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INTRODUCTION

Meshing of three-dimensional solids is still one of the most burdensome tasks in ÿnite element analysis. The di culties of meshing have become particularly acute with the emergence of models with 10 7 to 10 9 elements. In treating such large-scale, unstructured ÿnite element meshes, an inordinate amount of e ort is devoted to:

• generating the mesh • coping with the unstructured character of the equations during assembly and solution procedures • post-processing Recently, it has become apparent that many of these di culties can be circumvented by using structured meshes in conjunction with recently developed techniques for representing internal discontinuities [START_REF] Belytschko | Arbitrary discontinuities in ÿnite elements[END_REF], and internal details [START_REF] Strouboulis | The generalized ÿnite element method[END_REF]. In fact, with these techniques, it becomes possible to model the detail associated with engineering problems with even greater ÿdelity than conventional ÿnite element methods. For example, it is possible to model complex sliding surfaces within a body and to model cracks and small holes.

One of the sources from which these capabilities have evolved is the seminal paper by Melenk and Babuska [START_REF] Babuä Ska | The partition of unity method[END_REF], in which the concept of partition of unity was ÿrst described. Belytschko and Black [START_REF] Belytschko | Elastic crack growth in ÿnite elements with minimal remeshing[END_REF] employed the concept to model cracks; in Mo es et al. [START_REF] Mo Es | A ÿnite element method for crack growth without remeshing[END_REF] and Dolbow et al. [START_REF] Dolbow | Discontinuous enrichment in ÿnite elements with a partition of unity method[END_REF] step functions were introduced through the partition of unity to model arbitrary discontinuities. They called the method the extended ÿnite element method (X-FEM). Babuska et al. [START_REF] Babuä Ska | The partition of unity method[END_REF] and Strouboulis et al. [START_REF] Strouboulis | The generalized ÿnite element method: an example of its implementation and illustration of its performance[END_REF] illustrated the potential of the partition of unity concept in modeling small holes in a mesh and introducing so-called handbook solutions; they called it the generalized ÿnite element method. The method was expanded in Strouboulis et al. [START_REF] Strouboulis | The generalized ÿnite element method[END_REF], where the focus was towards the extension of the classical ÿnite element method to meshes that do not conform to boundaries of the problem. In Mo es et al. [START_REF] Mo Es | A ÿnite element method for crack growth without remeshing[END_REF] and Belytschko et al. [START_REF] Belytschko | Arbitrary discontinuities in ÿnite elements[END_REF] the quadrature issue was studied for meshes that do not conform to internal boundaries.

The proposed method also has some capabilities that would be very di cult to incorporate in an unstructured stress analysis program for solids:

• The ability to model crack growth, such as due to fatigue, without any remeshing.

• The ability to easily model complex systems of sliding interfaces, such as joints in rocks.

A novel feature of the method described here is its use of implicit surface deÿnitions for both external and internal surfaces. This enables the use of powerful techniques for surface deÿnition by implicit functions that have recently been developed; see Carr et al. [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF] and O'Brien et al. [START_REF] Turk | Variational implicit surfaces[END_REF]. In the former, up to 3 × 10 6 points were used to deÿne extremely complex external surfaces; these large systems were solved by multipolar methods.

In this paper we describe a methodology for constructing the ÿnite elements for structured meshes for objects described by implicit surfaces, both for the outside boundary and interior surfaces. For existing parts, a laser scan of body can be immediately translated into an implicit description of the external boundaries. By means of holography and other methods, implicit function descriptions of any internal surfaces can also be obtained. They can then be translated to ÿnite element models as described here. For CAD models or solid models, the construction of an implicit surface model is also straightforward, for it is only necessary to extract a set of surface points from the geometric model. Thus, the paradigm described here should enable ÿnite element analyses of complex engineering problems with almost no human intervention.

The concept of describing internal surfaces of a problem independent of a mesh by implicit functions originated in Sukumar et al. [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended ÿnite element method[END_REF]. It has been used to model crack growth with level sets in two dimensions by Stolarska et al. [START_REF] Stolarska | Modelling crack growth by level sets in the extended ÿnite element method[END_REF], crack growth in three dimensions by Gravouil et al. [START_REF] Mo Es | Non-planar 3D crack growth by the extended ÿnite element and level sets-Part I: mechanical model[END_REF]. The methodology has also been applied to solidiÿcation, Chessa et al. [START_REF] Chessa | The extended ÿnite element method (XFEM) for solidiÿcation problems[END_REF] and uid interfaces, Chessa et al. [START_REF] Chessa | The extended ÿnite element method for two-phase uids[END_REF], and for particles in uids by Wagner et al. [START_REF] Wagner | The extended ÿnite element method for rigid particles in Stokes ow[END_REF]. Thus the basis is available for the rapid development of methods that combine implicit surface descriptions of engineering components with structured ÿnite element analysis. As indicated in this paper, the synthesis of these methods makes possible an order of magnitude simpliÿcation in the development of ÿnite element discretization for complex solid models.

The outline of this paper is as follows. In the ÿrst section, the components of the paradigm, including the implicit surface deÿnitions, the approximating functions and the background meshes are introduced. The ÿnite element discretization, the strong form and weak form of the governing equations are then explained, with emphasis on quadrature for integration in the framework of the function deÿnitions. We then look into the internal details such as cracks and material interfaces deÿned as implicit functions. Results for function deÿnitions and complete solutions are then presented.

CAD MODEL

Overview

We consider a body with boundary . The Euclidean co-ordinates are x = [x; y; z], where boldface denotes a matrix or vector. We also use indicial notation, with lower case indices pertaining to Cartesian components and upper case indices pertaining to nodes or points. Repeated lower case indices are summed on the number of spacial dimensions n sd .

We will ÿrst describe the procedure for the case when the object is enclosed by a single surface. It may be convex or concave. The procedure described here consists of the following steps.

• a set of points x I , I = 1 to n sp on the surface of the object and a few interior points x J , J = 1 to n ip (the superscript I denotes index of the points that deÿne the shape of the object) are obtained. • an implicit function is constructed from x I such that (x I ) = 0 deÿnes the surface of the body. • a set of voxels for 3D (pixels for 2D) that encompass the entire domain for which (x)60 are constructed. • a ÿnite element discretization (called active pixels or voxels) is obtained based on the voxels that are encompassed by the implicit surface.

These steps are illustrated in Figure 1. For simplicity, we henceforth refer to both pixels and voxels as voxels with the implicit assumption that in 2D we are refering to pixels.

Shape deÿnition by implicit functions

As can be seen from Figure 1, we start with the set of points that deÿne the object. The points can be taken either directly from the object by a scanner for the analysis of an existing component, or they may be based on a CAD model. We defer the issue of interior features, such as material interfaces, cracks, etc., to later.

The ÿrst step is to construct the implicit function description of the body. The surfaces are described by ÿtting an approximant to a set of points on the surface x I , I = 1 to n sp . A set of o -surface points x I , I = 1 to n ip is also needed; these are generated by moving away from the surface by an approximate surface normal, as in Turk and O'Brien [START_REF] Turk | Shape transformation using variational implicit functions[END_REF].

At this time, we have chosen radial basis functions as the approximants, for the description of surfaces by these techniques has achieved a relatively high state of robustness, see Carr et al. [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF] and O'Brien et al. [START_REF] Turk | Variational implicit surfaces[END_REF] for more detail. Implicit approximations of functions deÿne the surface by (x) = 0 (1) i.e. the surface is the zero isobar of the function (x). We impose the additional conditions:

(x)¡0 for x ∈ (2) (x)¿0 for x = ∈ ( 3 
)
The expression for (x) in terms of the radial basis functions R(r) are

(x) = 0 + -j x j + N I =1 I R x -x I (4) 
where I ; I =n SD to N = n ip + n sp are arbitrary parameters chosen to best ÿt the surface; r = xx I . The low order polynomial preceding the sum is added to achieve completeness of the approximation. Examples of radial basis functions are biharmonic spline: R(r) = r

thin plate spline: R(r) = r 2 log(r) [START_REF] Dolbow | Discontinuous enrichment in ÿnite elements with a partition of unity method[END_REF] Gaussian: R(r) = e -cr 2 

The parameters I are obtained by solving the following equations

A P P T 0 Q R = M 0 (11) 
where

A IJ = R( x I -x J ), I; J = 1 to N , P Ij = x I j , P I0 = 1, I = 1 to N , j = 1 to n SD , Q = { I }, I = 1 to N , R = { I }, I = -n SD to 0 and M I = (x I ).
Note that (x I ) = 0 except for the o -surface points. The above equations are obtained by setting x to x I for each of the surface points in Equation (4). While the above system matrix is both symmetric and positive semi-deÿnite it is almost full; in Carr et al. [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF] multipolar techniques make possible the treatment of millions of points. It should be noted that the matrix on the LHS becomes singular when the points are not unique. We have experimented with the biharmonic and exponential radial basis functions.

In generating the volumes for voxels that are cut by a surface, approximate local surface representations are desirable. For this purpose, a local representation by ÿnite element shape functions is used:

˜ (x) = I N I (x) I (12) 
where ˜ (x) is the approximation to the surface, I = (x I ) where x I are the nodes of the voxel and N I (x) are the shape functions, i.e. the 4-node shape functions for a pixel. The zero isobar of this approximation is shown along with that of the radial basis functions for an 0.96 radian arc of a circle in Figure 2. It can be seen that the agreement is quite good, though the exponential is better than the biharmonic.

Background mesh (voxels)

The implicit function is enclosed by a bounding box B that includes all points x such that (x)¡0. For the time being, we assume that the bounding box is rectangular, but this is not necessary. The bounding box could also consist of unions of rectangular boxes.

An array of voxels sometimes called a background mesh, is then constructed. This method is similar to the background method quadrature described for meshless methods in Belytschko et al. [START_REF] Belytschko | Element-free Galerkin method for static and dynamic Fracture[END_REF]. The selection of the voxel size is a crucial step in the procedure, since it is necessary to determine a voxel size that leads to reasonably economical computations, yet corresponds closely enough with the details of the object so that the boundaries of the object in each voxel are simple.

The voxel size must also be such as to achieve to requisite accuracy in the ÿnite element solution without excessive solution time. This involves error estimates, which is a topic outside the scope of this paper, see BabuÄ ska and Strouboulis [START_REF] Babuä Ska | The Finite Element Method and its Reliability[END_REF]. In most cases, a reasonable voxel size can be set by inspection.

Active voxels

The voxels that are to be active in the ÿnite element model are selected next. This is easily accomplished from the implicit surface function, since at least one node of a voxel must be inside the surface for the voxel to be active. This implies that at least for one node of an active voxel, (x I )¡0. An algorithm for identifying the active voxels is given in Table I.

Table I. Procedure for classifying voxels as active and inactive voxels.

• Compute (x I ) for all nodes.

• Loop over all voxels, V = 1 to NV .

-loop over nodes of voxels, I to N .

-if ∃ a node where the value of I ¡0 ⇒ Active voxel.

-if I ¡0 ∀ nodes ⇒ Active interior voxel.

-if Active voxel and not interior voxel ⇒ Active surface voxel.

-if not an Active voxel ⇒ Inactive voxel.

• end loop over voxels.

FINITE ELEMENT DISCRETIZATION

The development of the discrete ÿnite element equations of equilibrium is similar to that for the standard ÿnite element method. We will use a structured mesh, but the weak form for a structured mesh is identical to that for an unstructured mesh. To begin, we consider the virtual elements to be voxels and place nodes along the edges and surfaces of all active voxels. This leads to a set of active nodes. An example for 4-node element is shown in Figure 1. As can be seen, active nodes will occur outside the object; these active nodes are associated with active surface voxels. It is of course possible to vary the size of the cells by integer factors in di erent subdomains or to use di erent order of elements. In fact, this method is extremely well-suited to p-type elements or spectral elements, which tend to perform better when the element surfaces are parallel and orthogonal, e.g. rectangular in two dimensions.

Here, for simplicity we consider small displacement elastostatics. The governing equations are

∇ • A + b = 0 in ( 13 
)
where

A = C : U (14) 
U = ∇ s u ( 15 
)
where A is the Cauchy stress, b is the body force per unit volume, C is Hooke's tensor, U is the strain, u is the displacement and ∇ s is the symmetric part of the gradient operator.

The essential and natural boundary conditions are, respectively

u = u on u : (16) 
n • A = t on t ( 17 
)
where u and t are the prescribed displacement and prescribed traction boundaries, respectively.

The space of admissible displacement ÿelds is

u = {u ∈ u | u is smooth and u = u on u } (18)
The weak form of the equations of elastostatics is for

u ∈ u a H (-) U(u)CU(v) d = a H (-) b • v d + t t • v d ∀v ∈ u 0 ( 19 
)
where a is the union of all active voxels, H (•) is the standard Heaviside step function and u 0 is u with u = 0 on u . The above can be used directly only when prescribed displacement boundaries coincide with the surface of the voxels. Otherwise we use a Lagrange multiplier method, see for example Belytschko et al. [START_REF] Belytschko | Element-free Galerkin method for static and dynamic Fracture[END_REF].

The displacement ÿeld is given by

u(x) = I N I (x)u I ( 20 
)
where u I are the nodal displacements and N I (x) the shape functions (note that we use upper case subscripts for subscripts that pertain to nodes). Substituting the above into the weak form [START_REF] Stolarska | Modelling crack growth by level sets in the extended ÿnite element method[END_REF] we obtain the standard ÿnite element equations

J K IJ u J = f ext I ( 21 
)
where

K IJ = a H (-)B T I CB J d ( 22 
)
f ext I = a H (-) N I (x)b(x) d + t N I (x)t(x) d ( 23 
)
and B is the standard strain-displacement matrix that gives U by

U = I B I u I (24) 
The numerical quadrature of the weak form ( 11) is performed voxel by voxel similar to the procedure used in the meshless EFG method [START_REF] Belytschko | Element-free Galerkin method for static and dynamic Fracture[END_REF]. For clarity, we simply consider the quadrature of a scalar f; so we have

a H (-) f d = N act V e=1 e f d ( 25 
)
where N act V is the number of active voxels. The quadrature procedure depends on whether a voxel is a surface voxel or an interior voxel. The surface and interior voxels can be segregated during the identiÿcation of the active voxels. Quadrature over the interior voxels is straightforward. We use Gaussian quadrature with the number of quadrature points depending on the order of the ÿnite element approximation in the element, e.g. 2 × 2 Gauss quadrature for bilinear displacement elements in two dimensions.

For surface voxels, the integration procedure is more involved, since it is necessary to account for the surface that passes through the voxel, i.e. only part of the voxel contributes to ; this part is called e . These techniques still require further development, but we describe two methods based on linear approximation to the surface which works well with low order elements. We ÿrst describe the methods in two dimensions. In the ÿrst method, the integration is performed by cutting each voxel as shown in Figure 3 into two triangles. The ÿnite element approximation to the surface function [START_REF] Mo Es | Non-planar 3D crack growth by the extended ÿnite element and level sets-Part I: mechanical model[END_REF], is approximated by a linear function using least squares. Each of these triangles will then be cut by the surface into a quadrilateral and a triangle. Thus, the quadrature over the voxel then consists of quadrature over 2 triangles and 2 quadrilaterals, over which standard quadrature methods are used.

In the second method, the same least square ÿt is used to subdivide the element into two polygons. These are triangulated by Delaunay triangulation and the quadrature is performed over the elements interior to the surface.

The traction boundary conditions involve quadrature over a curve or surface (in 2D and 3D, respectively). We integrate the traction term over the zero isobar of the ÿnite element approximation of the implicit function (Figure 4) inside each of the surface elements where the traction boundary condition is to be applied.

The integration on the boundary is performed as follows (We present procedure for arbitrary quadrilaterals). We ÿrst ÿnd (Á 1 ; 1 ) and (Á 2 ; 2 ), the parental co-ordinates at the intersection of the surface with the ÿnite element; see Figure 4. Consider the integral of g(Á; );

I = g(Á; ) d ( 26 
)
where is the surface according to the ÿnite element approximation [START_REF] Mo Es | Non-planar 3D crack growth by the extended ÿnite element and level sets-Part I: mechanical model[END_REF] of the implicit function given by d = (dx 2 + dy 2 ) 1=2

Note that d = ; x dx + ;y dy = 0 [START_REF] Oden | Toward a universal H -P adaptive ÿnite-element strategy. 2. A posteriori error estimation[END_REF] where commas denote partial derivatives. Form [START_REF] Oden | Toward a universal H -P adaptive ÿnite-element strategy. 2. A posteriori error estimation[END_REF] 

if | ;y | ¿ | ; x | (30) d = 1 + 2 ;y 2 ; x if | ;y | ¡ | ; x | ( 31 
)
The integration over surface voxels for three dimensions is structured so that quadrature formulas are only required for tetrahedra and pentahedra. The hexahedral voxels are ÿrst subdivided into tetrahedral subelements as shown in Figure 5. As noted in Usui [START_REF] Usui | Discontinuities in the extended ÿnite element method and beam and shell adaptivity for structural dynamics[END_REF], the hexahedron may be subdivided into tetrahedra in two ways, but the subdivision shown in Figure 5 is a better ÿt to the volume when the voxel is not a cuboid. Also, when hexahedra in a structured mesh are subdivided into 6 tetrahedra, it is possible to ensure that the triangulation of the contiguous surfaces is identical. For structured meshes, the elements will usually be cuboids, but in some cases structured meshes generated by nonparallel surfaces are desirable. A linear approximation is then obtained for the surface in each tetrahedron.

The tetrahedral subelements are then subdivided into two tetrahedra or a pentahedron and a tetrahedron. The subdivision depends on the values of I at the nodes. We will call a subelement active if it contributes to the Galerkin integrals [START_REF] Fleming | Enriched element-free Galerkin methods for crack tip ÿelds[END_REF], inactive if it is not.

We ÿrst separate out the following:

1. if I ¿0 ∀I , then the subelement is inactive. 2. if I 60 ∀I , then the subelement is active.

Any subelements that do not meet the above fall into one of the following four categories:

Case 1: one I of one sign, three I of another sign; then the volume integral can be obtained from the volumes of tetrahedra (Figure 6(a)).

Case 2: two I of one sign, two I of another sign; then the tetrahedral subelement consists of two pentahedrons (Figure 6(b)). Case 3: one I = 0; then the tetrahedral subelement consists of a pyramid and a tetrahedron. Case 4: two I = 0; then the tetrahedral subelement consists of two tetrahedra.

Note that although it would be unusual for I to vanish exactly, successful implementation of the methods described here and for interior features require that I be set to zero when it is smaller than a mesh dependent tolerance, see Mo es et al. [START_REF] Mo Es | A ÿnite element method for crack growth without remeshing[END_REF].

The surface integral for inhomogeneous traction boundary conditions is either over a triangle such as ABC or a quadrilateral such as ABCD; for the surface elements standard quadrature techniques are used to evaluate the boundary integrals of the Galerkin weak form.

INTERNAL DETAILS

In most engineering and scientiÿc problems, objects that are analysed by ÿnite elements have substantial internal structure. Among these internal details are:

• interfaces between bonded materials • cracks • small holes, pores and dislocations • unbonded interfaces Some of these examples are illustrated in Figure 7. In the following we describe how some of these features are easily handled in the context of this method. In deÿning internal surfaces, we again use implicit functions.

Any interface int is described by the zero isobar of an implicit function int (x); we refer to a single interface for clarity but the technique can be extended to many interfaces. The ÿnite element form of the implicit function is given in terms of nodal values by int 

(x) = I N I (x) I (32) 
or by radial basis functions as before. One useful form of an implicit function is the signed distance function.

int (x) = min x -x sign(n • (x -x)) ( 33 
)
where n is a unit normal to the internal surface; its direction is arbitrary.

Interfaces between bonded materials

Examples of interfaces between bonded materials are the interfaces between di erent constituents of a composite material, the layers of a geotechnical model, materials bonded by glueing and thermal ÿts. Some of these are described further in the examples. Across a bonded interface, the displacement ÿeld is continuous but the strains are discontinuous. Thus, it is necessary to construct a displacement ÿeld that accommodates this discontinuity in the derivative of the displacement. For this purpose, we decompose the displacement ÿeld

u = u st + u enr (34)
where u st is the standard ÿnite element ÿeld (Equation ( 20)) and u enr is the enrichment ÿeld. For a discontinuous derivative the enrichment is

u enr = I ∈C a I (| | -| I |)N I (x) (35) 
where a I are additional degrees of freedom and C is the set of all nodes whose support is cut by int . Note that the term N I (x) localizes the enrichment so that sparsity of the discrete equations is not adversely e ected. A special modiÿcation described by Sukumar et al. [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended ÿnite element method[END_REF] is advantageous.

For voxels cut by int , the same procedures used for external boundaries must be used in evaluating the integrals in Equation [START_REF] Timoshenko | Theory of Elasticity[END_REF]. A major di culty in the method is presented by intersection of surfaces. When int intersects or two interior surfaces intersect within a voxel, the method described previously does not su ce and more complicated schemes are needed. At this time, simple mesh generation schemes are recommended, but we have not programmed this.

Cracks

Cracks are among the most common defects that occur in mechanical components. Cracks are associated with singularities in the elastostatic stress ÿelds; the strength of the singularity is the stress intensity factor which determines its rate of growth in cyclic loading. The method described here directly gives the strength of the singularity, i.e. the stress intensity factor, by including the near-tip ÿeld as an enrichment.

The crack surface is deÿned by the implicit function int (x) = 0 (36)

A second implicit function is deÿned to represent the crack edge. This implicit function is deÿned so that the intersection of = 0 with = 0 gives the crack edge, i.e. int (x)= (x)=0. It is also constructed to be normal to the crack interior levelset function int :

∇ • ∇ int = 0 (37)
Level set techniques (Sethian et al. [START_REF] Sethian | implementation and application of level set and fast marching methods for advancing fronts[END_REF]) can be used to update these functions to model crack growth as described by Stolarska et al. [START_REF] Stolarska | Modelling crack growth by level sets in the extended ÿnite element method[END_REF] in 2D and Gravouil et al. [START_REF] Gravouil | Non-planar 3D crack growth by the extended ÿnite element and level sets-Part II: level set update[END_REF] in 3D.

Across the crack surface, the displacement ÿeld is discontinuous and the enrichment models this discontinuity.

To deÿne the displacement ÿeld the following nodes need to be identiÿed.

• the set of nodes whose support is completely cut by the crack (C).

• the set of nodes whose support is partially cut by the crack (P).

The enrichment ÿeld is given by

u enr (x) = J ∈C a J N J (x)H ( int (x)) + J ∈P c Jk N J (x)B k (x) (38) 
where a J and c Jk are additional nodal parameters and

H (y) = +1 for y¿0 -1 for y¡0 (39) 
The asymptotic ÿeld near the crack tip is represented by the function B k in Equation ( 38) where

{B k (r; Â)} = √ r sin  2 ; √ r cos  2 ; √ r sin  2 sin(Â); √ r cos  2 sin(Â) (40)
This enrichment scheme is based on Fleming et al. [START_REF] Fleming | Enriched element-free Galerkin methods for crack tip ÿelds[END_REF]. The angle  for the enrichment is deÿned as

 = tan -1 int (x) (x) (41) 
More details can be found in Mo es et al. [START_REF] Mo Es | A ÿnite element method for crack growth without remeshing[END_REF] and Gravouil et al. [START_REF] Mo Es | Non-planar 3D crack growth by the extended ÿnite element and level sets-Part I: mechanical model[END_REF].

Sliding interfaces

Sliding interfaces are an important feature in many engineering problems. For example sliding surfaces are needed between a rod and sleeve, along joints in rock, etc. To model sliding interfaces, the displacement ÿeld must be enriched so that discontinuities in the tangential component of the displacement are included in the approximation. This is achieved by enriching the ÿeld with a discontinuity in the direction tangential to the sliding surface.

A tangential discontinuity can be constructed by enriching the tangential component of the displacement ÿeld with the step function. For example in 2D, we can use

u enr (x) = I ∈C N I (x)a I e t (x)H ( int (x)) ( 42 
)
where e t is the tangent to the discontinuity at int = 0. In 2D this tangent vector can be deÿned as e t = e z × e n where

e n = ∇ int ∇ int (43)
Accuracy can be improved by adding an enrichment based on the nodal values of the tangent (Belytschko et al. [START_REF] Belytschko | Arbitrary discontinuities in ÿnite elements[END_REF]). This is done by ÿnding the tangent at the nodes, i.e. in 2D.

u enr (x) = I ∈C N I (x)a I e t (x I )H ( int (x)) ( 44 
)
The normal is computed as a nodal average of the normals in the element. The normal is then given by

e n (x I ) = 1 n n e=1 ∇ e (x I ) ∇ e (x I ) ( 45 
)
where ∇ e (x I ) is the gradient in element e at node I, where n is the number of nodes in the element.

For three-dimensional problems, two tangent vectors e t1 and e t2 are needed. The enrichment is given by

u enr (x) = I ∈C N I (x) 2 =1 a I e t (x I )H ( int (x)) (46) 
4. RESULTS

Accuracy of surface approximations

We ÿrst give some examples of the accuracy of the surface approximations. The error in this deÿnition is calculated by integrating the value of the function over the exact surface (Table II):

Err = | (x)| d ( 47 
)
Table II. Error in surface deÿnition using di erent radial basis functions. where is the exact surface. Di erent densities of surface points are taken to describe the implicit function, using the radial basis functions deÿned in Equations ( 4) and [START_REF] Stolarska | Modelling crack growth by level sets in the extended ÿnite element method[END_REF]. Two shapes were considered;

Number of points Biharmonic Exponential

• a circle • a quarter piece of a slab with a hole.

The geometry and the contour plot for the second geometry is shown in Figure 9. A quarter space is considered due to axisymmetry.

It can be noted that the errors are comparable for the two types of radial basis functions, although the exponential is more accurate for the circle. Both methods give excellent accuracy with a reasonable number of points. The function is plotted for the two radial basis functions for a circle in Figure 8. It can be seen that even though both the radial basis functions deÿne the shape well and both functions are clearly positive outside the circle, the exponential basis function is steeper and this property can be advantageous. Gaussian radial basis functions, not reported here, can become negative outside the object, which is very undesirable.

Examples of complete solutions

Some standard examples are considered and solved following the schema in Figure 1. The purpose of these examples is to study the e ect of the errors in the quadrature of the weak form, particularly the inhomogeneous traction boundary conditions, on the accuracy and rate of convergence. 4.2.1. Hollow cylinder with internal pressure. The ÿrst example taken is a hollow cylinder with internal pressure(p). This is modeled as a quarter cylinder due to symmetry with the displacement ÿxed in the normal direction at the two edges as shown in Figure 10. The exact solution for the stress components in polar co-ordinates are as follows [START_REF] Timoshenko | Theory of Elasticity[END_REF] 

r (r; Â) = a 2 p b 2 -a 2 1 - b 2 r 2 (48) 
 (r; Â) = a 2 p b 2 -a 2 1 + b 2 r 2 (49) r (r; Â) = 0 ( 50 
)
where a is the inner radius and b is the outer radius. Note that due to axisymmetry the stresses do not depend on Â. The displacements are as follows:

u r (r; Â) = a 2 pr E(b 2 -a 2 ) 1 -+ b 2 r 2 (1 + ) (51) u r (r; Â) = 0 (52) 
The parameters chosen in this problem are: a = 2 in., b = 4 in., p = 3000 psi, and plane stress is assumed. The geometry is described by 20 equispaced surface points on each of the two arcs and each of the two straight sides. The surface comprising the geometry shown in Figure 10 is deÿned using radial basis approximations Equation (4). A biharmonic basis is used in these calculations. The mesh is aligned to the straight edges to facilitate the application of the displacement boundary conditions. It should be noted that the geometry is deÿned for the quarter cylinder, thereby causing kinks in the surface geometry at the four corners as seen in Figure 10. The radial basis functions seem to capture these kinks rather accurately. The convergence rate is observed to be 0.88 for the energy norm. The slightly reduced rate of convergence from the optimal rate of 1.0 can probably be attributed to the approximation of the traction boundary condition. As the traction is applied on the zero isobar of the approximation of the surface (Equation ( 12)), this may e ect the accuracy of the solution. Some error may also be attributed to quadrature of Equation ( 22), but the next example seems to indicate that this error is smaller than error arising from non-zero tractions. The rate of convergence here, incidentally, is not impaired by the number of points that deÿne the geometry. We have run it with 40 points on each segment and obtained almost identical accuracy (Figure 11).

Inÿnite plate with a hole.

The next problem that we consider is that of an inÿnite plate with a hole of radius a subjected to a uniform tension 0 in the x-direction (Figure 12). We model this by applying a traction equivalent to the exact stress caused by the uniform traction at inÿnity on a square plate with a ÿnite dimension. The exact stress ÿeld is given by Timoshenko and Goodier [START_REF] Timoshenko | Theory of Elasticity[END_REF] and is as follows;

r (r; Â) = 0 2 1 - a 2 r 2 + 0 2 1 + 3a 4 r 4 - 4a 2 r 2 cos 2 (53)  (r; Â) = 0 2 1 + a 2 r 2 - 0 2 1 + 3a 4 r 4 cos 2 (54) r (r; Â) = - 0 2 1 - 3a 4 r 4 + 2a 2 r 2 sin 2 (55) 
The radius of the hole, a = 1 in., Young's modulus = 1000 000 psi, and plane stress was assumed. The hole was described by the radial basis function with 30 surface points. The computations were made with structured meshes ranging from 10 × 10 to 80 × 80. A convergence study was performed for this problem. The rate of convergence is 0.9524 in the energy norm. The improved rate of convergence compared to the previous problem could be attributed to the absence of kinks and inhomogeneous traction boundary conditions on the implicit surface (Figure 13).

A spherical inclusion under uniaxial tension.

The next few examples illustrate the performance of the method in three dimensional problems for which closed form solutions are available. The primary intent was to study the e ect of arbitrary interior interfaces on the accuracy of the method. The ÿrst 3D example is a spherical inclusion under uniaxial tension in an inÿnite domain is shown in Figure 14. The exact solution for this problem is given by Goodier [START_REF] Goodier | Concentration of stress around spherical and cylindrical inclusion and aws[END_REF] (see the appendix). Relative Error in Energy Norm FEM Tetrahedron mesh X-FEM Hexahedron mesh X-FEM Tetrahedron mesh Figure 16. Error in energy for the spherical inclusion problem; structured mesh is labeled X-FEM Hexahedron, conforming mesh is labeled FEM Tetrahedron, X-FEM Tetrahedron is non-conforming unstructured mesh.

In the numerical model, we consider a cubic domain of size 1:0 × 1:0 × 1:0 with an inclusion of radius 0.4 at its center. We impose the exact tractions from the closed form solution to the boundary of the cubic domain, with appropriate constraints added to remove rigid body modes. The material properties are: Young's modulus E 1 = 2:0 and E 2 = 1:0, Poisson's ratio The error in energy is shown in Figure 16. For comparison, the problem was also solved with a sequence of unstructured tetrahedral meshes. Two types of tetrahedral meshes were used; those conforming to the interface (labeled FEM) and those not conforming to the interface (labeled X-FEM).

As can be seen the accuracy of the structured mesh is better than the unstructured tetrahedral mesh that conforms to the interface, although for the ÿnest mesh the accuracy is the same. The rate of convergence for the structured mesh is about 0.77, which is slightly below the optimal rate of 1.0. The results for a non-conforming unstructured tetrahedral mesh with enrichment are also shown.

We show the accuracy with the Sukumar et al. [START_REF] Sukumar | Modeling holes and inclusions by level sets in the extended ÿnite element method[END_REF] correction for discontinuous derivative enrichments, in Figure 17. As can be seen, there is some improvement but not as marked as in two dimensional problems. 4.2.4. 4D carbon-carbon composite. The next example concerns a representative volume element of a composite. In this case the 4D Carbon-Carbon composite of Delenste et al. [START_REF] Delneste | An inelastic ÿnite element model of 4D carbon-carbon composites[END_REF] was considered to show how easy it is to make a mesh for such studies (shown in Figure 18). Representative volume elements are a particularly suitable application of these methods since the domain is cubic and only internal details need to be treated; meshing such problems is very time consuming.

The composite material comprises of four reinforcement directions which are parallel to the diagonals of a cube, i.e. the (1; 1; 1), (-1; 1; 1), (-1; -1; 1) and (1; -1; 1) directions. The implicit functions for the interior surfaces in this case were constructed analytically and directly inserted in the code. For example, for a ÿbre in the direction given by a unit vector e with radius R, the implicit function deforming a ÿlament that passes through x 0 is (x -x 0 ) × e 2 -R 2 = 0 (56) The carbon reinforcements are deÿned as a transverse isotropic material, whose longitudinal Young's modulus is E l = 200:0 GPa, longitudinal Poisson's ratio is l = 0:4, longitudinal shear modulus is G l = 8:0GPa, transverse Poisson's ratio is t = 0:3 and transverse Young's modulus is 10:0 GPa. The carbon matrix is deÿned as an isotropic material with Young's modulus E = 8:0 GPa and Poisson's ratio = 0:46. The ÿbre volume fraction is 0.68. The values are chosen based on the problem deÿned in Delenste et al. [START_REF] Delneste | An inelastic ÿnite element model of 4D carbon-carbon composites[END_REF].

The homogenized Young's modulus in the z-direction was calculated. The result is E h = 8:5 GPa which is close to the experimental results E h = 8:0 GPa (see References [START_REF] Delneste | An inelastic ÿnite element model of 4D carbon-carbon composites[END_REF][START_REF] Aubard | Damage modeling at two scales for 4D Carbon=Carbon Composites[END_REF]).

The in uences of the ratios of Young's moduli and the volume fraction to the homogenized material constants in (0; 0; 1) direction were investigated for the material. In this analysis, the yarn and the matrix were deÿned as isotropic materials. Three cases of yarn volume fractions (0:67, 0:57 and 0:48) were calculated for di erent ratio of E matrix and E yarn , where E matrix and E yarn are Young's modulus of matrix and yarn, respectively. Both Poisson's ratio of the matrix and the yarn are 0:4. Yarn volume fraction 0:67 is the maximum volume fraction, since a volume fraction larger than 0:67 causes interpenetration of yarns. The variations of the homogenized Young's modulus and Poisson's ratio are shown in Figures 19 and20, respectively. 

CONCLUSIONS

A simpliÿed method for modelling solid objects by structured ÿnite elements has been presented. The method uses implicit functions to describe the outside surface of the object and any inner surfaces, such as material interfaces, sliding surfaces and cracks. Enrichment functions are then used to modify the structured ÿnite element approximations of the displacement ÿeld so that the internal features are modeled. In addition to modelling discontinuities in the displacement ÿeld, asymptotic local solutions can be introduced by the enrichment ÿeld. Other local ÿelds, such as those for holes, can introduced as shown by Strouboulis et al. [START_REF] Strouboulis | The generalized ÿnite element method[END_REF]. Overlapping meshes such as described by Charlesworth et al. [START_REF] Charlesworth | The domain decomposition method applied to Poisson's equation in two dimensions[END_REF] could also be used. The method is similar to the ÿctitious element method of Glowinski et al. [START_REF] Glowinski | The ÿctitious domain method for external incompressible viscous-ow modeled by Navier-Stokes equations[END_REF]; the major di erence is the introduction of internal details and the description of the geometry by implicit functions.

The method provides good accuracy. Although the rate of convergence is somewhat below the optimal rates, the absolute accuracy is on the same order as for unstructured meshes that observe the discontinuity. In view of the reduced burden in meshing this should be acceptable. Of course, for problems such as crack problems, much greater accuracy can be obtained than with regular ÿnite elements as is apparent from Gravouil et al. [START_REF] Mo Es | Non-planar 3D crack growth by the extended ÿnite element and level sets-Part I: mechanical model[END_REF].

The success of the method hinges on the deÿnition of shapes in implicit radial basis functions. This leads to full equations; but the multipolar methods described by Carr et al. [START_REF] Carr | Reconstruction and representation of 3D objects with radial basis functions[END_REF] can e ectively handle millions of points.

The major drawbacks of the method are the need to perform the integration of the weak form over partitions of an element for active cells cut by boundaries and the fact that the method as developed so far has a uniform mesh over the entire object. The quadrature issue is not di cult when a single surface passes through an element, but becomes awkward when two or more surfaces pass through a single element; such situations are a distinct possibility in multimaterial problems. The quadrature algorithms for such situations could get quite complex, but once coded would not require user-intervention.

The issue of resolution should be tractable by p-type methods and structured h-type reÿnement (or coarsening) where the voxel sizes vary in subdomains of the mesh. This would be particularly attractive with adaptive solution strategies, see for example Oden et al. [START_REF] Oden | Toward a universal H -P adaptive ÿnite-element strategy. 2. A posteriori error estimation[END_REF].

The main advantage of the method is the simplicity of the model generation. Many models, such as representative volume elements for generating material properties and geotechnical models, are inherently cuboid with considerable internal detail. The generation of unstructured meshes for such problems is quite burdensome; it is time-intensive and it is di cult to ensure quality and correctness. With these methods, the major task becomes the generation of surfaces that deÿne the boundaries of the object and interfaces. Although much remains to be done beyond what has been described here, the potential of the method is quite attractive.

APPENDIX A: THE EXACT SOLUTION FOR SPHERICAL INCLUSION UNDER

UNIAXIAL TENSION (GOODIER [START_REF] Goodier | Concentration of stress around spherical and cylindrical inclusion and aws[END_REF])

We deÿne a spherical co-ordinate system (r; Â; N ) with its origin at the center of the sphere, whose radius is a . A tension T is applied in the Z direction. The problem is symmetric about (Figure 14). The variables are distinguished by superscripts 1 and 2 for the inclusion and
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 14 Figure 14. A spherical inclusion in an inÿnite solid under uniaxial stress.
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 15 Figure 15. Polygonized material interface with 21 × 21 × 21 mesh.
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  Figure 17. A spherical inclusion in an inÿnite solid under uniaxial stress with hexahedron mesh.
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 18 Figure 18. Polygonized material interface of the 4D carbon-carbon composite material in a 21 × 21 × 21 mesh and a yarn volume fraction of 0.49; (z is upward, x is horizontal to right).
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 19 Figure 19. In uence of the Eyarn=E matrix on homogenized Young's modulus.
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 20 Figure 20. In uence of the Eyarn=E matrix on homogenized Poisson's ratio.
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= 0:3. The problem was solved with structured meshes consisting of cubic elements. The meshes were n × n × n, with n = 6; 11; 21 and 41. A typical mesh is shown in Figure15, along with the polygonized material interface.
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the matrix, respectively. The exact displacement of the matrix is given by

The exact displacement of the inclusion is

where a is the sphere radius and the stress ÿeld of the matrix is

The stress ÿeld in the inclusion is

where A; B; C; F; H are

1 -2 (7 -5 1 ) 1 + (8 -10 1 ) 2 a 5 (A5c)

where E and are the appropriate Young's modulus and Poisson's ratio, respectively. The shear modulus is given by = E=2(1 + ).