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Dual-arm robotic manipulation of flexible cables

Jihong Zhu, Benjamin Navarro, Philippe Fraisse, André Crosnier and Andrea Cherubini

Abstract— Deforming a cable to a desired (reachable) shape
is a trivial task for a human to do without even knowing
the internal dynamics of the cable. This paper proposes a
framework for cable shapes manipulation with multiple robot
manipulators. The shape is parameterized by a Fourier series.
A local deformation model of the cable is estimated on-line with
the shape parameters. Using the deformation model, a velocity
control law is applied on the robot to deform the cable into
the desired shape. Experiments on a dual-arm manipulator are
conducted to validate the framework.

I. INTRODUCTION

Much mainstream research on robot manipulation is

placed on rigid objects. The deformation of these objects

during manipulation is negligible or null. The concept of

deformation is defined as the transformation of a body from

a reference configuration to a current configuration [1]. A

configuration is a set containing the positions of all particles

of the body. Deformations result from a stress field induced

by forces. There are two types of deformations: elastic

and plastic deformations. The former recovers its original

configuration after the stress field is removed, while the latter

is irreversible.

A great deal of industrial/household/medical scenarios

involve the manipulation of deformable flexible objects. To

name a few: cable management in factory or at home [2],

folding clothes [3], manipulation of organs and tissues in

medical contexts [4].

Common flexible objects in our daily life are cables.

Flexible cables (e.g., power cables, HDMI cables etc) are

frequently used in industrial/household environments. Cables

arrangement, pick and place and insertion are common tasks.

These cables deform under forces acting on them. Humans

can manipulate cables using two hands. Given a (reachable)

desired cable shape, a human is able to deform the cable into

such shape. This task is easy for a human to do without even

knowing the internal dynamics of the cable (see Fig. 1). For

robots, it still remains a challenge.

Probably the oldest literature on cable manipulation is the

work of Hopcroft et al. [5]. In this work, a vision system was

used to guide the robot and an abstract description of the

cable configuration was developed. Later, Chen and Zhang

[6] used a non-linear model to characterize the deformation

of a flexible beam, and applied the model for manipulation.

A more complex model of linear objects considering twist

was developed in [7]; the stable shape of the object can be

derived by minimizing the potential energy under geometric
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Fig. 1: Cable manipulation by humans, red color line marks

the desired shape.

constraints. Nakagaki et al. extended the model in [7], and

used it for cable insertion [8]. Kosuge et al. [9] mod-

eled the static deformation of a sheet metal by Lagrange’s

equation based on a finite element model. Most of above

mentioned works require identifying the deformation model

of the flexible cables/beams before manipulation. However,

cables are usually of different thickness, and manufactured

with distinct materials. For different cables, the deformation

models generally vary. Therefore, these methods lack the

robustness needed for them to be applied to general cables.

More recent works [10], [11], [12] adopted model-free

methods to tackle the problem of manipulation of flexible

objects. The control action was derived by an on-line de-

formation models constantly updated by visual feedbacks.

In all three papers, deformations can only be characterized

by point, angle and curvature displacement. A more general

geometric representation of deformation of closed contour

was proposed in [13] by truncated Fourier series.

In this work, we draw inspiration from [13], and extend

the work to multiple robotic arms manipulation of an open

contour (the shape of a flexible cable). In addition, we

consider the rotational action of the manipulators while

[13] considered only translations. The problem is more

complex as we are dealing with more inputs. Furthermore

by considering multiple manipulators and rotation, we are

approaching manipulation capability of a human.

The objective of this work is to setup a framework for

multi-arm robots to complete the task of deforming a flexible

cable to a desired shape through vision-based control with a

on-line estimated deformation model. Here, we consider only

manipulation on a 2D plane, and leave 3D manipulation as



future work.

The rest of the paper is organized as follows. In Sect. II, we

formulate the task as a control problem. Sect. III describes

the methods to tackle the problem. In Sect. IV, a dual-arm

robot demonstration is presented1. In Sect. V, we conclude.

II. PROBLEM FORMULATION

Let us consider a multi-arm robot manipulating a cable

on a 2D plane. The cable can be regarded as a system with

unknown dynamics that accepts inputs from the robot. Each

of the end-effectors applies 3 velocity inputs, respectively:

two translation velocities in the manipulation plane, ẋ and ẏ,

and one angular velocity ω along the axis perpendicular to

the manipulation plane. A dual-arm manipulation example is

shown in Fig. 2. Assume there are M number of manipula-

tors, the total number of inputs from the robot is:

rrr = [ẋ1 ẏ1 ω1 . . . ẋM ẏM ωM]T ∈ R
3M

. (1)

x

y

robot manipulator initial position 

robot manipulator final position cable final shape 

cable initial shape 

Fig. 2: Control inputs of a dual-arm example.

The shape of the cable is continuously observed by a static

camera perpendicular to the manipulation plane. The cable

shape on the camera image is represented as ccc = [uuu,vvv]T ,

where uuu and vvv are image coordinates of pixels sampled along

the cable. We represent the desired cable shape by ccc∗.

The problem is to use the control inputs rrr to drive the

cable from its initial shape ccc0 to the desired shape ccc∗ with

on-line estimated deformation model by visual feedback.

III. METHODS

To tackle the problem stated above, we first transform

the cable shape into feature parameters other than uuu and

vvv. After parameterizing the shape, we model locally the

relationship between the robot motion and the changes in the

shape parameters. Such model is referred to as a deformation

model. The final step is to derive the control strategy to

deform the cable into the desired shape based on such

deformation model. In this section, we describe each sub-

task sequentially.

1The video of the experiments can be found at http://bit.do/d9xJJ

A. Shape feature parameters

The ith sample c(i) = [u(i),v(i)]T , i = 1,2, . . . ,K can be

approximated using Fourier series:

u(i) =
N

∑
j=1

[a j b j]

[

cos( jρi)
sin( jρi)

]

+ e

v(i) =
N

∑
j=1

[c j d j]

[

cos( jρi)
sin( jρi)

]

+ f ,

(2)

with

ρi = (i−1)
π

K
, (3)

N ≥ 1 is the order of the Fourier series.

We denote sss to be the feature parameters characterize (2):

sss = [a1 b1 . . . aN bN e c1 d1 . . . cN dN f ]T ∈ R
4N+2

. (4)

It will later be used in deformation model estimation and

control. We will show how we solve for sss given image data.

We can rewrite (2) as:

c(i) =

[

u(i)
v(i)

]

=

[

FFF(i) 000

000 FFF(i)

]

sss. (5)

In (5), FFF(i) are the harmonics terms defined as:

FFF(i) = [cosρi sinρi . . . cos(Nρi) sin(Nρi) 1] ∈ R
2N+1

, (6)

Using all K samples in ccc, we have:

ccc = GGGsss, (7)

with:

ccc = [c(1)T c(2)T
. . . c(K)T ]T ∈ R

2K
,

GGG =















FFF(1) 000

000 FFF(1)
...

...

FFF(K) 000

000 FFF(K)















∈ R
2K×(4N+2)

.
(8)

Feature parameters of the shape can be solved by linear least

squares:

sss = GGG†ccc, (9)

where † represents the pseudo inverse:

GGG† = (GGGT GGG)−1GGGT
. (10)

To ensure the pseudo inverse of GGG exists we have:

rank(GGG)≥ 4N +2, (11)

must be fulfilled. A necessary condition for (11) is:

2K ≥ 4N +2. (12)



B. Deformation model estimation

The feature parameters sss describes the cable shape. A

small movement of the robot will produce a tiny change

in the cable shape, hence on the feature parameters. From

this observation, at a given operating point, we are able to

linearize the deformation model as:

δ sss = QQQδ rrr. (13)

In (13)

δ rrr = rrrδ t ∈ R
3M

, (14)

corresponds to the change in robot position with δ t being the

time interval and rrr being the velocity inputs of the robot;

δ sss ∈ R
4N+2 is the change in feature parameters, and QQQ ∈

R
(4N+2)×3M is the local deformation matrix relating the two.

For the ith element of sss, we can write:

δ si = δ rrrT qqqi, (15)

where qqqT
i ∈ R

3M is the ith row of QQQ.

To estimate qqqi, we denote the current time as tm. Using

a constant sampling period δ t, within the time period (m−
1)δ t, we collect m consecutive data of δ si and δ rrrT while

the robot is moving:

σσσ i =











δ si(t1)
δ si(t2)

...

δ si(tm)











∈ R
m
,RRR =











δ rrrT (t1)
δ rrrT (t2)

...

δ rrrT (tm)











∈ R
m×3M

, (16)

where

tk = tm − (m− k)δ t, k = 1,2,3, . . . ,m. (17)

Using RRR and σσσ i we have:

σσσ i = RRRqqqi. (18)

Then, qqqi can be estimated via:

q̂qqi = (RRRT RRR)−1RRRT σσσ i. (19)

To successfully estimate QQQ, the following conditions must

be satisfied::

1) m ≥ 3M

2) RRR must has full row rank.

The first condition ensures that in (18), there are equal or

more equations than unknowns, so that qqqi can be solved using

linear least squares. If the second condition is not satisfied,

RRRT RRR in (19) will be singular. In practice, this condition infers

that within the time period (m−1)δ t, it is necessary that the

robot moves in all directions and rotate at least once. This

makes prefect sense as if one or more component(s) of rrr

is/are not active during the whole time period, no relationship

can be derived between that/those component(s) and the

feature parameters.

To ensure that RRR has full row rank, we can check the

rank of RRR before estimation of QQQ. If RRR does not fulfill the

rank condition, we extend the time period until the rank

condition is fulfilled. Last but not the least, the time period

(m− 1)δ t should be as small as possible while satisfying

both conditions.

C. Shape servo-controller

Using the camera, we are able to observe the current

parametric shape of the cable ccc. Given the target shape ccc∗,

both ccc and ccc∗ can be parameterized by feature parameters

sss and sss∗ given in (4). The differences between the current

shape ccc and the desired shape ccc∗ can be characterized by the

difference between the feature parameters of the two shapes:

∆sss = sss∗− sss. (20)

Using the estimated deformation model:

δ sss = Q̂QQδ rrr, (21)

we have then:

δ rrr = λ Q̂QQ
†
∆sss. (22)

As described in (14),δ rrr is a vector that consists of motion

for end-effectors:

δ rrr = [δ rrrT
1 ,δ rrrT

2 , . . . ,δ rrrT
M] ∈ R

3M
, (23)

where

δ rrri =





δxi

δyi

δωi



 ∈ R
3
, i = 1,2, . . . ,M, (24)

with δωi the end effector orientation (with regard to the

vertical axis) controlled by ωi.

The translation vectors in (24)
[

δxi

δyi

]

∈ R
2
, i = 1,2, . . . ,M, (25)

can be normalized to give the direction of translation of each

end-effectors:

dddi =
1

√

δx2
i +δy2

i

[

δxi

δyi

]

∈ R
2
, (26)

Based on (26), the velocity control command to be sent to

each end-effectors can be formulated as:

rrr = [rrr1 rrr2 . . . rrrM] ∈ R
3M

, (27)

where

rrri =

[

λ1III 000

000 λ2

][

dddi

ωi

]

∈ R
3
. (28)

In (28), λ1,λ2 are adjustable gains. These should be tuned

to small values leading to a slow motion of the robot such

that the assumptions of local deformation model holds.

D. Iterative model adaptation

Since (13) calculates a local deformation model, through-

out the manipulation, QQQ needs to be updated.

At time tN , we estimate the local deformation matrix QQQN .

Using the deformation matrix, we can derive the velocity

control command rrrN . The control is applied for a δ t period

until tN+1.

At time tN+1, the cable is driven to a new shape with new

feature parameters sss(tN+1). Therefore, we have new set of

data:

δ sss(tN+1) = sss(tN+1)− sss(tN),

δ rrr(tN+1) = rrrNδ t.
(29)



The data window is shifted from {t1 − tN} to {t2 − tN+1} ,

as we add in the newly obtained data (29), and remove the

first data δ sss(t1) and δ rrr(t1). Using the new data window we

can follow the same step and update QQQN to be QQQN+1.

IV. EXPERIMENTAL VALIDATION

A. Experimental setup

We use two lightweight KUKA LWR IV robots for the

dual-arm setup. Hence, M = 2 for the above algorithms.

We design two grippers to ensure manipulation of the

cable without slipping (see Fig. 3b). The blue gear is attached

to the robot, the black cylinder represents the cable and the

yellow gear is used to fastens the cable rigidly.

(a) Cable gripper mechanical de-
sign.

(b) Cable gripper mounted on the
robot.

Fig. 3: The cable gripper.

The cable is gripped by two end-effectors. An Allied

Visionr AVT camera is placed perpendicular to the ma-

nipulation plane to track the shape of the cable during

manipulation. The image resolution is 1936×1456. A Linux-

based 64-bits PC is used to process the image at a frame rate

of 33.3Hz.

The overall hardware setup is showed in Fig. 4.

Fig. 4: The hardware setup for cable manipulation.

To test the robustness of the algorithm, we prepared two

cables with different thickness. The diameter of the thin cable

in is 5.88 millimeters, and the thick cable is 7.66 millimeters.

B. Image processing

Image processing is not the major part of this research,

therefore we simplify the environment by putting a white

board on the table to serve as the 2D plane and using black

cables for the manipulation. The detection of the cable is

achieved with OpenCV 3.2.0. Since camera is in a fixed

position, Region of Interest (ROI) on the image for the

manipulation is constant. The color image is converted into a

grayscale image. Then by thresholding the grayscale image,

we can segment the cable from the image. The target shape is

drawn on the white board with red color markers. To detect

the target shape, we transform the image representation from

RGB to HSV, and then apply thresholding to segment the red

shape from the image. Fig. 5 shows the image processing

under experimental conditions.

(a) Color image. (b) Cable segmen-
tation.

(c) Target shape.

Fig. 5: Image processing.

C. Experiments

The target shape feature parameters sss∗ is calculated from

the binary image of the target shape (Fig. 5c) at the start

of the control scheme. The current shape of the cable is

continuously observed. And the feature parameters of the

cable is constantly updated to compute the local deformation

model and the control inputs. We choose N = 2 for Fourier

series in (2). This value is chosen because: (i) cable shapes

reachable by the dual-arm are not complex, N = 2 can

produce reasonable approximation of the shape while the

N = 1 sometimes result in a bad approximation, and (ii)

larger N will result in more feature parameters of the shape.

Since the inputs from the dual-arm robot is always 6, when

N = 1, number of feature parameters is 4N +2 = 6, making

the system fully actuated. When N > 1, with bigger N,

the system becomes more and more under actuated, which

increases the possibility of control being attracted to a local

minimum [14], also (iii) increment N will increase the

complexity of computation.

To initialize QQQ estimation, the robot executes a small

motion:

δ rrr = [−0.002,−0.002,0.5,0.002,−0.002,−0.5]. (30)

The translation is expressed in meters and rotation in degrees

in (30). This motion excites all components in rrr and based on

the algorithm proposed in Section III-B, an initial estimation

of QQQ can be computed.

The following evaluation metric is designed to monitor the

performance of the controller:

Φ =
||sss∗− sss||

||sss∗||
. (31)

Lower Φ indicates better matches between the cable shape

and the target shape.



We test the algorithm on the thick cable with two different

shapes. Figure 6 and 7 depicts the experiments. The red

color line is the target shape. In each figure, the initial

and final shape of the cable is presented in (a) and (d)

respectively. Figure (b) and (c) shows the intermediate shapes

while reaching the final shape.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Fig. 6: Experiment 1 - Thick cable.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Fig. 7: Experiment 2 - Thick cable.

Figure 8 and 9 show the evolution of the performance

metric during the manipulation. The general trend of the

performance metric is decreasing and the final shape overlap

with the target shape as shown in figure 6 and 7.

Fig. 8: Performance metric - Experiment 1.

To further test the robustness of our algorithm, we test it

on a thinner cable. The shape servoing steps are shown in

Fig. 10 and the evolution of the performance metric is shown

in Fig. 11.

We try also to change the initial configuration of the cable.

We slightly alter the light condition, the segmentation is

robust to adapt. The manipulation result is shown in Fig.

12. It proves that the algorithm is invariant of the initial

configuration of the cable.

Fig. 9: Performance metric - Experiment 2.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Fig. 10: Experiment 3 - Thin cable.

Fig. 11: Performance metric - Experiment 3.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Fig. 12: Experiment 4 - Thin cable, different starting config-

uration.



The shape servoing tasks are carried out with no knowl-

edge of the deformation characteristic of the cable. The al-

gorithm is verified on two distinct cables to show robustness.

In addition, no camera calibration is needed.

Figure 13 shows one failure in reaching the target shape.

Figure 13a and 13b shows the initial shape and final shape

of the cable respectively, and the red line depicts the target

shape. The robot goes back and force in a final shape and is

not able to reach the target shape.

(a) Initial shape (b) Final shape

Fig. 13: Experiment 5 - Unreachable target.

In the previous experiments, the control is able to make the

parameter differences ∆sss smaller, hence the cable approaches

the target shape. For the failure case, in Fig. 14 we present

the changes in the absolute value of parameter differences

|∆sss| for each feature parameter after one step of control

around the final shape. We can observe that after the control,

for 6 parameters, the differences decreases, for the other 4,

the differences increases. This may due to under-actuation.

With 6 inputs from the robot and 10 parameters to control,

the system is under actuated. Hence, we can not ensure global

asymptotic stability of the control [14].

(a) Parameter difference 1 (b) Parameter difference 2

(c) Parameter difference 3 (d) Parameter difference 4

(e) Parameter difference 5 (f) Parameter difference 6

(g) Parameter difference 7 (h) Parameter difference 8

(i) Parameter difference 9 (j) Parameter difference 10

Fig. 14: Change of parameter differences after one step of

control around the final shape

In addition, the deformation model is locally approxi-

mated, so if the target shape deviates too much from the

initial shape, without path planning, the control will more

likely converge to a local minimum. The approximation

accuracy can also affect the convergence.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we adopt the model-free method proposed

in [13], and extend the method to multiple robotic arms

manipulation of open contours. The contour is characterized

by a Fourier-based feature parameters. The parameters are

used to estimate a local deformation model on-line. Then the

deformation model is used to compute control to drive the

cable to the target shape. As the deformation model directly

maps the robot motion to feature parameters, this method

requires no camera calibration.

The under-actuation problem (highlighted in the last ex-

periment) can be addressed by reducing the number of shape

feature parameters. In future research, we intend to work on

different representation of the shapes. We would also like

to investigate path planning strategies to further enhance the

convergence of the algorithm.
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