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Structured extended �nite element methods for solids de�ned
by implicit surfaces
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A paradigm is developed for generating structured �nite element models from solid models by means of
implicit surface de�nitions. The implicit surfaces are de�ned by radial basis functions. Internal features,
such as material interfaces, sliding interfaces and cracks are treated by enrichment techniques developed
in the extended �nite element method. Methods for integrating the weak form for such models are
proposed. These methods simplify the generation of �nite element models. Results presented for several
examples show that the accuracy of this method is comparable to standard unstructured �nite element
methods. 
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INTRODUCTION

Meshing of three-dimensional solids is still one of the most burdensome tasks in �nite element
analysis. The di�culties of meshing have become particularly acute with the emergence of
models with 107 to 109 elements. In treating such large-scale, unstructured �nite element
meshes, an inordinate amount of e�ort is devoted to:

• generating the mesh
• coping with the unstructured character of the equations during assembly and solution
procedures

• post-processing
Recently, it has become apparent that many of these di�culties can be circumvented by

using structured meshes in conjunction with recently developed techniques for representing
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internal discontinuities [1], and internal details [2]. In fact, with these techniques, it becomes
possible to model the detail associated with engineering problems with even greater �delity
than conventional �nite element methods. For example, it is possible to model complex sliding
surfaces within a body and to model cracks and small holes.
One of the sources from which these capabilities have evolved is the seminal paper by

Melenk and Babuska [3], in which the concept of partition of unity was �rst described.
Belytschko and Black [4] employed the concept to model cracks; in Mo�es et al. [5] and
Dolbow et al. [6] step functions were introduced through the partition of unity to model ar-
bitrary discontinuities. They called the method the extended �nite element method (X-FEM).
Babuska et al. [3] and Strouboulis et al. [7] illustrated the potential of the partition of unity
concept in modeling small holes in a mesh and introducing so-called handbook solutions;
they called it the generalized �nite element method. The method was expanded in Strouboulis
et al. [2], where the focus was towards the extension of the classical �nite element method to
meshes that do not conform to boundaries of the problem. In Mo�es et al. [5] and Belytschko
et al. [1] the quadrature issue was studied for meshes that do not conform to internal bound-
aries.
The proposed method also has some capabilities that would be very di�cult to incorporate

in an unstructured stress analysis program for solids:

• The ability to model crack growth, such as due to fatigue, without any remeshing.
• The ability to easily model complex systems of sliding interfaces, such as joints in rocks.
A novel feature of the method described here is its use of implicit surface de�nitions for

both external and internal surfaces. This enables the use of powerful techniques for surface
de�nition by implicit functions that have recently been developed; see Carr et al. [8] and
O’Brien et al. [9]. In the former, up to 3× 106 points were used to de�ne extremely complex
external surfaces; these large systems were solved by multipolar methods.
In this paper we describe a methodology for constructing the �nite elements for structured

meshes for objects described by implicit surfaces, both for the outside boundary and interior
surfaces. For existing parts, a laser scan of body can be immediately translated into an implicit
description of the external boundaries. By means of holography and other methods, implicit
function descriptions of any internal surfaces can also be obtained. They can then be translated
to �nite element models as described here. For CAD models or solid models, the construction
of an implicit surface model is also straightforward, for it is only necessary to extract a set
of surface points from the geometric model. Thus, the paradigm described here should enable
�nite element analyses of complex engineering problems with almost no human intervention.
The concept of describing internal surfaces of a problem independent of a mesh by implicit

functions originated in Sukumar et al. [10]. It has been used to model crack growth with level
sets in two dimensions by Stolarska et al. [11], crack growth in three dimensions by Gravouil
et al. [12]. The methodology has also been applied to solidi�cation, Chessa et al. [13] and
�uid interfaces, Chessa et al. [14], and for particles in �uids by Wagner et al. [15].
Thus the basis is available for the rapid development of methods that combine implicit

surface descriptions of engineering components with structured �nite element analysis. As
indicated in this paper, the synthesis of these methods makes possible an order of magnitude
simpli�cation in the development of �nite element discretization for complex solid models.
The outline of this paper is as follows. In the �rst section, the components of the paradigm,

including the implicit surface de�nitions, the approximating functions and the background
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meshes are introduced. The �nite element discretization, the strong form and weak form of
the governing equations are then explained, with emphasis on quadrature for integration in
the framework of the function de�nitions. We then look into the internal details such as
cracks and material interfaces de�ned as implicit functions. Results for function de�nitions
and complete solutions are then presented.

1. CAD MODEL

1.1. Overview

We consider a body � with boundary �. The Euclidean co-ordinates are x=[x; y; z], where
boldface denotes a matrix or vector. We also use indicial notation, with lower case indices
pertaining to Cartesian components and upper case indices pertaining to nodes or points.
Repeated lower case indices are summed on the number of spacial dimensions nsd.
We will �rst describe the procedure for the case when the object is enclosed by a single

surface. It may be convex or concave. The procedure described here consists of the following
steps.

• a set of points xI , I =1 to nsp on the surface of the object and a few interior points xJ ,
J =1 to nip (the superscript I denotes index of the points that de�ne the shape of the
object) are obtained.

• an implicit function is constructed from xI such that �(xI)=0 de�nes the surface of the
body.

• a set of voxels for 3D (pixels for 2D) that encompass the entire domain for which
�(x)60 are constructed.

• a �nite element discretization (called active pixels or voxels) is obtained based on the
voxels that are encompassed by the implicit surface.

These steps are illustrated in Figure 1. For simplicity, we henceforth refer to both pixels
and voxels as voxels with the implicit assumption that in 2D we are refering to pixels.

1.2. Shape de�nition by implicit functions

As can be seen from Figure 1, we start with the set of points that de�ne the object. The
points can be taken either directly from the object by a scanner for the analysis of an existing
component, or they may be based on a CAD model. We defer the issue of interior features,
such as material interfaces, cracks, etc., to later.
The �rst step is to construct the implicit function description of the body. The surfaces are

described by �tting an approximant to a set of points on the surface xI , I =1 to nsp. A set of
o�-surface points xI , I =1 to nip is also needed; these are generated by moving away from
the surface by an approximate surface normal, as in Turk and O’Brien [16].
At this time, we have chosen radial basis functions as the approximants, for the description

of surfaces by these techniques has achieved a relatively high state of robustness, see Carr
et al. [8] and O’Brien et al. [9] for more detail. Implicit approximations of functions de�ne
the surface by

�(x)=0 (1)
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Figure 1. The schema for the CAD=FEM paradigm.

i.e. the surface is the zero isobar of the function �(x). We impose the additional conditions:

�(x)¡0 for x∈� (2)

�(x)¿0 for x =∈� (3)

The expression for �(x) in terms of the radial basis functions R(r) are

�(x)= �0 + �−jxj +
N∑

I=1
�IR‖x − xI‖ (4)

where �I ; I =− nSD to N = nip+ nsp are arbitrary parameters chosen to best �t the surface;
r= ‖x − xI‖. The low order polynomial preceding the sum is added to achieve completeness
of the approximation. Examples of radial basis functions are

biharmonic spline: R(r)= r (5)

thin plate spline: R(r)= r2 log(r) (6)
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Gaussian: R(r)= e−cr2 (7)

triharmonic spline: R(r)= r3 (8)

multiquadratic (for topographical data): R(r)=
√

r2 + c2 (9)

exponential: R(r)= er (10)

The parameters �I are obtained by solving the following equations(
A P

PT 0

)(
Q
R

)
=

(
M
0

)
(11)

where

AIJ =R(‖xI − xJ‖), I; J =1 to N ,
PIj= xIj , PI0 = 1, I =1 to N , j=1 to nSD,
Q= {�I}, I =1 to N ,
R= {�I}, I = − nSD to 0 and
MI =�(xI).

Note that �(xI)=0 except for the o�-surface points. The above equations are obtained by
setting x to xI for each of the surface points in Equation (4). While the above system matrix
is both symmetric and positive semi-de�nite it is almost full; in Carr et al. [8] multipolar
techniques make possible the treatment of millions of points. It should be noted that the matrix
on the LHS becomes singular when the points are not unique. We have experimented with
the biharmonic and exponential radial basis functions.
In generating the volumes for voxels that are cut by a surface, approximate local surface

representations are desirable. For this purpose, a local representation by �nite element shape
functions is used:

�̃(x)=
∑
I
NI (x)�I (12)

where �̃(x) is the approximation to the surface, �I =�(xI) where xI are the nodes of the
voxel and NI (x) are the shape functions, i.e. the 4-node shape functions for a pixel.
The zero isobar of this approximation is shown along with that of the radial basis functions

for an 0.96 radian arc of a circle in Figure 2. It can be seen that the agreement is quite good,
though the exponential is better than the biharmonic.

1.3. Background mesh (voxels)

The implicit function is enclosed by a bounding box B that includes all points x such that
�(x)¡0. For the time being, we assume that the bounding box is rectangular, but this is not
necessary. The bounding box could also consist of unions of rectangular boxes.
An array of voxels sometimes called a background mesh, is then constructed. This method

is similar to the background method quadrature described for meshless methods in Belytschko
et al. [17]. The selection of the voxel size is a crucial step in the procedure, since it is
necessary to determine a voxel size that leads to reasonably economical computations, yet
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Figure 2. Local approximations of the zero isobar compared with the exact curve for the exponential
and biharmonic cases on the left and right, respectively.

corresponds closely enough with the details of the object so that the boundaries of the object
in each voxel are simple.
The voxel size must also be such as to achieve to requisite accuracy in the �nite element

solution without excessive solution time. This involves error estimates, which is a topic outside
the scope of this paper, see Babu�ska and Strouboulis [18]. In most cases, a reasonable voxel
size can be set by inspection.

1.4. Active voxels

The voxels that are to be active in the �nite element model are selected next. This is easily
accomplished from the implicit surface function, since at least one node of a voxel must
be inside the surface for the voxel to be active. This implies that at least for one node
of an active voxel, �(xI)¡0. An algorithm for identifying the active voxels is given in
Table I.

Table I. Procedure for classifying voxels as active and inactive voxels.
• Compute �(xI ) for all nodes.
• Loop over all voxels, V =1 to NV .

– loop over nodes of voxels, I to N .
– if ∃ a node where the value of �I¡0⇒ Active voxel.
– if �I¡0 ∀ nodes ⇒ Active interior voxel.
– if Active voxel and not interior voxel ⇒ Active surface voxel.
– if not an Active voxel ⇒ Inactive voxel.

• end loop over voxels.
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2. FINITE ELEMENT DISCRETIZATION

The development of the discrete �nite element equations of equilibrium is similar to that for
the standard �nite element method. We will use a structured mesh, but the weak form for a
structured mesh is identical to that for an unstructured mesh. To begin, we consider the virtual
elements to be voxels and place nodes along the edges and surfaces of all active voxels. This
leads to a set of active nodes. An example for 4-node element is shown in Figure 1. As can
be seen, active nodes will occur outside the object; these active nodes are associated with
active surface voxels. It is of course possible to vary the size of the cells by integer factors
in di�erent subdomains or to use di�erent order of elements. In fact, this method is extremely
well-suited to p-type elements or spectral elements, which tend to perform better when the
element surfaces are parallel and orthogonal, e.g. rectangular in two dimensions.
Here, for simplicity we consider small displacement elastostatics. The governing equations

are

∇ · �+ b=0 in � (13)

where

�=C : U (14)

U=∇su (15)

where � is the Cauchy stress, b is the body force per unit volume, C is Hooke’s tensor, U is
the strain, u is the displacement and ∇s is the symmetric part of the gradient operator.
The essential and natural boundary conditions are, respectively

u= 	u on �u: (16)

n · �= 	t on �t (17)

where �u and �t are the prescribed displacement and prescribed traction boundaries, respec-
tively.
The space of admissible displacement �elds is

u= {u∈u | u is smooth and u= 	u on �u} (18)

The weak form of the equations of elastostatics is for u∈u∫
�a

	H (−�) U(u)CU(v) d�=
∫
�a

	H (−�) b · v d� +
∫
�t

	t · v d� ∀v∈u0 (19)

where �a is the union of all active voxels, 	H (·) is the standard Heaviside step function and
u0 is u with 	u=0 on �u. The above can be used directly only when prescribed displacement
boundaries coincide with the surface of the voxels. Otherwise we use a Lagrange multiplier
method, see for example Belytschko et al. [17].
The displacement �eld is given by

u(x)=
∑
I
NI (x)uI (20)
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where uI are the nodal displacements and NI (x) the shape functions (note that we use upper
case subscripts for subscripts that pertain to nodes). Substituting the above into the weak form
(11) we obtain the standard �nite element equations∑

J
KIJuJ = fextI (21)

where

KIJ =
∫
�a

	H (−�)BTI CBJ d� (22)

f extI =
∫
�a

	H (−�)NI (x)b(x) d� +
∫
�t

NI (x)t(x) d� (23)

and B is the standard strain–displacement matrix that gives U by

U=
∑
I
BIuI (24)

The numerical quadrature of the weak form (11) is performed voxel by voxel similar to
the procedure used in the meshless EFG method [17]. For clarity, we simply consider the
quadrature of a scalar f; so we have

∫
�a

	H (−�)f d�=
N act

V∑
e=1

∫
�e

f d� (25)

where N act
V is the number of active voxels.

The quadrature procedure depends on whether a voxel is a surface voxel or an interior voxel.
The surface and interior voxels can be segregated during the identi�cation of the active voxels.
Quadrature over the interior voxels is straightforward. We use Gaussian quadrature with the
number of quadrature points depending on the order of the �nite element approximation in the
element, e.g. 2× 2 Gauss quadrature for bilinear displacement elements in two dimensions.
For surface voxels, the integration procedure is more involved, since it is necessary to

account for the surface that passes through the voxel, i.e. only part of the voxel contributes to
�; this part is called �e. These techniques still require further development, but we describe
two methods based on linear approximation to the surface which works well with low order
elements. We �rst describe the methods in two dimensions. In the �rst method, the integration
is performed by cutting each voxel as shown in Figure 3 into two triangles. The �nite element

Figure 3. Scheme to subdivide an active voxel for quadrature.
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approximation to the surface function (12), is approximated by a linear function using least
squares. Each of these triangles will then be cut by the surface into a quadrilateral and a
triangle. Thus, the quadrature over the voxel then consists of quadrature over 2 triangles and
2 quadrilaterals, over which standard quadrature methods are used.
In the second method, the same least square �t is used to subdivide the element into two

polygons. These are triangulated by Delaunay triangulation and the quadrature is performed
over the elements interior to the surface.
The traction boundary conditions involve quadrature over a curve or surface (in 2D and

3D, respectively). We integrate the traction term over the zero isobar of the �nite element
approximation of the implicit function (Figure 4) inside each of the surface elements where
the traction boundary condition is to be applied.
The integration on the boundary is performed as follows (We present procedure for arbitrary

quadrilaterals). We �rst �nd (�1; �1) and (�2; �2), the parental co-ordinates at the intersection
of the surface with the �nite element; see Figure 4. Consider the integral of g(�; �);

I =
∫
�
g(�; �) d� (26)

where � is the surface according to the �nite element approximation (12) of the implicit
function given by

d� = (dx2 + dy2)1=2 (27)

Note that

d� = �; xdx + �;ydy = 0 (28)

where commas denote partial derivatives. Form (28) it follows that on �

dy = −�; x

�;y
dx or dx = −�;y

�; x
dy (29)

then

d�=

[
1 +

�2; x
�2;y

]
if |�;y| ¿ |�; x| (30)

d�=

[
1 +

�2;y
�2; x

]
if |�;y| ¡ |�; x| (31)

The integration over surface voxels for three dimensions is structured so that quadrature
formulas are only required for tetrahedra and pentahedra. The hexahedral voxels are �rst
subdivided into tetrahedral subelements as shown in Figure 5. As noted in Usui [19], the
hexahedron may be subdivided into tetrahedra in two ways, but the subdivision shown in
Figure 5 is a better �t to the volume when the voxel is not a cuboid. Also, when hexahedra in
a structured mesh are subdivided into 6 tetrahedra, it is possible to ensure that the triangulation
of the contiguous surfaces is identical. For structured meshes, the elements will usually be
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Figure 4. The application of traction over
the surface.

Figure 5. The decomposition of a hexahedron
into tetrahedra.

Figure 6. The two possibilities for subdivision of tetrahedra, �I ≡�(xI ).

cuboids, but in some cases structured meshes generated by nonparallel surfaces are desirable.
A linear approximation is then obtained for the surface in each tetrahedron.
The tetrahedral subelements are then subdivided into two tetrahedra or a pentahedron and

a tetrahedron. The subdivision depends on the values of �I at the nodes. We will call a
subelement active if it contributes to the Galerkin integrals (22), inactive if it is not.
We �rst separate out the following:

1. if �I¿0 ∀I , then the subelement is inactive.
2. if �I60 ∀I , then the subelement is active.

Any subelements that do not meet the above fall into one of the following four categories:

Case 1: one �I of one sign, three �I of another sign; then the volume integral can be
obtained from the volumes of tetrahedra (Figure 6(a)).
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Case 2: two �I of one sign, two �I of another sign; then the tetrahedral subelement consists
of two pentahedrons (Figure 6(b)).
Case 3: one �I =0; then the tetrahedral subelement consists of a pyramid and a tetrahedron.
Case 4: two �I =0; then the tetrahedral subelement consists of two tetrahedra.

Note that although it would be unusual for �I to vanish exactly, successful implementation
of the methods described here and for interior features require that �I be set to zero when it
is smaller than a mesh dependent tolerance, see Mo�es et al. [5].
The surface integral for inhomogeneous traction boundary conditions is either over a triangle

such as ABC or a quadrilateral such as ABCD; for the surface elements standard quadrature
techniques are used to evaluate the boundary integrals of the Galerkin weak form.

3. INTERNAL DETAILS

In most engineering and scienti�c problems, objects that are analysed by �nite elements have
substantial internal structure. Among these internal details are:

• interfaces between bonded materials
• cracks
• small holes, pores and dislocations
• unbonded interfaces
Some of these examples are illustrated in Figure 7. In the following we describe how some

of these features are easily handled in the context of this method. In de�ning internal surfaces,
we again use implicit functions.
Any interface �int is described by the zero isobar of an implicit function �int(x); we refer

to a single interface for clarity but the technique can be extended to many interfaces. The
�nite element form of the implicit function is given in terms of nodal values by

�int(x)=
∑
I
NI (x)�I (32)

or by radial basis functions as before. One useful form of an implicit function is the signed
distance function.

�int(x)= min‖x − x�‖sign(n · (x� − x)) (33)

where n is a unit normal to the internal surface; its direction is arbitrary.

3.1. Interfaces between bonded materials

Examples of interfaces between bonded materials are the interfaces between di�erent con-
stituents of a composite material, the layers of a geotechnical model, materials bonded by
glueing and thermal �ts. Some of these are described further in the examples.
Across a bonded interface, the displacement �eld is continuous but the strains are dis-

continuous. Thus, it is necessary to construct a displacement �eld that accommodates this
discontinuity in the derivative of the displacement.
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Figure 7. The de�nition of �int for several examples.

The displacement �eld in the voxels intersected by the interface are enriched by meth-
ods described in Belytschko et al. [1] and Sukumar et al. [10] to model the discontinuous
derivative in the displacement across the interface.
For this purpose, we decompose the displacement �eld

u= ust + uenr (34)

where ust is the standard �nite element �eld (Equation (20)) and uenr is the enrichment �eld.
For a discontinuous derivative the enrichment is

uenr =
∑
I∈C
aI (|�| − |�I |)NI (x) (35)

where aI are additional degrees of freedom and C is the set of all nodes whose support is
cut by �int. Note that the term NI (x) localizes the enrichment so that sparsity of the discrete
equations is not adversely e�ected. A special modi�cation described by Sukumar et al. [10]
is advantageous.
For voxels cut by �int, the same procedures used for external boundaries must be used

in evaluating the integrals in Equation (23). A major di�culty in the method is presented
by intersection of surfaces. When �int intersects � or two interior surfaces intersect within a
voxel, the method described previously does not su�ce and more complicated schemes are
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needed. At this time, simple mesh generation schemes are recommended, but we have not
programmed this.

3.2. Cracks

Cracks are among the most common defects that occur in mechanical components. Cracks are
associated with singularities in the elastostatic stress �elds; the strength of the singularity is
the stress intensity factor which determines its rate of growth in cyclic loading. The method
described here directly gives the strength of the singularity, i.e. the stress intensity factor, by
including the near-tip �eld as an enrichment.
The crack surface is de�ned by the implicit function

�int(x)=0 (36)

A second implicit function  is de�ned to represent the crack edge. This implicit function is
de�ned so that the intersection of  =0 with �=0 gives the crack edge, i.e. �int(x)= (x)=0.
It is also constructed to be normal to the crack interior levelset function �int:

∇ · ∇�int = 0 (37)

Level set techniques (Sethian et al. [20]) can be used to update these functions to model
crack growth as described by Stolarska et al. [11] in 2D and Gravouil et al. [21] in 3D.
Across the crack surface, the displacement �eld is discontinuous and the enrichment models

this discontinuity.
To de�ne the displacement �eld the following nodes need to be identi�ed.

• the set of nodes whose support is completely cut by the crack (C).
• the set of nodes whose support is partially cut by the crack (P).
The enrichment �eld is given by

uenr(x)=
∑
J∈C

aJNJ (x)H (�int(x)) +
∑
J∈P
cJkNJ (x)Bk(x) (38)

where aJ and cJk are additional nodal parameters and

H (y)=

{
+1 for y¿0

−1 for y¡0
(39)

The asymptotic �eld near the crack tip is represented by the function Bk in Equation (38)
where

{Bk(r; �)}=
{√

r sin
(
�
2

)
;
√
r cos

(
�
2

)
;
√
r sin

(
�
2

)
sin(�);

√
r cos

(
�
2

)
sin(�)

}
(40)

This enrichment scheme is based on Fleming et al. [22].
The angle � for the enrichment is de�ned as

�= tan−1
�int(x)
(x)

(41)

More details can be found in Mo�es et al. [5] and Gravouil et al. [12].
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3.3. Sliding interfaces

Sliding interfaces are an important feature in many engineering problems. For example slid-
ing surfaces are needed between a rod and sleeve, along joints in rock, etc. To model sliding
interfaces, the displacement �eld must be enriched so that discontinuities in the tangential
component of the displacement are included in the approximation. This is achieved by en-
riching the �eld with a discontinuity in the direction tangential to the sliding surface.
A tangential discontinuity can be constructed by enriching the tangential component of the

displacement �eld with the step function. For example in 2D, we can use

uenr(x)=
∑
I∈C

NI (x)aIet(x)H (�int(x)) (42)

where et is the tangent to the discontinuity at �int = 0. In 2D this tangent vector can be de�ned
as et = ez × en where

en=
∇�int

‖∇�int‖ (43)

Accuracy can be improved by adding an enrichment based on the nodal values of the tangent
(Belytschko et al. [1]). This is done by �nding the tangent at the nodes, i.e. in 2D.

uenr(x)=
∑
I∈C

NI (x)aIet(xI)H (�int(x)) (44)

The normal is computed as a nodal average of the normals in the element. The normal is
then given by

en(xI)=
1
n

n∑
e=1

∇�e(xI)
‖∇�e(xI)‖ (45)

where ∇�e(xI) is the gradient in element e at node I, where n is the number of nodes in the
element.
For three-dimensional problems, two tangent vectors et1 and et2 are needed. The enrichment

is given by

uenr(x)=
∑
I∈C

NI (x)
2∑

�=1
aI�et�(xI)H (�int(x)) (46)

4. RESULTS

4.1. Accuracy of surface approximations

We �rst give some examples of the accuracy of the surface approximations. The error in
this de�nition is calculated by integrating the value of the function over the exact surface
(Table II):

Err� =
∫
�
|�(x)| d� (47)
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Table II. Error in surface de�nition using di�erent radial basis functions.

Number of points Biharmonic Exponential

Example 1: Error for a circle of radius 3
4 0.0834 0.0160
8 0.0221 4:7369× 10−4
16 0.0056 1:2609× 10−4
32 0.0014 3:2046× 10−5
64 3:5161× 10−4 8:0451× 10−6
128 8:7924× 10−5 2:0134× 10−6
254 2:2333× 10−5 5:1151× 10−7

Example 2: Error for the geometry shown in Figure 9
30 0.0088 0.0087
60 0.0021 0.0021
120 5:2433× 10−4 5:2572× 10−4
240 1:2927× 10−4 1:2983× 10−4
480 3:2108× 10−5 3:2257× 10−5

Figure 8. The implicit function of a circle for the biharmonic and exponential
radial basis functions, respectively.

where � is the exact surface. Di�erent densities of surface points are taken to describe the
implicit function, using the radial basis functions de�ned in Equations (4) and (11). Two
shapes were considered;

• a circle
• a quarter piece of a slab with a hole.

The geometry and the contour plot for the second geometry is shown in Figure 9. A quarter
space is considered due to axisymmetry.
It can be noted that the errors are comparable for the two types of radial basis functions,

although the exponential is more accurate for the circle. Both methods give excellent accuracy
with a reasonable number of points. The function is plotted for the two radial basis functions
for a circle in Figure 8. It can be seen that even though both the radial basis functions de�ne
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Figure 9. The geometry for example 2 and contour plots of �(x).

the shape well and both functions are clearly positive outside the circle, the exponential basis
function is steeper and this property can be advantageous. Gaussian radial basis functions, not
reported here, can become negative outside the object, which is very undesirable.

4.2. Examples of complete solutions

Some standard examples are considered and solved following the schema in Figure 1. The
purpose of these examples is to study the e�ect of the errors in the quadrature of the weak
form, particularly the inhomogeneous traction boundary conditions, on the accuracy and rate
of convergence.

4.2.1. Hollow cylinder with internal pressure. The �rst example taken is a hollow cylinder
with internal pressure(p). This is modeled as a quarter cylinder due to symmetry with the
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Figure 10. The problem setup for the hollow cylinder problem.

displacement �xed in the normal direction at the two edges as shown in Figure 10. The exact
solution for the stress components in polar co-ordinates are as follows [23]

�r(r; �) =
a2p

b2 − a2

(
1− b2

r2

)
(48)

��(r; �) =
a2p

b2 − a2

(
1 +

b2

r2

)
(49)

�r�(r; �) = 0 (50)

where a is the inner radius and b is the outer radius. Note that due to axisymmetry the stresses
do not depend on �. The displacements are as follows:

ur(r; �) =
a2pr

E(b2 − a2)

(
1− �+

b2

r2
(1 + �)

)
(51)

ur(r; �) = 0 (52)

The parameters chosen in this problem are: a=2 in., b=4 in., p=3000 psi, and plane
stress is assumed. The geometry is described by 20 equispaced surface points on each of the
two arcs and each of the two straight sides. The surface comprising the geometry shown in
Figure 10 is de�ned using radial basis approximations Equation (4). A biharmonic basis is
used in these calculations. The mesh is aligned to the straight edges to facilitate the application
of the displacement boundary conditions. It should be noted that the geometry is de�ned for
the quarter cylinder, thereby causing kinks in the surface geometry at the four corners as seen
in Figure 10. The radial basis functions seem to capture these kinks rather accurately.
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Figure 11. The error in energy for the hollow cylinder problem.

The convergence rate is observed to be 0.88 for the energy norm. The slightly reduced
rate of convergence from the optimal rate of 1.0 can probably be attributed to the approx-
imation of the traction boundary condition. As the traction is applied on the zero isobar of
the approximation of the surface (Equation (12)), this may e�ect the accuracy of the solu-
tion. Some error may also be attributed to quadrature of Equation (22), but the next example
seems to indicate that this error is smaller than error arising from non-zero tractions. The
rate of convergence here, incidentally, is not impaired by the number of points that de�ne
the geometry. We have run it with 40 points on each segment and obtained almost identical
accuracy (Figure 11).

4.2.2. In�nite plate with a hole. The next problem that we consider is that of an in�nite
plate with a hole of radius a subjected to a uniform tension �0 in the x-direction (Figure 12).
We model this by applying a traction equivalent to the exact stress caused by the uniform
traction at in�nity on a square plate with a �nite dimension. The exact stress �eld is given
by Timoshenko and Goodier [23] and is as follows;

�r(r; �) =
�0
2

(
1− a2

r2

)
+

�0
2

(
1 +

3a4

r4
− 4a2

r2

)
cos 2� (53)

��(r; �) =
�0
2

(
1 +

a2

r2

)
− �0
2

(
1 +

3a4

r4

)
cos 2� (54)

�r�(r; �) =−�0
2

(
1− 3a4

r4
+
2a2

r2

)
sin 2� (55)

The radius of the hole, a=1 in., Young’s modulus=1000 000 psi, and plane stress was
assumed. The hole was described by the radial basis function with 30 surface points. The
computations were made with structured meshes ranging from 10× 10 to 80× 80. A con-
vergence study was performed for this problem. The rate of convergence is 0.9524 in the
energy norm. The improved rate of convergence compared to the previous problem could be
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Figure 12. The problem setup for the in�nite plate with a hole.

Figure 13. The error in energy for the in�nite
plate problem.

Figure 14. A spherical inclusion in an in�nite
solid under uniaxial stress.

attributed to the absence of kinks and inhomogeneous traction boundary conditions on the
implicit surface (Figure 13).

4.2.3. A spherical inclusion under uniaxial tension. The next few examples illustrate the
performance of the method in three dimensional problems for which closed form solutions
are available. The primary intent was to study the e�ect of arbitrary interior interfaces on the
accuracy of the method.
The �rst 3D example is a spherical inclusion under uniaxial tension in an in�nite domain

is shown in Figure 14. The exact solution for this problem is given by Goodier [24] (see the
appendix).
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Figure 15. Polygonized material interface with 21× 21× 21 mesh.
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Figure 16. Error in energy for the spherical inclusion problem; structured mesh is labeled
X-FEM Hexahedron, conforming mesh is labeled FEM Tetrahedron, X-FEM Tetrahedron

is non-conforming unstructured mesh.

In the numerical model, we consider a cubic domain of size 1:0× 1:0× 1:0 with an inclusion
of radius 0.4 at its center. We impose the exact tractions from the closed form solution to
the boundary of the cubic domain, with appropriate constraints added to remove rigid body
modes. The material properties are: Young’s modulus E1 = 2:0 and E2 = 1:0, Poisson’s ratio
�1 = �2 = 0:3.
The problem was solved with structured meshes consisting of cubic elements. The meshes

were n× n× n, with n=6; 11; 21 and 41. A typical mesh is shown in Figure 15, along with
the polygonized material interface.
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Figure 17. A spherical inclusion in an in�nite solid under uniaxial stress with hexahedron mesh.

The error in energy is shown in Figure 16. For comparison, the problem was also solved
with a sequence of unstructured tetrahedral meshes. Two types of tetrahedral meshes were
used; those conforming to the interface (labeled FEM) and those not conforming to the
interface (labeled X-FEM).
As can be seen the accuracy of the structured mesh is better than the unstructured tetrahedral

mesh that conforms to the interface, although for the �nest mesh the accuracy is the same. The
rate of convergence for the structured mesh is about 0.77, which is slightly below the optimal
rate of 1.0. The results for a non-conforming unstructured tetrahedral mesh with enrichment
are also shown.
We show the accuracy with the Sukumar et al. [10] correction for discontinuous derivative

enrichments, in Figure 17. As can be seen, there is some improvement but not as marked as
in two dimensional problems.

4.2.4. 4D carbon-carbon composite. The next example concerns a representative volume el-
ement of a composite. In this case the 4D Carbon–Carbon composite of Delenste et al. [25]
was considered to show how easy it is to make a mesh for such studies (shown in Figure 18).
Representative volume elements are a particularly suitable application of these methods since
the domain is cubic and only internal details need to be treated; meshing such problems is
very time consuming.
The composite material comprises of four reinforcement directions which are parallel to

the diagonals of a cube, i.e. the (1; 1; 1), (−1; 1; 1), (−1;−1; 1) and (1;−1; 1) directions.
The implicit functions for the interior surfaces in this case were constructed analytically
and directly inserted in the code. For example, for a �bre in the direction given by a
unit vector e with radius R, the implicit function deforming a �lament that passes through
x0 is

‖(x − x0)× e‖2 − R2 = 0 (56)

21



Figure 18. Polygonized material interface of the 4D carbon-carbon composite material in a 21× 21× 21
mesh and a yarn volume fraction of 0.49; (z is upward, x is horizontal to right).

The carbon reinforcements are de�ned as a transverse isotropic material, whose longitudinal
Young’s modulus is El=200:0GPa, longitudinal Poisson’s ratio is �l=0:4, longitudinal shear
modulus is Gl=8:0GPa, transverse Poisson’s ratio is �t =0:3 and transverse Young’s modulus
is 10:0 GPa. The carbon matrix is de�ned as an isotropic material with Young’s modulus
E=8:0 GPa and Poisson’s ratio �=0:46. The �bre volume fraction is 0.68. The values are
chosen based on the problem de�ned in Delenste et al. [25].
The homogenized Young’s modulus in the z-direction was calculated. The result is Eh=

8:5 GPa which is close to the experimental results Eh=8:0 GPa (see References [25, 29]).
The in�uences of the ratios of Young’s moduli and the volume fraction to the homogenized

material constants in (0; 0; 1) direction were investigated for the material. In this analysis, the
yarn and the matrix were de�ned as isotropic materials. Three cases of yarn volume fractions
(0:67, 0:57 and 0:48) were calculated for di�erent ratio of Ematrix and Eyarn, where Ematrix
and Eyarn are Young’s modulus of matrix and yarn, respectively. Both Poisson’s ratio of the
matrix and the yarn are 0:4. Yarn volume fraction 0:67 is the maximum volume fraction,
since a volume fraction larger than 0:67 causes interpenetration of yarns. The variations of
the homogenized Young’s modulus and Poisson’s ratio are shown in Figures 19 and 20,
respectively.
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Figure 19. In�uence of the Eyarn=Ematrix on homogenized Young’s modulus.
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5. CONCLUSIONS

A simpli�ed method for modelling solid objects by structured �nite elements has been pre-
sented. The method uses implicit functions to describe the outside surface of the object and
any inner surfaces, such as material interfaces, sliding surfaces and cracks. Enrichment func-
tions are then used to modify the structured �nite element approximations of the displace-
ment �eld so that the internal features are modeled. In addition to modelling discontinuities
in the displacement �eld, asymptotic local solutions can be introduced by the enrichment
�eld. Other local �elds, such as those for holes, can be introduced as shown by Strouboulis
et al. [2]. Overlapping meshes such as described by Charlesworth et al. [26] could also be
used. The method is similar to the �ctitious element method of Glowinski et al. [27]; the
major di�erence is the introduction of internal details and the description of the geometry by
implicit functions.
The method provides good accuracy. Although the rate of convergence is somewhat below

the optimal rates, the absolute accuracy is on the same order as for unstructured meshes that
observe the discontinuity. In view of the reduced burden in meshing this should be acceptable.
Of course, for problems such as crack problems, much greater accuracy can be obtained than
with regular �nite elements as is apparent from Gravouil et al. [12].
The success of the method hinges on the de�nition of shapes in implicit radial basis func-

tions. This leads to full equations; but the multipolar methods described by Carr et al. [8]
can e�ectively handle millions of points.
The major drawbacks of the method are the need to perform the integration of the weak

form over partitions of an element for active cells cut by boundaries and the fact that the
method as developed so far has a uniform mesh over the entire object. The quadrature issue
is not di�cult when a single surface passes through an element, but becomes awkward when
two or more surfaces pass through a single element; such situations are a distinct possibility in
multimaterial problems. The quadrature algorithms for such situations could get quite complex,
but once coded would not require user-intervention.
The issue of resolution should be tractable by p-type methods and structured h-type re�ne-

ment (or coarsening) where the voxel sizes vary in subdomains of the mesh. This would be
particularly attractive with adaptive solution strategies, see for example Oden et al. [28].
The main advantage of the method is the simplicity of the model generation. Many mod-

els, such as representative volume elements for generating material properties and geotechnical
models, are inherently cuboid with considerable internal detail. The generation of unstructured
meshes for such problems is quite burdensome; it is time-intensive and it is di�cult to en-
sure quality and correctness. With these methods, the major task becomes the generation of
surfaces that de�ne the boundaries of the object and interfaces. Although much remains to be
done beyond what has been described here, the potential of the method is quite attractive.

APPENDIX A: THE EXACT SOLUTION FOR SPHERICAL INCLUSION UNDER
UNIAXIAL TENSION (GOODIER [24])

We de�ne a spherical co-ordinate system (r; �; N ) with its origin at the center of the sphere,
whose radius is a . A tension T is applied in the Z direction. The problem is symmetric about
� (Figure 14). The variables are distinguished by superscripts 1 and 2 for the inclusion and
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the matrix, respectively. The exact displacement of the matrix is given by

u1r =− A
r2

− 3B
r4
+
{
5− 4�1
1− 2�1

C
r2

− 9B
r4

}
cos 2�+

Ta
2E1

{(1− �1) + (1 + �1) cos 2�} (A1a)

u1� =−
(
2
C
r2
+
6B
r4

)
sin 2�+− Ta

2E1
(1 + �1) sin 2� (A1b)

The exact displacement of the inclusion is

u2r =Hr + Fr + 3Fr cos 2� (A2a)

u2� =−3Fr sin 2� (A2b)

where a is the sphere radius and the stress �eld of the matrix is

�1rr =2	1

{
2A
r3

− 2�1
(1− 2�1)

C
r3
+
12B
r5

+
(
−2 5− �1

1− 2�1
C
r3
+
36B
r5

)
cos 2�

}
(A3a)

+T cos � cos � (A3b)

�1�� =2	1

{
− A
r3

− 2�1
(1− 2�1)

C
r3

− 3B
r5
+
(
C
r3

− 21B
r5

)
cos 2�

}
+ T sin � sin � (A3c)

�1�� =2	1

{
− A
r3

− 2 (1− �1)
(1− 2�1)

C
r3

− 9B
r5
+
(
3C
r3

− 15B
r5

)
cos 2�

}
− T cos � sin � (A3d)

�1r� =2	1

{−2(1 + �1)
(1− 2�1)

C
r3
+
24B
r5

}
sin 2� (A3e)

The stress �eld in the inclusion is

�2rr =2	2

(
1 + �2
1− 2�2 H + F − 3F cos 2�

)
(A4a)

�2�� =2	2

(
1 + �2
1− 2�2 H + F − 3F cos 2�

)
(A4b)

�2�� =2	2

(
1 + �2
1− 2�2 H − 2F

)
(A4c)

�2r� =−6	2F sin 2� (A4d)

where A; B; C; F;H are

A=− T
8	1

(	1 − 	2){(1− 2�2)(6− 5�1)2	1 + (3 + 19�2 − 20�1�2)	2}
{(7− 5�1)	1 + (8− 10�1)	2}{(1− 2�2)2	1 + (1 + �2)	2} (A5a)
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+
T
4	1

{(1− �1)(1 + �2)=(1 + �1)− �2}	2 − (1− 2�2)	1
(1− 2�2)2	1 + (1 + �2)	2

a3 (A5b)

B=
T
8	1

	1 − 	2
(7− 5�1)	1 + (8− 10�1)	2 a

5 (A5c)

C =
T
8	1

5(1− 2�1)(	1 − 	2)
(7− 5�1)	1 + (8− 10�1)	2 a

3 (A5d)

F =
5
4
(−1 + �1)

T
5	1�1 − 7	1 + 10	2�1 − 8	2 (A5e)

H =− 1
2
(2�1�2 − �1 + 1− 2�2) (A5f)

T
−	2�1 − 	2�2�1 − 2	1�1 + 4	1�2�1	2 − 	2�2 − 2	1 + 4	1�2 (A5g)

where E and � are the appropriate Young’s modulus and Poisson’s ratio, respectively. The
shear modulus 	 is given by 	=E=2(1 + �).
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