease. Initial conditions are filled with light blue. Dashed event (e 5 ) will be declared as cut-off (Sect. 5.3).

  , 1, 1) = X( e 5 ) and the parametrisation sets p # R ( e 5 ) = ( 10010010101 , 22211111111 ) and p # R ( e 3 ) = ( 10010000101 , 22211111111 ) giving us p # R ( e 5 ) ⊆ p # R ( e 3 ). As explained at the end of Sect. 5.2, L c, 01 = 1 (7th position in the vector) enforced by e 4 , requires L c, 11 = 1 (9th position) due to influence (a, c) being positive-monotonic. The same monotonicity constraint is also responsible for L c, 21 = 1 (11th position) in both cases.

Figure 4 :

 4 Figure 4: The complete finite prefix obtained by unfolding the PRN of Fig. 1 with R = {(a, a, -), (b, b, -), (a, c, +), (b, c, +), (a, a, o), (b, b, o), (a, c, o), (b, c, o)}. Cut-off events are not represented.
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 5 Figure 5: (left) A Boolean regulatory network controlling the cortical area development. The state marked in blue has been set to initial value 1 in one of the experiments. (right) A multivalued regulatory network of bacteriophage λ life cycle. Node labels are extended with ranges describing the value domain. Accordingly, edge labels include threshold levels. (bottom) Model of the signalling pathway of EGF-TNFα. The only two states that start with initial value 1 are marked in blue.

Figure 6 :

 6 Figure6: (left) Multi-valued network of signalling pathways cross-talk in Drosophila. The states that start with initial value 1 (resp. 2) are marked in blue (resp. red). All nodes considered initally non-zero have been set to their maximal level. (right) Multi-valued network of mammalian primary sex development. The states with initial value 1 are marked in blue. All the unmarked nodes are initiated 0. Edge labels are ommitted for sake of simplicity.

  p # R (T ∪ {t}) ⊆ [p R (T ∪ {t})] (best over-approximation): Let us first remark that if the abstract parametrisation set is empty, the infimum parametrisation in not smaller or equal to the supremum parametrisation, we have p # R (T ∪ {t}) = ∅ ⊆ [p R (T ∪ {t})] regardless of the value of the smallest convex sublattice containing the concrete parametrisation set. We therefore assume p # R (T ∪ {t}) = ∅. If t introduces no change to the smallest convex sublattice, [p R (T ∪ {t})] = [p R (T )] the result is trivial as p # R (T ∪ {t}) ⊆ p # R (T ) = [p R (T )]. Let thus ω ∈ Ω v be such that p R (T ∪ {t}) v,ω > p R (T ) v,ω or p R (T ∪ {t}) v,ω < p R (T ) v,ω and let t = x v,s --→ y where s ∈ {-1, 1}.

  As such, p # R T ∪ {t} ⊆ [p R (T ∪{t})] holds. Combined with soundness, [p R (T ∪ {t})] ⊆ p # R T ∪ {t}, we obtain the coveted p # R (T ∪ {t}) = [p R T ∪ {t}].

In general, mv ≤ |{(v, u) | (v, u) ∈ I}| (out-degree of v)[START_REF] Richard | Modern Formal Methods and Applications[END_REF] 

In the framework considered in this paper, an influence being both positive-and negativemonotonic is equivalent to having no influence.

Pawn is available online: https://github.com/GeorgeKolcak/Pawn
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Appendix A. Proof of Theorem 2

In this appendix, we give the full proof of theorem 2 stating that p # R (T ) is equal to the smallest convex sublattice containing p R (T ). It is important to note that in this appendix we will only consider the influence of one node in all the proofs. We can afford to do this as all the restrictions imposed on P(G m ) to obtain p R (T ) have only local effects, in the sense of the node being regulated. This is clearly the case for including a transition t in the set T , as a transition only affects one associated regulatory state, however, it also naturally extends to monotonicity and observability constraints. Marking an influence of node v as monotonic or observable only imposes restriction on the values of parameters that govern the regulation of v. Thanks to this locality, we can analyse the regulation of each node in V separately, and obtain the final parametrisation set as cartesian sum of the parametrisation sets considered for each node separately.

From here on, all parametrisations are thus considered local to the regulation of the given node, as well as constraint set R is considered only as the subset of constraints on influences of the given node.

Additional notations. [p R (T )] is the smallest convex sublattice including p R (T ).

We first introduce several lemmas to aid us in the main proof. Lemma 1 describes the intuitive connection between monotonicity constraints and monotonicity order ( v ) while lemma 2 extends the intuition to bounds of the abstract parametrisation set. Lemma 1. Every parametrisation P that satisfies all monotonic constraints on influences of node v, must also have P v,ω ≤ P v,ω for any couple ω, ω ∈ Ω v such that ω v ω and vice versa.

Formally, for an arbitrary parametrisation P ∈ P(G m ) and node v:

Proof. We conduct the proof directly.

with the obvious exception of x u = 0 in case s = 1, and

Proof. We propose a parametrisation P constructed as follows:

And a second parametrisation

We will now show that P, P respect the lower and upper bounds L, U :

Furthermore, both P and P satisfy all the monotonicity constraints.

For

The same holds for P as long as we prove P v,ω ≤ P v,ω for ω v ω since P v,ω < P v,ω . Let us first consider ¬(ω v ω) and ¬(ω v ω). Then, by definition, P v,ω = max ω v ω (L v,ω ) and thanks to lemma 2

and thus, by application of lemma 2 again, we obtain L v,ω ≤ L v,ω ≤ P v,ω .

Let us now consider either ω v ω and/or ω v ω. This translates to

follow directly from the definition of l v,ω . Note that this also proves monotonicity satisfaction in case ω v ω and ω

v ω and since P v,ω < P v,ω the monotonicity is satisfied in those cases for P as well.

The same reasoning can be applied to show

ω by definition. Thanks to P v,ω = P v,ω and P v,ω = P v,ω , the result is extended to P .

All that is left to prove is that monotonicity is satisfied in case of the opposite direction of v : ω v ω, ω v ω and ω v ω . It is easy to see from definition of u v,ω , that monotonicity is satisfied in all three cases as

ω holds for the three v conditions, respectively. The same applies for P due to equality with P on ω and ω , and the fact that P v,ω < P v,ω .

Finally, we show that at least one of the parametrisations P, P also satisfies all the observability constraints. Since P and P differ in the value of exactly one regulator state ω , the result is obvious from lemma 3.

Lastly, lemma 4 expands further on the property shown in Lemma 2 to show that the fixed point for monotonic restrictions is reached exactly when both lower and upper boundary parametrisations L and U , respectively comply with the monotonicity order. Lemma 4. The fixed point of restriction by monotonic constraints is reached for a sublattice of parametrisations (L, U ) exactly when the following holds for any couple of node v regulator states ω, ω

Formally, for an arbitrary node v and an arbitrary sublattice of parametrisations (L, U ) ⊆ P(G m ):

Proof. We conduct the proof directly.

with the obvious exception of x u = 0 in case s = 1, and x u = m u when s = -1.

⇐⇒ by transitivity of

where k ∈ N and ∀i ∈ {1, . . . , k} : r i ∈ R. Note that the order of restriction application is not fixed. The same fixpoint is reached regardless of the order, however, and we consider an arbitrary sequence of restrictions that is valid in the sense of reaching the fixpoint.

To simplify notation, we use ρ = (r 1 , . . . , r k ) to denote the chain of constraints used for restriction by ∇ R . We use ρ i for i ∈ {0, . . . , k} to denote prefix of ρ of the length of i, ρ 0 being empty and ρ k = ρ. Additionally we write ∇ ρi to denote the application of the restrictions according to ρ i . The induction is thus conducted on the length of prefixes of ρ.

Base case i = 0, is trivial as if no additional restriction happens we have

where i ≤ l for some l ∈ {0, . . . , k -1}.

We now prove that

The result is trivial if (L , U ) = (L, U ), we thus assume inequality.

Let r = (u, v, s) ∈ R be the last constraint in ρ l+1 . We now conduct a discussion on the nature of r:

For any parametrisation P ∈ p R (T ) such that P v,ω < L v,ω , respectively P v,ω > U v,ω , we know P / ∈ p R (T ∪ {t}) by lemma 1. Thus, the bounds of

(ii) r is observability constraint, s = o. As we assume (L , U ) = (L, U ), restriction ∇ r must have changed either the lower or upper bound. By definition, A u,v (L, U ) = ∅ and at least one of the following:

Let us assume B = {ω} for some ω ∈ Ω v , giving us

) and for all possible values x u of u, all the lower bound and upper bound values L v,ω [u →xu] and U v,ω [u →xu] are equal. As such, there is no ω outside of A u,v (L, U ) that would allow observability satisfaction of r as all upper and lower bounds are equal for any such ω that differ in u only.

Let us thus consider arbitrary ω ∈ A u,v (L, U ) such that ω = ω. Since B = ∅, it must hold that L v,ω = L v,ω . Furthermore we know that ω is either v -smaller than ω or incomparable.

Let us first consider ω v ω. Since ω / ∈ B, at least one of the three defining conditions must not hold. We have already established L v,ω = L v,ω . Thus, either there exists ω ∈ A u,v (L, U ) such that ω v ω , in which case we repeat this analysis for ω , ultimately leading to the following point by lemma 2 as A u,v (L, U ) is finite. Or U v,ω = L v,ω = L v,ω . Again, Formally, for any ω ∈ Ω v :

We now show that an observability constraint indeed enforces restriction. Let us consider parametrisation L, we know L ∈ p(T ∪ {t}) by definition and thanks to lemma 1 also L ∈ {r=(u,v,s)∈R|s∈{-1,1}} P r . However, L / ∈ p R (T ∪ {t}) meaning there must exist an observability constraint r = (u, v, o) ∈ R such that L / ∈ P r .

We now explore ∇ r for the observability constraint r. Recall that ω = ω regardless of the equality between ω and ω v (x). A discussion on the nature of the lower and upper bounds of the value of ω follows.

Let us first assume

We will now show that L v,ω = U v,ω leads to A u,v (L, U ) = ∅ and in turn p # R (T ∪ {t}) = ∅. Since L / ∈ P r we know that the lower bound for any regulator state of v is independent of the value of u, formally,

Furthermore, applying the results from theorem 3, any ω v -incomparable to neither ω nor ω has the upper bound equal to the lower bound. The same must also hold for any ω v ω or ω v ω since the upper bound of any such ω is at most L v,ω , respectively L v,ω . The lower and upper bounds are also equal for any ω v ω as the lower bound must be equal to L v,ω and the upper bound cannot exceed U v,ω by lemma 4.

Finally, we show that U v,ω is also equal to L v,ω and thus the same must hold for any ω v ω. If there exists ω ∈ Ω v such that ω v ω then we have U v,ω = L v,ω and by lemma 4 U v,ω ≤ U v,ω giving us the coveted equality of lower and upper bounds.

Assuming thus, ω is v -maximal, we prove that L v,ω = U v,ω by contradiction. Let thus L v,ω < U v,ω . Then for parametrisation P = L [v,ω = Uv,ω] ∈ (L, U ) it holds that P ∈ p(T ∪ {t}), by lemma 1 P also satisfies all monotonicity constraints and finally, by lemma 3, P satisfies all observability constraints. Thus, P ∈ p R (T ∪ {t}) which is a contradiction with p R (T ∪ {t}) = ∅.