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CONTINUOUS AND SEMI-DISCRETE STABILITY ESTIMATES
FOR 3D/0D COUPLED SYSTEMS

MODELLING AIRFLOWS AND BLOOD FLOWS∗

CÉLINE GRANDMONT† AND SÉBASTIEN MARTIN‡

Abstract. In this paper we analyse multiscale models arising in the description of physiological
flows such as blood flow in arteries or air flow in the bronchial tree. The geometrical complexity of
the networks in which air/blood flows leads to a classical decomposition in two areas: a truncated 3D
geometry corresponding to the largest contribution of the domain, and a 0D part connected to the
3D part, modelling air/blood flows in smaller airways/vessels. The fluid in the 3D part is described
by the Stokes or the Navier-Stokes system which is coupled to 0D models or so-called Windkessel
models. The resulting Navier-Stokes-Windkessel coupled system involves Neumann non-local bound-
ary conditions that depends on the considered applications. We first show that the different types of
Windkessel models share a similar formalism. Next we derive stability estimates for the continuous
coupled Stokes-Windkessel or Navier-Stokes-Windkessel problem as well as stability estimates for
the semi-discretized systems with either implicit or explicit coupling. In all the calculations, we pay
a special attention to the dependancy of the various constants and smallness conditions on the data
with respect to the physical and numerical parameters. In particular we exhibit different kinds of
behavior depending on the considered 0D model. Moreover even if no energy estimates can be derived
in energy norms for the Navier-Stokes-Windkessel system, leading to possible numerical instabilities
for large applied pressures, we show that stability estimates for both the continuous and semi-discrete
problems, can be obtained in appropriate norms for small enough data by introducing a new well
chosen Stokes-like operator. These sufficient stability conditions on the data may give a hint on the
order of magnitude of the data enabling stable computations without stabilization method for the
problem.

Key words. Navier-Stokes, Windkessel models, 3D-0D coupling schemes, energy estimates,
stability analysis, airflows, bloodflows.

1. Introduction. In the present work, we focus on the analysis and numerical
analysis of multiscale models used for simulating physiological flows such as airflows in
the respiratory tract, see e.g. [38, 3, 17, 28, 29, 25, 32] and blood flows in the arterial
network, see e.g. [34, 37, 15, 14, 21, 33]. The underlying motivation is that simula-
tions in patient-specific geometries may provide valuable informations to physicians to
improve diagnosis, pulmonary drug delivery [27] or blood surgery [13]. Nevertheless,
direct simulations of 3D flows in geometries such as the tracheo-bronchial tree or the
arterial network are limited by the following constraints: since the whole respiratory
tree and the blood network are very complex, with a lot of bifurcations, and with
different scales therein, numerical costs related to a full 3D simulation in the whole
domain are prohibitive. Not to mention that the image processing of the complete
bronchial tree or blood network is out of reach for the time being. Therefore the
whole domain is usually truncated, restricting the computational domain to a smaller
part which is considered to be the most significant one in terms of flow description
at the global scale: the large bronchi for airflows or the aorta region for blood flows.
As a countereffect, the removed part has to be taken into account thanks to suitable
reduced models in order to describe the global behaviour of the whole system.

Therein air and blood are commonly modelled as homogeneous, viscous, New-
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tonian and incompressible fluids. Thus we consider a system of partial differential
equations involving the Navier-Stokes equations, which has to be coupled to reduced
models to take into account phenomena in the removed part of the domain. In this
work, we focus on so-called 0D or Windkessel models that describe how the fluid flux
and average pressure on the artificial boundaries is related to the mechanical prop-
erties of the truncated part. The stability and numerical analysis of such coupled
systems is investigated, with special attention brought to applications related to air-
flows and blood flows modelling, which involve different kinds of 0D models sharing a
similar formalism. The whole resulting system involves Navier-Stokes equations with
nonlocal Neumann-type boundary conditions which depend on the chosen 0D model.

Many authors investigated the difficulties related to this kind of problems. From
the theoretical point of view and the numerical point of view, one difficulty comes from
the lack of energy estimate when considering the Navier-Stokes system with Neumann
boundary conditions and more generally mixed Dirichlet-Neumann boundary condi-
tions. Nevertheless existence of strong solutions (global in time for small data or local
in time) has been shown in [24] under the assumption that the out/inlets meet the
lateral boundary with a right angle and assuming some strong regularity results for
the solution of the Stokes problem with mixed boundary conditions. Additionnally,
when coupling the Navier-Stokes system with 0D reduced models, we refer to [35] and
[19, 3] for the same type of wellposedness results of strong solutions. In particular, in
[35], the existence result based on a fixed point strategy, is obtained for the Navier-
Stokes system with Robin-type conditions under a smallness assumption on the Robin
coefficient modeling the resistive part of the 0D model. In [3] the Navier-Stokes sys-
tem coupled to the resistive 0D model is considered; the regularity assumption that
was previously used in [24] is dropped as well as the assumption on the resistance
of the 0D model needed in [35]. The proof relies on the regularity results for the
solution of the Stokes system in polygonal domains with mixed boundary conditions,
that have been derived in [31] and on the introduction of a well chosen Stokes-like
operator, similar but simpler than the one we will introduce in this paper, that takes
into account the 0D model. Note that all these results are valid for small data or in
small time. From the numerical point of view, this lack of energy estimates for the
Navier-Stokes system with Neumann boundary conditions or coupled with 0D model
is linked to numerical instabilities as soon as, for a given physical setting, the applied
pressure drop reach a threshold. To overcome this difficulty many strategies have
been proposed. For general flows, we refer to the early work of [9] that introduces
a whole set of boundary conditions that have been further extended and analysed in
[10] where existence of weak solutions is proven. For hemodynamic flows, stabilization
methods – some of them similar as the one proposed in [10] – have been introduced
[4, 21, 2, 5]. These stabilization technique leads to the modification of the resolved
physical system. We also refer to [24, 16, 29], for reviews on these questions and to
[6] where benchmark tests are performed for various stabilization methods.

Concerning the coupling of the Navier-Stokes equations with 0D models (or other
reduced models such as 1D models), many strategies have been considered for the the-
oretical analysis of such problems as for their numerical implementation. For instance,
as already stated, the existence result proved in [35] is based on a fixed point theorem,
whereas in [3] a global formulation of the coupled system is considered. Moreover,
for the modelling of physiological flows, many coupling strategies have been already
implemented: the explicit treatment has been used for instance in hemodynamics in
[37, 34] or for airflows in [11] for 3D/1D coupling; the implicit coupling with Neu-
mann boundary conditions involving the full traction, achieved thanks to an iterative



3

process has been proposed in [21]. Still in the context of hemodynamics the implicit
coupling and the implicit treatment of the convective part of the fluid equations have
been achieved by a Newton algorithm [14, 26]; however, in each Newton sub-time-step,
the coupling is explicit. The same strategy is used in [32] for mechanical ventilation
in a rat bronchial tree. Moreover we refer for instance to [3] in the context of airflow
modelling or [7] in the context of blood flows modelling where implicit monolithic
coupling schemes are considered. The efficiency of the numerical methods associated
to these problems relies on the analysis of two types of numerical difficulties: on the
one hand, the explicit/implicit treatment of the nonlocal boundary conditions which
couple the 3D and 0D models, which may lead to numerical instabilities and thus
possible restrictions on the time-step, even with an implicit treatment of the coupling
(when achieved by an iterative procedure). On the other hand, the more intrinsic diffi-
culties coming from the convective term in the Navier-Stokes system which, as already
stated, induces a lack of energy estimates and subsequent numerical instabilities.

Thus this paper is concerned with the analysis and numerical analysis of the
coupled 3D/0D models arising in blood flows in large arteries as well as airflows in
the bronchial tree. Here we derive energy or stability estimates for continuous and
semi-discrete Stokes or Navier-Stokes system coupled to typical Windkessel models for
explicit and implicit couplings, with a special emphasis to the dependance with respect
to the physical parameters. The aim is to quantify, depending on the application field,
the stability restrictions on the time step or on the data that are sufficient to ensure
stability estimates. The outline of this article is as follows: in section 2 we introduce
the coupled fluid-Windkessel models under study. We choose standard 0D models used
in blood flow or airflow and we embed them in a similar formalism. We also present the
semi-discretized in time schemes considered for the coupled fluid-Windkessel models,
whose stability analysis will be performed in the next sections. Next, in section 3,
we derive energy or stability estimates for the continuous or semi-discretized in time
Stokes-Windkessel coupled sytem. Implicit and explicit coupling are considered. We
exhibit different type of results depending on the considered 0D model. Finally in
section 4 we study the Navier-Stokes-Windkessel coupled system. We prove stability
estimates both in the continuous case and two semi-discrete cases with either explicit
or implicit coupling. Since no energy estimate can be derived, we prove estimates in
stronger norms linked to the domain of a new well-chosen Stokes-like operator adapted
to the coupled system. Once again we exhibit different types of behavior depending
on the considered 0D model as well as on the coupling strategy.

2. Reduced models in air flows and blood flows.

2.1. Models. In this section, we describe different types of models associated to
physiological flows, such as air through the bronchial tree or blood in the aorta net-
work. The bronchial tree and the blood network have a complex structure which can
be described as an assembly of tubes in which the biological fluid (air or blood) flows.
For instance, the human respiratory tract is a dyadic tree of about 23 generations.
The first generation (the trachea) has a length of about 10 centimetres, while the last
one is about 1 millimeter. Until the 15th generation, the flow is convective whereas
it is mainly diffusive in the acinar region. Moreover, the medical imaging and image
processing techniques allow to obtain a good segmented surface and an associated
mesh only up to the 6th or 7th generation. In the same way, the aorta network can
be described as tube network.

In this context the complexity of the geometries makes it difficult to address direct
simulations over the whole domain which then have to be truncated. Nevertheless,



4 C. GRANDMONT, S. MARTIN

the removed parts corresponding to the smaller scales have to be taken into account
in the global modelling: this can be done by defining appropriate reduced models.
After truncation of the whole domain, we get a domain Ω ⊂ R

3 involving artificial
boundaries which are denoted Γi, with i ∈ {0, · · · ,N}, N + 1 being the number of
in/outlets. The lateral walls of the respiratory tree or of the aorta are denoted Γℓ.
In these 3D domains, we assume that the velocity u and the pressure p of the fluid
satisfy the following incompressible Stokes or Navier-Stokes system (corresponding
respectively to ε = 0 and ε = 1):

(2.1)





ρ(∂tu+ ε(u · ∇)u)− µ∆u+∇p = 0 in Ω,
div(u) = 0 in Ω,

u = 0 on Γℓ,
µ∇u · n− pn = −pin on Γi, i = 0, . . . ,N ,

u(0, ·) = u0 in Ω,

with u0 the initial velocity, n the outward unit vector on every part of the boundary
∂Ω and ρ and µ the density and the viscosity of the fluid respectively. In order to
model the whole system, i.e. the whole respiratory tree or the whole blood network,
taking into account the fluid flow in the removed part, the 3D model has to be
completed with a well-chosen reduced model. For instance, the removed part can
be condensed into a 0D model (0D in the sense that it does not depend on a space
variable) coupled to the 3D model at each outlet Γi. Here we choose to consider some
classical 0D models (also refered to as Windkessel models), used in blood or air flow
modelling, but sharing the same formalism. The interaction between the 3D and the
0D parts is then taken into account by considering a generalized Neumann boundary
conditions based upon the modelling of phenomena in the truncated part. Note that,
as they involve the velocity flux at the artificial boundary, the boundary conditions
are nonlocal:

pi(t) = Fi(Qi(s), 0 ≤ s ≤ t),

where Qi is the flux on Γi. It depends on the instantaneous velocity field u at the
boundary and is defined as

Qi(s) :=

∫

Γi

u(s, ·) · n.

The choice of function F depends on the application field as it is designed to mimick
the behaviour of the truncated subtree. For instance in the context of blood networks
models, a so-called RCR or LRCR model are used whereas, in the context of airflows
in the bronchial tree, a so-called RC model is used. These models will be discussed
thereafter.

Remark 2.1. In this work, several choice have been made:
• We express the Neumann condition by using the non-symmetric tensor σ :=

µ∇u − p I. This choice can be justified by the fact that this quantity is
continuous on cross section boundary in a Poiseuille flow in a cylindrical
domain. An other choice could be based on the physical symmetric strain
tensor σsymm. := µ(∇u + ∇ut) − p I and we refer to [24, 16] for numerical
comparisons between the two versions. Note nevertheless that the analysis
performed hereafter remains unchanged when considering the full fluid strain
tensor.
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• Lateral walls in the 3D part are assumed to be fully rigid and, consequently,
we impose the fluid velocity to be equal to zero on Γℓ. We refer to [1, 18] for
more sophisticated models involving a deformable domain.

Let us give some details on the considered reduced models.
• The RC model for air flows consists in reducing the truncated subtree into
a resistive contribution and a compliant contribution plugged in series at each
outlet of the 3D domain, see Figure 2.1: therefore introducing a resistance R
and compliance C, the outlet pressure pi is associated to the current pressure
P and the model reduces to the following ODE:

(2.2)

{
P = RQ+ Pd,

Q = C
dPd

dt
.

As a straightforward consequence,

(2.3) P (t) = RQ(t) + (P (0)−RQ(0)) + C−1

∫ t

0

Q(s) ds.

R

C

PdP
3D

Fig. 2.1. Reduced 0D model: the RC model for air flows

• The RCR model for bloodflows consists in reducing the truncated subtree
into a proximal part which is mainly resistive and a distal part which is
resistive and compliant. The two parts are plugged in series at each outlet of
the 3D domain, see Figure 2.2: therefore introducing a proximal resistance
Rp, a distal resistance Rd and a compliance C, the outlet pressure pi is the
current pressure P and the model reduces to the following ODE:





P = RpQ+ Pd,

Q = C
dPd

dt
+

Pd

Rd
.

As a straightforward consequence,

(2.4) P (t) = P (0)e
− t

RdC +Rp

(
Q(t)− e

− t
RdC Q(0)

)
+C−1

∫ t

0

Q(s) e
− t−s

RdC ds.

• The LRCR model consists in considering inductive properties plugged in
series with the previous RCR model, see Figure 2.3. The corresponding set
of equations is






P = RpQ+ Pd,

Q = C
d

dt
(Pd − PL) +

Pd − PL

Rd
,

PL = L
dQ

dt
.
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Rp

Rd

C

3D
PdP

Fig. 2.2. Reduced 0D model: the RCR model for bloodflows

As a straightforward consequence,

P (t) = P (0)e
− t

RdC + L

(
dQ

dt
(t)− e

− t
RdC

dQ

dt
(0)

)

+Rp

(
Q(t)− e

− t
RdC Q(0)

)
+ C−1

∫ t

0

Q(s) e
− t−s

RdC ds.

L

Rp

Rd

C

3D
Pd PLP

Fig. 2.3. Reduced 0D model: the RCRL model

In all these cases, it can be noticed that the proximal pressure that connects the
3D domain to the truncated 0D model only depends on the flux Qi so that function
Fi(·) takes the following general form:

(2.5) Fi(Qi(s), 0 ≤ s ≤ t) = αiQi(t) + βi
dQi

dt
(t) + γi

∫ t

0

e
− t−s

τi Qi(s) ds+ Pi(t),

where coefficients αi ≥ 0, βi ≥ 0, γi ≥ 0 and characteristic time τi ∈ (0,+∞)
are associated to corresponding models. The coefficients αi model dissipation of the
flux, βi represent inertia, γi represent elastance of the 0D models with an associated
relaxation time τi. In particular, Table 2.1 summerizes the possible choices for these
parameters related to the previous described models:

Remark 2.2. The link between the different models can be described as follows
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α β γ τ P(t)

R R 0 0 +∞ 0
RC Rp 0 C−1 +∞ P (0)−RQ(0)

RCR Rp 0 C−1 RdC (P (0)−RpQ(0))e
− t

RdC

RCL Rp L C−1 +∞ (P (0)−RpQ(0)− L
dQ

dt
(0))

RCRL Rp L C−1 RdC (P (0)−RpQ(0)− L
dQ

dt
(0))e

− t
RdC

Table 2.1
Model parameters

• The four-element RCRL model with Rd = +∞ leads to a so-called RCL
model.

• The four-element RCRL model with L = 0 leads to the RCR model.
• The RCR model with Rd = +∞ allows us to get the RC model with R = Rp.
• The RC model with C = +∞ allows us to get the R model.

2.2. Variational formulation of the coupled system. Let us now write
the variational formulation associated to the coupled problem. Define the following
functional spaces

H1
0,Γℓ

(Ω) = {v ∈ (H1(Ω))3, v = 0 on Γℓ}, V = {v ∈ H1
0,Γℓ

(Ω), div(v) = 0}.

Multiplying the first equation of system (2.1) by v ∈ V , integrating over the whole
domain Ω and using integrations by parts with boundary conditions, we get:

ρ

∫

Ω

∂tu(t, ·) · v + ερ

∫

Ω

(u(t, ·)∇)u(t, ·)v +

N∑

i=0

βi

(∫

Γi

∂tu(t, ·) · n
)(∫

Γi

v · n
)

+µ

∫

Ω

∇u(t, ·) · ∇v +

N∑

i=0

αi

(∫

Γi

u(t, ·) · n
)(∫

Γi

v · n
)

+

N∑

i=0

γi

(∫ t

0

e
− t−s

τi

(∫

Γi

u(s, ·) · n
)

ds

)(∫

Γi

v · n
)

= −
N∑

i=0

Pi

(∫

Γi

v · n
)
.

Notice that ε = 1 includes the full Navier-Stokes system whereas ε = 0 allows us
to deal with the linear Stokes system. The variational formulation is essential for
the derivation of energy estimates (see the forthcoming subsections) which may be
obtained by considering v = u. The estimates are easily derived in the linear case but
difficulties emerge in the nonlinear case because of the inertial effects. This difficulty is
partially overcome by using several tools: construction of a suitable operator, normed
space which is deeply associated to the inertia of the system and bilinear form that
takes into account the fluid dissipation along with its 0D counterpart, namely the flux
dissipation of 0D model. Let us moreover introduce some useful functional space and
related property:

H := V
L2

.

In this space the following lemma holds true:
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Lemma 2.3. There exists κ > 0 such that,
∣∣∣∣
∫

Γi

v · n
∣∣∣∣ ≤ κ‖v‖L2(Ω), ∀v ∈ H, ∀i ∈ {0, . . . ,N}.

We refer the reader to [3] for the proof of this lemma. Note that this estimate is
deeply based on the divergence-free property and on the fact that Γi ∪ Γj = ∅ for all
i 6= j. Note that, for all v ∈ H, the flux

∫

Γi

v · n

has to be understood in a weak way: indeed it can be defined by means of duality:
∫

Γi

v · n := 〈v · n, 1〉
H−

1
2 (Γi),H

1
2 (Γi)

= 〈v · n, gi〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

=

∫

Ω

v · ∇gi,

where gi is a function in H1(Ω) such that gi = 1 on Γi and gi = 0 on Γj , j 6= i. Note
that such functions exist as the boundaries Γi are not in contact. Finally, if v ∈ V,
the classical flux formula is recovered. Let us also introduce the following inequality,
that can be deduced from the trace inequality: there exists CΓ > 0 such that

(2.6)

∣∣∣∣
∫

Γi

v · n
∣∣∣∣ ≤ CΓ‖∇v‖L2(Ω), ∀v ∈ V, ∀i ∈ {0, . . . ,N}.

In what follows, for the sake of simplicity (and without loss of generality for the
mathematical analysis), we will consider two artificial boundaries:

• one “inlet” Γ0 with standard Neumann boundary condition, i.e.

α0 = 0, β0 = 0, γ0 = 0, P0 := p0,

where t 7→ p0(t) is a prescribed pressure.
• one “outlet” Γ1 which is renamed ΓW (with a subscript which stands for
Windkessel boundary condition) coupled with a generic Windkessel model.
For that reason we rename α1, β1, γ1, τ1 as α, β, γ, τ .

Moreover note that the non-homogeneous Neumann boundary condition on Γ0 can be
reduced to homogeneous Neumann boundary condition by defining a new unknown
pressure p−p0 (which will be still denoted p) and a new Windkessel source term P−p0
(which will be still denoted P). Thus we will consider p0 = 0, since the pressure drop
is taken into account in the Windkessel source term P . Consequently we consider the
following problem:

(2.7)





Find u(t, ·) ∈ V such that, for all v ∈ V,

ρ

∫

Ω

∂tu(t, ·) · v + ερ

∫

Ω

(u(t, ·)∇)u(t, ·)v + µ

∫

Ω

∇u(t, ·) · ∇v

+α

(∫

ΓW

u(t, ·) · n
)(∫

ΓW

v · n
)

+β

(∫

ΓW

∂tu(t, ·) · n
)(∫

ΓW

v · n
)

+γ

(∫ t

0

e−
t−s
τ

(∫

ΓW

u(s, ·) · n
)

ds

)(∫

ΓW

v · n
)

= −P(t)

(∫

ΓW

v · n
)
.
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2.3. Discretization schemes. We investigate the numerical stability of various
coupling strategies between the Stokes or Navier-Stokes system and the 0D models.
In particular, we aim at deriving stability estimates on the solution of the discretized-
in-time and pay attention to the sensitivity of the stability constants or possible
smallness conditions with respect to the physiological and numerical parameters.

In what follows, discretized-in-time systems will be referred as semi-discretized
systems. Let ∆t > 0 be the time step and tn = n∆t, n ∈ {0, . . . , N}, with N∆t = T .
We denote by (un, pn) the approximated solution at time tn of the continuous velocity
and pressure fields t 7→ (u(t, ·), p(t, ·)). If we discretize in time the strong formulation
of system (2.7), using the first order backward Euler scheme for the time derivative,
the approximated velocity and pressure un+1 and pn+1 satisfy:

(2.8)






ρ

(
un+1 − un

∆t
+ εun+I · ∇un+1

)
− µ∆un+1 +∇pn+1 = 0, in Ω,

div(un+1) = 0, in Ω,
un+1 = 0, on Γℓ,

µ∇un+1 · n− pn+1n = 0, on Γ0,
µ∇un+1 · n− pn+1n = −F∆t((Q

k)0≤k≤m), on ΓW ,
u0 = u0, in Ω,

where the choice I ∈ {0, 1} corresponds to a semi-implicit or an implicit treatment of
the convection term. Function F∆t is a time approximation of F , where F is defined
by (2.5). It depends on the approximations (Qk)0≤k≤m of the fluxes (Q(tk))0≤k≤m.
Note that we may consider either explicit coupling with m = n or implicit coupling
with m = n+ 1. The approximate function is chosen as:

F∆t((Q
k)0≤k≤m) = αQm + β

Qn+1 −Qn

∆t
(2.9)

+γ∆t

m∑

k=m−n

(
τ

τ +∆t

)m+1−k

Qk + P(tm).

Note that, here, the inertance term will be always treated in an implicit way. Indeed an
explicit treatment of this added mass term leads to possibly unconditionally unstable
schemes, as it has been observed and analyzed in [12] in the context of bloodflows. In
what follows we investigate the case β = 0 and the case β 6= 0 in order to understand
the stabilization effect of the inertance on the scheme.

Remark 2.4. The definition (2.9) of the approximate function modelling the 0D
model is built upon the approximation of the RC and RCR models which leads us to
the following quadrature formula

γ

∫ tm

0

e−
tm−s

τ Q(s) ds ≃ γ∆t
m∑

k=m−n

(
τ

τ +∆t

)m+1−k

Qk.

Indeed in the case of the RC model (α > 0, β = 0, γ > 0, τ = +∞), the integral∫ t

0 Q(s) ds is approximated by the classical rectangle rule whereas for the RCR model
(α > 0, β = 0, γ > 0, τ < +∞), Equation (2.9) corresponds to the following
discretization of system (2.2)





F∆t((Q
k)0≤k≤m) := Pn+1 = RpQ

m + Pn+1
d ,

C
Pn+1
d − Pn

d

∆t
+

Pn+1
d

Rd
= Qm.

(2.10)
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We aim at studying the stability of the coupling schemes in both Stokes and
Navier-Stokes regimes. In particular we focus on the derivation of stability conditions
for the implicit and explicit schemes. The goal is to quantify the possible restrictions
on the data and numerical parameters with respect to the physiological parameters
and investigate the differences that can be encountered for various 0D models cor-
responding to bloodflows and respiratory flows. Consequently since our aim is to
differentiate the behaviour of typical models used either in bloodflows or in air flows,
we focus on the case γ > 0 in the forthcoming theorems. Note that the case γ = 0
will be treated in remarks pointing out the possible simplifications. In any cases, the
variational formulation related to System (2.8) writes:
(2.11)




Find un+1 ∈ V such that, for all v ∈ V,

ρ

∫

Ω

(un+1 − un) · v + ε ρ∆t

∫

Ω

(un+I∇)un+1 v + µ∆t

∫

Ω

∇un+1 · ∇v

+α∆t

(∫

ΓW

um · n
)(∫

ΓW

v · n
)

+β

(∫

ΓW

un+1 · n−
∫

ΓW

un · n
)(∫

ΓW

v · n
)

+γ∆t2

(
m∑

k=m−n

(
τ

τ +∆t

)m+1−k ∫

ΓW

uk · n
)(∫

ΓW

v · n
)

= −Pm∆t

(∫

ΓW

v · n
)
,

where Pm = P(tm). In the above formulation, the choice of ε allows us to discuss
the Stokes (ε = 0) and Navier-Stokes (ε = 1) cases; the index I corresponds to the
implicit (I = 1) or semi-implicit (I = 0) treatment of the convection term; finally the
index m allows us to describe an explicit (m = n) or implicit (m = n + 1) coupling
between 3D and 0D models.

3. Study of the Stokes-Windkessel coupled system.

3.1. Energy estimates for the continuous system. Let us now derive the
energy estimates related to Problem (2.7) with ε = 0. This property is an important
issue of the analysis of the numerical strategies which are built upon similar principles
at the discrete level and is a key ingredient to prove existence of weak solutions.
In particular, all the following calculations can be justified thanks to a Galerkin
approximation, leading to a rigorous derivation of the existence of weak solution.

Theorem 3.1 (Energy estimates for the Stokes system). Let T > 0 and µ > 0.
Assume that α ≥ 0, β ≥ 0, γ > 0 and 0 < τ ≤ +∞. Any weak solution u of the
Problem (2.7) with ε = 0 satisfies, for 0 ≤ t ≤ T :

ρ

2
‖u(t, ·)‖2L2(Ω) +

µ

2

∫ t

0

‖∇u(s, ·)‖2L2(Ω) ds+
β

2
Q2(t)(3.1)

+α

∫ t

0

Q2(s) ds+
γ

2
V 2(t) +

γ

τ

∫ t

0

V 2(s)ds

≤ ρ

2
‖u0‖2L2(Ω) +

β

2
Q2(0) +

C2
Γ

2µ

∫ t

0

(P(s))2 ds,

where Q(s) =
∫
ΓW

u(s, ·) · n and V (t) =
∫ t

0 e
− t−s

τ Q(s)ds.
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Proof. Taking v = u(t, ·) in the variational formulation (2.7) we get

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) + µ‖∇u(t, ·)‖2L2(Ω) + αQ2(t) + β

dQ2

dt
(t)

+γQ(t)
∫ t

0 e−
t−s
τ Q(s) ds+ P(t)Q(t) = 0.

Introducing the auxiliary volume

(3.2) V (t) =

∫ t

0

e−
t−s
τ Q(s)ds,

we obtain easily that V satisfies the following ODE

(3.3)
dV

dt
(t) +

1

τ
V (t) = Q(t).

Note that the previous ODE (3.3) is also valid for τ = +∞ since, in this case, V (t) =∫ t

0
Q(s) ds. From equations (3.2) and (3.3), we get

γQ(t)

∫ t

0

e−
t−s
τ Q(s) ds = γ

(
dV

dt
(t) +

1

τ
V (t)

)
V (t) =

γ

2

dV 2

dt
(t) +

γ

τ
V 2(t).

Then we obtain

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) + µ‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t) +

γ

2

d

dt
V 2(t) +

γ

τ
V 2(t)

= −P(t)

∫

ΓW

u(t, ·) · n.(3.4)

Using a trace inequality and Young’s inequality, the term P(t)
∫
ΓW

u(t, ·) · n can be
controlled by:

(3.5)

∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤

µ

2
‖∇u(t, ·)‖2L2(Ω) +

C2
Γ

2µ
P2(t).

Finally using (3.5) to bound the right hand side of (3.4), we obtain

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t)(3.6)

+αQ2(t) +
γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ C2

Γ

2µ
P2(t).

We conclude by using Gronwall Lemma and remembering that V (0) = 0.

Remark 3.2 (Case γ = 0). In this case, the introduction of the auxiliary volume
V is not necessary and the estimate (3.1) is still valid with γ = 0.

Remark 3.3. Note that other energy estimates can be derived. For instance, as-
sume that α 6= 0. Then the estimate of the source term can be replaced by

(3.7)

∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤

α

2
Q2(t) +

1

2α
P2(t).

As a consequence (3.6) can be replaced by

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) + µ‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) +

α

2
Q2(t)(3.8)

+
γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ 1

α
P2(t).
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It leads to

ρ

2
‖u(t, ·)‖2L2(Ω) + µ

∫ t

0

‖∇u(s, ·)‖2L2(Ω) ds+
β

2
Q2(t)

+
α

2

∫ t

0

Q2(s) ds+
γ

2
V 2(t) +

γ

τ

∫ t

0

V 2(s) ds

≤ ρ

2
‖u0‖2L2(Ω) +

β

2
Q2(0) +

1

2α

∫ t

0

P2(s) ds.(3.9)

Note moreover that different estimates can be obtained for other cases:
• If µ = 0 and α = 0, then the source term can be bounded as

∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤ κ |P(t)| ‖u(t, ·)‖L2(Ω)(3.10)

≤ κ2P2(t)

2ρ
+

ρ

2
‖u(t, ·)‖2L2(Ω) .

by Lemma 2.3 and Young’s inequality.
• If β 6= 0,

(3.11)

∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤ |P(t)| |Q(t)| ≤ P2(t)

2β
+

β

2
Q2(t).

Nevertheless, with the previous inequalities (3.10) and (3.11), the energy estimate
obtained by Gronwall lemma involves an exponential growth that behaves as eCT

with C proportional to the density of the fluid or of the Windkessel model.
To summarize, when γ > 0 and τ < +∞, in the case where the system is dissi-

pative in u (µ > 0) or Q (α > 0) then, for zero applied pressures, the energy of the
system is decreasing. When µ = α = 0 then the energy of the system is also bounded
but with a bound that behaves as eCT , with C behaving like the inertia of either the
fluid or the 0D model.

Remark 3.4. Note that when γ > 0 and τ < +∞, the auxilary volume V defined
by (3.2) is “dissipated” by the model. In particular, in that respect, the RCR model
(τ < +∞) and the RC model (τ = +∞) used respectively in blood flow simulations
and air flow simulations behave in a different way, the auxilary volume V being
dissipated in the RCR case whereas it is not in the RC case.

3.2. Energy estimates for the semi-discretized system. In this subsection,
we establish energy estimates for the solution of the semi-discretized Stokes system
with implicit coupling (see Theorem 3.5) or explicit coupling (see Theorem 3.8). Tak-
ing un+1 as a test function in the variational formulation (2.11) with ε = 0 provides
the following equality:

ρ
∥∥un+1

∥∥2
L2(Ω)

− ρ

∫

Ω

un · un+1 + µ∆t
∥∥∇un+1

∥∥2
L2(Ω)

+α∆tQmQn+1 + β((Qn+1)2 −QnQn+1)

+γ∆t2
m∑

k=m−n

(
τ

τ +∆t

)m+1−k

QkQn+1 +∆tPmQn+1 = 0.

We have

ρ
∥∥un+1

∥∥2
L2(Ω)

−ρ

∫

Ω

un ·un+1 =
ρ

2

∥∥un+1
∥∥2
L2(Ω)

− ρ

2
‖un‖2L2(Ω)+

ρ

2

∥∥un+1 − un
∥∥2
L2(Ω)
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and

(Qn+1)2 −QnQn+1 =
(Qn+1)2

2
− (Qn)2

2
+

(Qn+1 −Qn)2

2
.

The discrete energy balance thus writes:

ρ

2

∥∥un+1
∥∥2
L2(Ω)

− ρ

2
‖un‖2L2(Ω) +

ρ

2

∥∥un+1 − un
∥∥2
L2(Ω)

(3.12)

+µ∆t
∥∥∇un+1

∥∥2
L2(Ω)

+
β

2
(Qn+1)2 − β

2
(Qn)2 +

β

2
(Qn+1 −Qn)2

+α∆tQmQn+1 + γ∆tV n+1,mQn+1 +∆tPmQn+1 = 0,

where

V n+1,m :=





∆t

n+1∑

k=1

(
τ

τ +∆t

)n+2−k

Qk, if m = n+ 1,

∆t

n∑

k=0

(
τ

τ +∆t

)n+1−k

Qk, if m = n.

Defining the dimensionless parameter

(3.13) δ∆t :=
τ

τ +∆t
,

note that the discrete volume V n+1,n+1 (resp. V n+1,n) is obtained by the rectangle
rule with top-right (resp. top-left) corner approximation of the volume V (tn+1):

(3.14) V n+1,m =






∆tδ∆t

n+1∑

k=1

(
τ

τ +∆t

)n+1−k

Qk =: V n+1
imp , if m = n+ 1,

∆tδ∆t

n∑

k=0

(
τ

τ +∆t

)n−k

Qk =: V n+1
exp , if m = n.

We now distinguish the implicit and explicit cases in the following (resp. m = n+ 1
and m = n).

3.2.1. Implicit coupling. Let us first consider the implicit case, namely m =
n + 1. In the case of implicit coupling the analysis is nearly the same as in the
continuous framework. More precisely the implicit coupling of the Stokes system
with any 0D model leads to unconditionally stable schemes in standard energy norms.
Denoting V k

imp = V k,k, see (3.14), we easily verify that

Qn+1 =
V n+1
imp − V n

imp

∆t
+

1

τ
V n+1
imp ,

which corresponds to the time discretization of equation (3.3) by a backward Euler
scheme.

Theorem 3.5 (Implicit coupling with the Stokes system). Let µ > 0 and T > 0.
Assume that α ≥ 0, β ≥ 0, γ > 0 and 0 < τ ≤ +∞. Let ∆t > 0 be the time
step and tn = n∆t, n ∈ {0, . . . , N}, with N∆t = T . The discrete solution un+1 of
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Problem (2.11) with ε = 0 satisfies the estimate

ρ

2
‖un+1‖2L2(Ω) +

µ

2
∆t

n+1∑

k=1

‖∇uk‖2L2(Ω) +
β

2
(Qn+1)2 + α∆t

n+1∑

k=1

(Qk)2(3.15)

+
γ

2
(V n+1

imp )2 +
γ∆t

τ

n+1∑

k=1

(V k
imp)

2

≤ ρ

2
‖u0‖2L2(Ω) +

β

2
(Q0)2 +

C2
Γ

2µ
∆t

n+1∑

k=1

(Pk)2.

Proof. The proof is a straightforward adaptation of the proof of Theorem 3.1.

Remark 3.6 (Case γ = 0). As for the continuous case, the same kind of discrete
energy estimate for γ = 0 may be derived without introducing the discrete auxiliary
volume.

Remark 3.7. Note that Theorem 3.5 can be extended to the fully-discretized sys-
tem, using a standard Lagrange finite element approximation. Moreover different
estimates of the source term as the estimates (3.7) and (3.11) obtained in Remark
3.3, can be adapted to the semi-discrete and fully-discrete frameworks with straight-
forward consequences on the global estimate (3.15). Furthermore in the semi-discrete
framework, the estimate (3.10) is still true, and, in the fully-discrete framework, it is
still valid but under some assumptions on the discrete finite element spaces, ensuring
that Lemma 2.3 holds at the discrete finite element level. In particular, Lemma 2.3
will be satisfied for any vh ∈ {vh ∈ Xh,

∫
Ω div(vh)qh = 0, ∀qh ∈ Mh} provided that

Xh is an internal Lagrange finite element approximation of H1
0,Γℓ

(Ω) and Mh contains

an internal approximation space of H1(Ω).

3.2.2. Explicit coupling. We recall that the β-term that accounts for the 0D
model inertia is treated in an implicit way. Using the definition of the auxiliary
volume, and denoting V k

exp := V k,k−1, see (3.14), we can derive discrete equations
relating the flow to the discrete auxiliary volume:

(3.16)
V n+1
exp − V n

exp

∆t
+

1

τ
V n+1
exp = Qn,

(3.17)
1

δ∆t

V n+1
exp − V n

exp

∆t
+

1

τ
V n
exp = Qn,

where δ∆t is defined by (3.13).
These are the key ingredients to prove:

Theorem 3.8 (Explicit coupling with the Stokes system). Let µ > 0 and T > 0.
Assume that α ≥ 0, β ≥ 0, γ > 0 and 0 < τ ≤ +∞. Let ∆t > 0 be the time
step and tn = n∆t, n ∈ {0, . . . , N}, with N∆t = T . The discrete solution un+1 of
Problem (2.11) with ε = 0 and m = n satisfies the following stability estimate

• Under the condition

0 < ∆t < λ1 :=
α

4γ

(√
1 +

8ργ

κ2α2
− 1

)
,
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we have

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇uk‖2L2(Ω) +
γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC
S
∆tT e

T
λ1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2

)
,

where E0 is a constant that only depends on the energy norm of the initial
conditions and

CS
∆t :=

ακ2

ρ
+

2∆t

τ2
.

• Assume furthermore that β > 0. Then, under the condition

0 ≤ ∆t < λ̃1 :=
α

4γ

(√
1 +

8βγ

α2
− 1

)
,

we have

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇uk‖2L2(Ω) +
γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC̃
S
∆tT e

T

λ̃1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2

)
,

where E0 is a constant that only depends on the energy norm of the initial
conditions and

C̃S
∆t :=

α

β
+

2∆t

τ2
.

Proof. Considering the energy equality (3.12), with m = n, we obtain

ρ

2

∥∥un+1
∥∥2
L2(Ω)

− ρ

2
‖un‖2L2(Ω) +

ρ

2

∥∥un+1 − un
∥∥2
L2(Ω)

(3.18)

+µ∆t
∥∥∇un+1

∥∥2
L2(Ω)

+
β

2
(Qn+1)2 − β

2
(Qn)2 +

β

2
(Qn+1 −Qn)2

+α∆tQnQn+1 + γ∆t V n+1
exp Qn+1 +∆tPnQn+1 = 0.

Let us deal with the explicit terms. The first one can be bounded simply as follows

∣∣α∆tQnQn+1
∣∣ ≤ α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2.

The second one, involving the discrete auxiliary volume V n+1
exp , can be rewritten as

follows, using equation (3.17)

γ∆t V n+1
exp Qn+1

= γ∆t

(
1

δ∆t

V n+2
exp − V n+1

exp

∆t
+

1

τ
V n+1
exp

)
V n+1
exp

=
γ

δ∆t

(
(V n+2

exp )2

2
− (V n+1

exp )2

2
− (V n+2

exp − V n+1
exp )2

2

)
+

γ∆t

τ
(V n+1

exp )2,
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and we get

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+ µ∆t‖∇un+1‖2L2(Ω) +
β

2
(Qn+1)2 +

γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2

+
γ

δ∆t

(V n+1
exp )2

2
+

γ

δ∆t

(V n+2
exp − V n+1

exp )2

2

+
C2

Γ

2µ
∆t(Pn)2 +

µ∆t

2
‖∇un+1‖2L2(Ω),

where we have used an estimate similar to (3.5) to bound the source term. The
stability estimate is built upon the control of the following extra terms:

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2,

γ

δ∆t

(V n+2
exp − V n+1

exp )2

2
.

Thanks to (3.17) we have

γ

δ∆t

(V n+2
exp − V n+1

exp )2

2
≤ γ

δ∆t

(
∆t2δ2∆t(Q

n+1)2 +
∆t2

τ2
δ2∆t(V

n+1
exp )2

)
.

Consequently we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω) +

β

2
(Qn+1)2 +

γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2 +

γ

δ∆t

(V n+1
exp )2

2

+
γ

δ∆t

(
∆t2δ2∆t(Q

n+1)2 +
∆t2

τ2
δ2∆t(V

n+1
exp )2

)
+

C2
Γ

2µ
∆t(Pn)2.

and since δ∆t < 1, we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω) +

β

2
(Qn+1)2 +

γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2 +

γ

δ∆t

(V n+1
exp )2

2

+
γ

δ∆t

(
∆t2(Qn+1)2 +

∆t2

τ2
(V n+1

exp )2
)
+

C2
Γ

2µ
∆t(Pn)2.(3.19)

Now we discuss two different cases: β ≥ 0 (general case), β > 0 (0D inertial case).
• In the general case β ≥ 0, and in particular if β = 0, the terms

α∆t

2
(Qn)2,

α∆t

2
(Qn+1)2,

γ

δ∆t
∆t2(Qn+1)2,

in the right-hand side of (3.19) cannot be controlled by the inertia of the 0D model.
However they can be controlled by the inertial term of the fluid. Indeed by Lemma 2.3,

(Qk)2 ≤ κ2
∥∥uk

∥∥2
L2(Ω)

,
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and, as a consequence, we deduce from (3.19) and the above inequality that

ρ

2

(
1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2

)
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

≤ ρ

2

(
1 +

ακ2

ρ
∆t

)
‖un‖2L2(Ω) +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2

+
β

2
(Qn)2 +

C2
Γ

2µ
∆t(Pn)2.

Defining

(3.20) P (∆t) := 1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2,

we introduce the roots of this polynomial

(3.21) λ1 :=
α

4γ

(√
1 +

8ργ

κ2α2
− 1

)
, −λ2 := − α

4γ

(√
1 +

8ργ

κ2α2
+ 1

)
,

(with, for the sake of convenience, λi > 0. Then we get

(3.22) P (∆t) =
2γκ2

ρ
(λ1 −∆t)(λ2 +∆t) ≥ 1− ∆t

λ1
.

As a consequence, we obtain

ρ

2

(
1− ∆t

λ1

)
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

≤ ρ

2

(
1 +

ακ2

ρ
∆t

)
‖un‖2L2(Ω) +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2

+
β

2
(Qn)2 +

C2
Γ

2µ
∆t(Pn)2.

Using the discrete Gronwall lemma [23] and under the condition 0 < ∆t < λ1, this
provides the following stability estimate

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇uk‖2L2(Ω) +
γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC
S
∆tT e

T
λ1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2,

)

where E0 is a constant that only depends on the energy norm of the initial conditions
and

CS
∆t =

ακ2

ρ
+

2∆t

τ2
.
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• Assume now that β > 0. In that case the terms

α∆t

2
(Qn)2,

α∆t

2
(Qn+1)2,

γ

δ∆t
∆t2δ2∆t(Q

n+1)2

in the right-hand side of (3.19) can be controlled by the inertia of the 0D model. The
estimate (3.19) yields

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω) +

β

2

(
1− α

β
∆t− 2γ

β
∆t2

)
(Qn+1)2

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2

(
1 +

α

β
∆t

)
(Qn)2 +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2
+

C2
Γ

2µ
∆t(Pn)2.

Defining P̃ (∆t) := 1− α

β
∆t− 2γ

β
∆t2, we introduce the roots of this polynomial

λ̃1 :=
α

4γ

(√
1 +

8βγ

α2
− 1

)
, −λ̃2 := − α

4γ

(√
1 +

8βγ

α2
+ 1

)
,

with, for the sake of convenience, λ̃i > 0. Then we get

P̃ (∆t) =
2γ

β
(λ̃1 −∆t)(λ̃2 +∆t) ≥ 1− ∆t

λ̃1

.

As a consequence, we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω) +

β

2

(
1− ∆t

λ̃1

)
(Qn+1)2

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2

(
1 +

α

β
∆t

)
(Qn)2 +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2
+

C2
Γ

2µ
∆t(Pn)2.

Under the condition 0 < ∆t < λ̃1, the discrete Gronwall lemma [23], implies that

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇uk‖2L2(Ω) +
γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC̃
S
∆tT e

T
λ1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2

)
,

where E0 is a constant that only depends on the energy norm of the initial conditions
and

C̃S
∆t =

α

β
+

2∆t

τ2
.

Note that alternate estimates can be derived following the continuous case that
have been developed in Remark 3.3.
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Remark 3.9 (Case γ = 0). In this case, no auxiliary volume is required to derive
discrete energy estimates. The sufficient conditions that guarantee the stability of the
explicit scheme become:

∆t ≤
max

( ρ

κ2
, β
)

α
.

This condition involves the ratio of the inertance of the 3D or 0D system to the
resistance of the 0D model. Moreover the exponential growth constants are modified
as follows:

CS
∆t :=

ακ2

ρ
, C̃S

∆t =
α

β
.

Remark 3.10 (Influence of the inertia). When the inertia parameters of the prob-
lem, namely ρ and β, tend to +∞, so do the critical times λ1 and λ̃1 which implies
that in practice no condition on the time step is required to ensure stability. More-
over, the exponential growth remains bounded. Let us discuss the influence of the
inertance parameter β on the critical time λ̃1:

λ̃1 ∼β→+∞

√
β

2γ
, C̃S

∆t ∼β→+∞
2∆t

τ2
,

and

λ̃1 ∼β→0
β

α
, C̃S

∆t ∼β→0
α

β
.

When the inertance of the 0D model is small, so is the critical time λ̃1; nevertheless
in this case it is sufficient to impose ∆t ≤ λ1 that may be less restrictive to ensure
the stability of the explicit scheme.

Remark 3.11. Let us discuss the influence of the characteristic relaxation time τ
on the obtained stability estimates and smallness assumption on the time step:

• the sufficient conditions on the time step do not depend on the parameter τ .
• when τ → +∞, the contribution e2∆tT/τ2

to the exponential growth goes to 1
and thus is uniformly bounded.

• when τ ≪ T , the exponential bound e2∆tT/τ2

hides an effective restriction on
the time-step. Indeed in order to obtain a uniform bound of the exponential
growth, this requires a severe restriction on the time step by choosing ∆t such

that ∆tT/τ2 = O(1), namely ∆t = O( τ
2

T ).

Remark 3.12 (Influence of the resistance parameter α). When α becomes large
then the critical times λ1 and λ̃1 behave as

λ1 ∼α→+∞
ρ

κ2α
, λ̃1 ∼α→+∞

β

α
.

Thus the larger α is (which corresponds to the resistive parameter of the 0D model),
the more severe is the constraint on the time step together with the exponential
growth.

4. Study of the Navier-Stokes-Windkessel coupled system.

4.1. Estimates for the continuous system. Let us consider the Navier-Stokes
system and underline the standard difficulties met when one is interested in analyzing
the energy balance when adding nonlinearities to the problem. Note that the estimates
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we will derive hereafter can enable us to prove existence of strong solution for small
time or for small enough data. Let us first review the difficulties coming from the
convection term. To fix the idea we consider the Navier-Stokes system (2.7) coupled
with a R model (F (Q(s), 0 ≤ s ≤ t) = αQ(t)). Proceeding as in the linear case, we
derive the following energy equality:

ρ

2

d

dt

∫

Ω

|u|2 + ρ

∫

Γ0∪ΓW

|u|2
2

u · n+ µ

∫

Ω

|∇u|2 + α

(∫

ΓW

u · n
)2

= P(t)

∫

ΓW

u · n.

Here we have used the coupling with the R model, as well as the divergence free

property of the fluid velocity. We see a term ρ
∫
ΓW

|u|2

2 u · n that represents the flux
of kinetic energy at the artificial boundary, whose sign is not known a priori. Conse-
quently unlike for the Stokes system one can not derive easily an energy estimate. To
obtain a satisfactory energy estimate and existence theorems, one has to be able to
control this kinetic energy flux at the interface where Neumann boundary conditions
are prescribed. Note that in dimension three we can prove the following bound (see
[24])

∣∣∣∣ρ
∫

ΓW

|u|2
2

u · n
∣∣∣∣ ≤ C‖u‖5/2L2(Ω)‖∇u‖1/2L2(Ω),

which does not allow to obtain an energy estimate. Nevertheless existence of a unique
strong solution can be proven. In particular, in [3], the existence of a unique strong
solution (locally in time or for small data) is derived, based on the same ideas devel-
opped in [24] and on regularity results of the solution of the stationary Stokes system
with mixed Dirichlet-Neumann boundary conditions in polyhedral domains [30].

Regarding the existence of solutions for the Navier-Stokes system with mixed
Dirichlet-Neumann boundary conditions, we refer to [24]: the authors prove the exis-
tence of a unique smooth solution which is local in time; under an additional assump-
tion on the smallness of the data, the smooth solution is proven to be global-in-time.
Note that the existence of global weak solutions can be derived by choosing appro-
priate outflow boundary conditions that control the flux of incoming kinetic energy
and thus stabilize the system [10]. The case of Robin-type boundary conditions which
involve the modelling of a local-in-space resistive contribution is analyzed in [35]: ex-
istence of a strong solution is obtained under the assumption that the resistance is
small enough. In [3] a RC-like model is studied: the existence of a unique local-in-
time strong solution for any data is proven; the particular case of a single R model is
also investigated, leading to the existence and uniqueness of a global-in-time smooth
solution for small data even if the resistance is large. Finally in [35], existence of a
local-in-time strong solution for the RCR model is proven for small data. Proofs of
the above results are all based upon Galerkin approximations with special bases. Note
moreover that they all require that in/outlet meet the lateral boundary with right an-
gles. This framework will be used in the analysis of the semi-discretized Navier-Stokes
systems. We point out that the main difficulty in the above references relies on the
estimate of the convective term of the Navier-Stokes system.

Let us now focus on the more general 0D model we study here and introduce key
tools for the derivation of suitable estimates of the solution of the coupled system.
In particular we introduce a new Stokes-like operator adapted to our coupled Navier-
Stokes-Windkessel model.

Definition 4.1 (Stokes operator). The space H is endowed with the scalar
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product

(v,w)ρ,β := ρ

∫

Ω

v ·w + β

(∫

ΓW

v · n
)(∫

ΓW

w · n
)
,

and we denote ‖·‖ρ,β the norm associated to this scalar product. Then we define the
bilinear form aµ,α as

aµ,α : H×H → R

(v,w) 7→ µ

∫

Ω

∇v · ∇w + α

(∫

ΓW

v · n
)(∫

ΓW

w · n
)
.

Finally we introduce the operator Aµ,α : D(Aµ,α) → H associated to the bilinear form
aµ,α by

(Aµ,αv,w)ρ,β = aµ,α(v,w).

Proposition 4.2 (Properties of the Stokes operator). The operator Aµ,α has
the following properties:

• Aµ,α ∈ L(D(Aµ,α),H) is invertible and its inverse is compact on H;
• Aµ,α is self-adjoint.

As a consequence, Aµ,α admits a family of eigenfunctions {φj}

Aµ,αφj = νjφj , with 0 < ν1 ≤ ν2 ≤ ... ≤ νj →j→+∞ +∞

which is complete and orthogonal in both H and V.

Proof. The proof of this proposition relies on classical arguments, see for instance
[8] for general arguments and [20] for a direct proof in a similar context.

Lemma 4.3. The following estimates hold:
1. There exists L > 0 such that

(4.1) ∀v ∈ D(Aµ,α), ‖∇v‖L2(Ω) ≤ L‖Aµ,αv‖L2(Ω) .

The constant L depends on the parameters as L := CP
ρ+ βκ2

µ
, where CP

denotes the Poincaré constant.
2. If furthermore the artificial boundaries Γ0 and ΓW meet the lateral boundaries

Γℓ at angle
π
2 and that each boundary is smooth enough, then there exist ε > 0

and M > 0, such that

(4.2) ∀v ∈ D(Aµ,α), ‖v‖
H

3
2
+ε(Ω)

≤ M‖Aµ,αv‖L2(Ω).

The constant M depends on the parameters as:

(4.3) M := C
(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ
+ C

(1)
Ω CΓ

α

µ
L
)
,

where C
(i)
Ω are constants which only depend on the domain.

Remark 4.4. Both constants L and M are proportional to the ratio of a density
to a viscosity.
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Proof. Both estimates rely on the properties of the Stokes operator. Using the
definition of the scalar product on H, we obtain

(Aµ,αv,v)ρ,β = ρ

∫

Ω

Aµ,αv · v + β

(∫

ΓW

Aµ,αv · n
)(∫

ΓW

v · n
)

≤ ρ ‖Aµ,αv‖L2(Ω) ‖v‖L2(Ω) + βκ2 ‖v‖L2(Ω) ‖Aµ,αv‖L2(Ω)

≤ CP (ρ+ βκ2) ‖Aµ,αv‖L2(Ω) ‖∇v‖L2(Ω) ,

where we have used Lemma 2.3 and Poincaré inequality. Besides, by definition of the
operator Aµ,α, we have

(Aµ,αv,v)ρ,β = aµ,α(v,v) = µ ‖∇v‖2L2(Ω) + α

(∫

ΓW

v · n
)2

≥ µ ‖∇v‖2L2(Ω) ,

thus

µ ‖∇v‖2L2(Ω) ≤ CP (ρ+ βκ2) ‖Aµ,αv‖L2(Ω) ‖∇v‖L2(Ω) ,

which, by simplification, concludes the proof of (4.1). The proof of estimate (4.2)
is based upon a regularity result for the Stokes problem with homogeneous mixed
boundary conditions, see [30], for which we need the geometric angular assumption.
The problem Aµ,αv = f ∈ H can be rewritten as

(4.4)






−∆v +∇
(
p

µ

)
=

ρ

µ
f , in Ω,

div(v) = 0, in Ω,
v = 0, on Γℓ,

∇v · n− p

µ
n = 0, on Γ0,

∇v · n− p

µ
n = −β

µ

(∫

ΓW

f · n
)
n− α

µ

(∫

ΓW

v · n
)
n, on ΓW .

We consider the auxiliary pressure defined by






−∆p̃ = 0, in Ω,
∇p̃ · n = 0, on Γℓ,

p̃ = 0, on Γ0,

p̃ = −β

(∫

ΓW

f · n
)
− α

(∫

ΓW

v · n
)
, on ΓW .

By standard arguments and using Lemma 2.3 and equation (2.6), we have

(4.5) ‖∇p̃‖L2(Ω) ≤ C
(1)
Ω

(
αCΓ ‖∇v‖L2(Ω) + βκ ‖f‖L2(Ω)

)
,

where C
(1)
Ω is a constant which only depends on Ω. Using this auxilary pressure, the

problem defined by (4.4) can be rewritten as






−∆v +∇
(
p− p̃

µ

)
=

ρ

µ
f − ∇p̃

µ
, in Ω,

div(v) = 0, in Ω,
v = 0, on Γℓ,

∇v · n− p− p̃

µ
n = 0, on Γ0,

∇v · n− p− p̃

µ
n = 0, on ΓW .
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As a consequence, from regularity results that can be found in [30] in the case of right
angles, there exists ε > 0 such that

‖v‖
H

3
2
+ε(Ω)

≤ C
(2)
Ω

(
ρ

µ
‖f‖L2(Ω) +

‖∇p̃‖L2(Ω)

µ

)
,

where C
(2)
Ω is a constant which only depends on Ω. Using estimate (4.5), we get

‖v‖
H

3
2
+ε(Ω)

≤ C
(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ

)
‖f‖L2(Ω) + C

(2)
Ω C

(1)
Ω CΓ

α

µ
‖∇v‖L2(Ω) .

By (4.1) and since f = Aµ,αv, we obtain

‖v‖
H

3
2
+ε(Ω)

≤
[
C

(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ

)
+ C

(2)
Ω C

(1)
Ω CΓ

α

µ
L
]
‖Aµ,αv‖L2(Ω) ,

which concludes the proof of (4.2).

Now that we have introduced an appropriate Stokes-like operator adapted to our
coupled Navier-Stokes-Windkessel system we can derive estimates in suitable norms
for this system. The idea relies on the formal choice of u and Aµ,αu as test functions
and then a linear combination of the obtained inequalities. We will consider two cases.

• the so-called general case for which we prove an estimate valid for small time;
• the so-called dissipative case, with τ < +∞, for which we prove that, if the
initial data and applied pressures are small enough, an “energy” decrease can
be established.

Theorem 4.5 (Estimates for the Navier-Stokes system). Let µ > 0. Assume
that the artificial boundaries Γ0 and ΓW meet the lateral boundaries Γℓ at angle π

2
and that each boundary is smooth enough. Assume that α ≥ 0, β ≥ 0, γ > 0.

• General case: local-in-time “energy” bound for any data. Assume
that 0 < τ ≤ +∞. For any smooth solution u of the Problem (2.7), there
exists T ∗ > 0 and t 7→ Gr(t) which depend on the data such that:

ρ

2
‖u(t, ·)‖2L2(Ω) +

µ

4

∫ t

0

‖∇u(s, ·)‖2L2(Ω) ds+
β

2
Q2(t)

+α

∫ t

0

Q2(s) ds+
γ

2
V 2(t) +

γ

τ

∫ t

0

V 2(s) ds

+raµ,α(u(t, ·),u(t, ·)) +
r

2

∫ t

0

‖Aµ,αu(s, ·)‖2ρ,β ds

≤ Gr(t), ∀t ∈ (0, T ∗),(4.6)

where r is any positive homogeneity constant.
• Dissipative case: global-in-time “energy” bound for small data.

Assume furthermore that τ < +∞. Let δ > 0 and η > 0 such that

δ +
κ2τγ

2ρ
η =

1

2
.

Define

H(t) :=

(
C2

Γ

2µ
+

ηκ2

4δρ

)
P2(t).
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There exists a dissipation parameter D > 0 (defined by (4.28)) such that, if
the initial data and external forces are small enough, namely

ρ

2
‖u0‖2L2(Ω) +

ηµ

2
‖∇u0‖2L2(Ω) +

ηα+ β

2
Q2(0)

≤ E :=
µη3

32
(
ηM + C

(3)
Ω L2

)2 ,

and
‖H‖∞ ≤ DE ,

then the solution satisfies a stability estimate:

(4.7)
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t) ≤ E .

Moreover t 7→
∫ t

0
‖Aµ,αu(s, ·)‖2ρ,β ds is also bounded on any time interval

[0, T ].

Proof. Let us derive the estimates in the general case, then in the so-called dissi-
pative case. Note that all the following formal calculations can be justified by using
Galerkin approximation with a special basis associated to the eigenfunctions of the
operator Aµ,α, see Proposition 4.2.

• General case.
Taking u as a test function in the variational formulation (2.7), we proceed as for
the Stokes-Windkessel system and obtain estimate (3.6) with an additional term
ρ
∫
Ω
(u∇)uu that we bound as follows:

(4.8)

∣∣∣∣ρ
∫

Ω

(u∇)uu

∣∣∣∣ ≤ ρ ‖∇u‖L2(Ω) ‖u‖
2
L4(Ω) ≤ C

(3)
Ω ρ ‖∇u‖3L2(Ω) ,

where C
(3)
Ω is a constant related to the continuous embedding of H1(Ω) onto L4(Ω).

The estimate writes

(4.9)
ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t)

+
γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ C2

Γ

2µ
P2(t) + C

(3)
Ω ρ ‖∇u(t, ·)‖3L2(Ω) .

To control the last term in (4.9), we need to control u in L∞(0, T ;H1(Ω)). Thus we
take Aµ,αu as a test function in the variational formulation (2.7). By definition of the
operator Aµ,α, see Definition 4.1, we have

(4.10)
1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) + ‖Aµ,αu(t, ·)‖2ρ,β

= −ρ

∫

Ω

(u∇)u(t, ·)Aµ,αu(t, ·)− γV (t)

(∫

ΓW

Aµ,αu(t, ·) · n
)

− P(t)

∫

ΓW

Aµ,αu(t, ·) · n.

The convection term can be estimated as follows
∣∣∣∣ρ
∫

Ω

(u∇)uAµ,αu

∣∣∣∣ ≤ ρ ‖u‖L∞(Ω) ‖∇u‖L2(Ω) ‖Aµ,αu‖L2(Ω) .
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Thanks to the continuous embedding ofH
3
2+ε′(Ω) in L∞(Ω), we have, for every ε′ > 0,

‖u‖L∞(Ω) ≤ C
(4)
Ω ‖u‖

H
3
2
+ε′(Ω)

.

Then, choosing ε′ < ε where ε is defined in Lemma 4.3, by a Hilbert interpolation
combined with Lemma 4.3 there exists θ ∈ (0, 1) such that

‖u‖L∞(Ω) ≤ C
(5)
Ω M1−θ ‖Aµ,αu‖1−θ

L2(Ω) ‖∇u‖θL2(Ω) .

Consequently,

∣∣∣∣ρ
∫

Ω

(u∇)uAµ,αu

∣∣∣∣ ≤ C
(5)
Ω ρM1−θ ‖Aµ,αu‖2−θ

L2(Ω) ‖∇u‖1+θ
L2(Ω) .

Using Young’s inequality, we get

(4.11)

∣∣∣∣ρ
∫

Ω

(u∇)uAµ,αu

∣∣∣∣ ≤ δρ ‖Aµ,αu‖2L2(Ω) + CΩ,δρM
2(1−θ)

θ ‖∇u‖
2(1+θ)

θ

L2(Ω)

≤ δ ‖Aµ,αu‖2ρ,β + CΩ,δρM
2(1−θ)

θ ‖∇u‖
2(1+θ)

θ

L2(Ω) ,

where δ > 0 will be chosen later on and CΩ,δ is a constant which depends on δ−1 and
Ω only. Let us now deal with terms like γV (t)(

∫
ΓW

Aµ,αu(t, ·) ·n), for which we need

a control of the auxillary volume V defined by (3.2). This control will be provided by
estimate (4.9). By using Lemma 2.3, the definition of ‖·‖ρ,β and Young’s inequality,
we have

(4.12)

∣∣∣∣γV
∫

ΓW

Aµ,αu · n
∣∣∣∣ ≤

κ |γV |√
ρ

‖Aµ,αu‖ρ,β ≤ κ2

4δρ
(γV )2 + δ ‖Aµ,αu‖2ρ,β .

The linear forcing terms can be treated similarly:

(4.13)

∣∣∣∣P
∫

ΓW

Aµ,αu · n
∣∣∣∣ ≤

κ |P|√
ρ

‖Aµ,αu‖ρ,β ≤ κ2

4δρ
P2 + δ ‖Aµ,αu‖2ρ,β .

Thus, from (4.10) and thanks the previous estimates (4.11), (4.12), (4.13), we obtain

(4.14)
1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) + (1− 3δ) ‖Aµ,αu(t, ·)‖2ρ,β

≤ CΩ,δρM
2(1−θ)

θ ‖∇u(t, ·)‖
2(1+θ)

θ

L2(Ω) +
κ2

4δρ
(γV )2(t) +

κ2

4δρ
P2(t).

We next choose δ > 0 such that 1− 3δ > 0, for instance

(4.15) 1− 3δ =
1

2
,

i.e. δ = 1
6 and we denote C

(6)
Ω := CΩ, 16

. Using (4.15), we add (4.9) and (4.14) that
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has been multiplied by a positive homogeneity constant r to obtain:

(4.16)
ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω)

+
β

2

d

dt
Q2(t) + αQ2(t) +

γ

2

d

dt
V 2(t) +

γ

τ
V 2(t)

+
r

2

d

dt
aµ,α(u(t, ·),u(t, ·)) +

r

2
‖Aµ,αu(t, ·)‖2ρ,β

≤
(
C2

Γ

2µ
+

3rκ2

2ρ

)
P2(t) + C

(3)
Ω ρ ‖∇u(t, ·)‖3L2(Ω)

+ rC
(6)
Ω ρM 2(1−θ)

θ ‖∇u(t, ·)‖
2(1+θ)

θ

L2(Ω) +
3rκ2

2ρ
(γV )2(t).

Thus we can apply a nonlinear Gronwall lemma by setting

ϕ(t) =
ρ

2
‖u(t, ·)‖2L2(Ω) +

β

2
Q2(t) +

γ

2
V 2(t) +

r

2
aµ,α(u(t, ·),u(t, ·)),

which, by (4.16) and since ‖∇u(t, ·)‖2L2(Ω) ≤ 1
µaµ,α(u(t, ·),u(t, ·)), satisfies the follow-

ing inequality:

d

dt
ϕ(t) ≤ F (t) +

3κ2γ

ρr
ϕ(t) + C

(3)
Ω

2
3
2 ρ

(rµ)
3
2

ϕ3/2(t) + C
(6)
Ω

2
1+θ
θ ρ

r
1
θµ

(1+θ)
θ

M 2(1−θ)
θ ϕ

(1+θ)
θ (t),

with

F (t) =

(
C2

Γ

2µ
+

3rκ2

2ρ

)
P2(t).

Consequenlty, we obtain a stability estimate at least for a small time T ∗ (depending
on the data of the problem). From this bound on ϕ one can deduce that

∫ t

0

‖Aµ,αu(s, ·)‖2ρ,β ds

is also bounded on (0, T ∗).
• Dissipative case τ < +∞.

Next we further investigate the case τ < +∞. In this case, as already underlined
for the Stokes system, the auxiliary volume V , defined by (3.2), is dissipated by the
system. We take advantage of this to derive a stability estimate for any time but for
small enough data. When taking u as a test function in the variational formulation
(2.7), we bound the convective term in a coarser way than we did previously: using
inequality (4.1) in Lemma 4.3 and the definition of ‖·‖ρ,β we get

(4.17)

∣∣∣∣ρ
∫

Ω

(u∇)uu

∣∣∣∣ ≤ ρ ‖∇u‖L2(Ω) ‖u‖
2
L4(Ω) ≤ C

(3)
Ω ρL2 ‖Aµ,αu‖2L2(Ω) ‖∇u‖L2(Ω)

≤ C
(3)
Ω L2 ‖Aµ,αu‖2ρ,β ‖∇u‖L2(Ω) ,

where, as in inequality (4.8), constant C
(3)
Ω is related to the continuous embedding of

H1(Ω) onto L4(Ω). The estimate now writes

(4.18)
ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t)

+
γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ C2

Γ

2µ
P2(t) + C

(3)
Ω L2 ‖Aµ,αu(t, ·)‖2ρ,β ‖∇u(t, ·)‖L2(Ω) .
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Next we take Aµ,αu as a test function in the variational formulation (2.7). First the
convective term can be bounded as follows

(4.19)

∣∣∣∣ρ
∫

Ω

(u∇)uAµ,αu

∣∣∣∣ ≤ ρ ‖u‖L∞(Ω) ‖∇u‖L2(Ω) ‖Aµ,αu‖L2(Ω)

≤ ρM‖Aµ,αu‖2L2(Ω) ‖∇u‖L2(Ω)

≤ M‖Aµ,αu‖2ρ,β ‖∇u‖L2(Ω) ,

where we have used the continuity of the embedding H
3
2+ε(Ω) →֒ L∞(Ω) together

with estimate (4.2) of Lemma 4.3 and the definition of ‖·‖ρ,β . Let us now deal with

the term γV (
∫
ΓW

Aµ,αu ·n). Using Lemma 2.3, Young’s inequality and the definition

of ‖·‖ρ,β , and taking advantage of τ < +∞, leads to

(4.20) γ

∣∣∣∣V
(∫

ΓW

Aµ,αu · n
)∣∣∣∣ ≤ γκ |V | ‖Aµ,αu‖L2(Ω)

≤ 1

2

γ

ητ
V 2 +

ητκ2

2
γ ‖Aµ,αu‖2L2(Ω)

≤ γ

2ητ
V 2 +

τκ2γ

2ρ
η ‖Aµ,αu‖2ρ,β ,

where η > 0 will be chosen later on. The linear forcing terms are bounded as in the
general case, see (4.13). Thus, by (4.10), (4.19), (4.20) and (4.13), we obtain

(4.21)
1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) + ‖Aµ,αu(t, ·)‖2ρ,β

≤ M‖Aµ,αu(t, ·)‖2ρ,β ‖∇u(t, ·)‖L2(Ω) +
γ

2ητ
V 2(t)

+
κ2

4δρ
P2(t) +

(
δ +

κ2τγ

2ρ
η

)
‖Aµ,αu(t, ·)‖2ρ,β .

By choosing δ and η sufficiently small such that

(4.22) δ +
κ2τγ

2ρ
η =

1

2
,

we obtain

(4.23)
1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) +

1

2
‖Aµ,αu(t, ·)‖2ρ,β

≤ M‖Aµ,αu(t, ·)‖2ρ,β ‖∇u(t, ·)‖L2(Ω) +
γ

2ητ
V 2(t) +

κ2

4δρ
P2(t).

We multiply (4.23) by η and add (4.18) to obtain:

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

η

2
aµ,α(u(t, ·),u(t, ·)) +

β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

2
‖∇u(t, ·)‖2L2(Ω) + αQ2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM+ C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Aµ,αu(t, ·)‖2ρ,β

≤
(
C2

Γ

2µ
+

ηκ2

4δρ

)
P2(t).
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Recalling the definition of aµ,α(·, ·) (see Definition 4.1) we get

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

2
‖∇u(t, ·)‖2L2(Ω) + αQ2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM+ C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Aµ,αu(t, ·)‖2ρ,β

≤
(
C2

Γ

2µ
+

ηκ2

4δρ

)
P2(t).

Next we want to make appear some dissipation of

Ψ(t) :=
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t),

even in the case α = 0 and β > 0. Since |Q| ≤ CΓ ‖∇u‖L2(Ω), we have that

µ

2
‖∇u(t, ·)‖2L2(Ω) ≥

µ

4
‖∇u(t, ·)‖2L2(Ω) +

µ

4C2
Γ

Q2(t)

and thus

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

4
‖∇u(t, ·)‖2L2(Ω) +

(
α+

µ

4C2
Γ

)
Q2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM + C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Au(t, ·)‖2ρ,β

≤
(
C2

Γ

2µ
+

ηκ2

4δρ

)
P2(t).

Then, since ‖u‖L2(Ω) ≤ CP ‖∇u‖L2(Ω) by Poincaré inequality,

µ

4
‖∇u(t, ·)‖2L2(Ω) ≥

µ

8
‖∇u(t, ·)‖2L2(Ω) +

µ

8C2
P

‖u(t, ·)‖2L2(Ω) ,

we thus obtain

(4.24)
d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

8C2
P

‖u(t, ·)‖2L2(Ω) +
µ

8
‖∇u(t, ·)‖2L2(Ω) +

(
α+

µ

4C2
Γ

)
Q2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM + C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Au(t, ·)‖2ρ,β

≤
(
C2

Γ

2µ
+

ηκ2

4δρ

)
P2(t).

Estimate (4.24) can be rewritten as

(4.25)
d

dt
Ψ(t) +DΨ(t) +

(
A− B ‖∇u(t, ·)‖L2(Ω)

)
‖Aµ,αu(t, ·)‖2ρ,β ≤ H(t),
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with

(4.26) A :=
η

2
, B := ηM + C

(3)
Ω L2,

(4.27) H(t) :=

(
C2

Γ

2µ
+

ηκ2

4δρ

)
P2(t),

and a dissipation coefficient defined as

(4.28) D := min

(
1

τ
,

µ

4ρC2
P

,
1

4η
,
2α+ µ

2C2
Γ

ηα + β

)
.

The constant D stands for the dissipation of the system. In particular, assuming that
τ < +∞ ensures that the 0D model is indeed dissipative with respect to the volume
V if the data are small enough. Assuming that A− B ‖∇u(t, ·)‖L2(Ω) ≥ 0, we obtain
by Gronwall lemma:

(4.29) Ψ(t) ≤ Ψ(0)e−Dt +

∫ t

0

|H(s)| eD(s−t) ds ≤ Ψ(0)e−Dt +
‖H‖∞
D (1− e−Dt).

Consequently if

(4.30) Ψ(0) ≤ ηµ

8

A2

B2
,

‖H‖∞
D ≤ ηµ

8

A2

B2
,

which implies that ‖∇u0‖L2(Ω) ≤ A
2B , then we obtain the following estimate for all

time:

∀t ≥ 0, Ψ(t) ≤ ηµ

8

A2

B2
.

To conclude, provided that the initial data and the source term are small enough (see
conditions (4.30)), the solution satisfies a stability estimate in suitable norms, namely

ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t)

≤ E =
µη3

32
(
ηM+ C

(3)
Ω L2

)2 .

Finally, combining this estimate with (4.25) allows us to conclude that

∫ t

0

‖Aµ,αu(s, ·)‖2ρ,β ds

is also bounded on any time interval [0, T ].

Remark 4.6. This theorem shows as for the Stokes-Windkessel system that typical
0D models used in blood flows and in airflows modeling behave in a different way.
Indeed for the RCR model for instance we obtain global-in-time estimates provided
the data are small enough whereas for the RC model we obtain only local-in-time
estimates.



30 C. GRANDMONT, S. MARTIN

Remark 4.7. In the dissipative case, parameters δ and η may be specified, for
instance as follows:

δ =
1

4
, η =

ρ

2κ2τγ
.

As a consequence, updating the constants and source terms as

A :=
ρ

4κ2τγ
, B :=

ρ

2κ2τγ
M+ C

(3)
Ω L2, D := min

(
1

τ
,
κ2τγ

2ρ
,
α+ µ

4C2
Γ

ρα
4κ2τγ + β

2

,
µ

4ρC2
P

)
,

H(t) :=

(
C2

Γ

2µ
+

1

2τγ

)
P2(t).

we deduce that, if

Ψ(0) ≤ ρµ

16κ2τγ

A2

B2
,

‖H‖∞
D ≤ ρµ

16κ2τγ

A2

B2
,

the estimate now reads:

ρ

2
‖u(t, ·)‖2L2(Ω) +

ρµ

4κ2τγ
‖∇u(t, ·)‖2L2(Ω) +

(
β

2
+

ρα

4κ2τγ

)
Q2(t) +

γ

2
V 2(t)

≤ ρµ

64κ2τγ

1
(
M+

2C
(3)
Ω L2κ2τγ

ρ

)2 .

Note that the behaviour of the required bound on the initial velocity, namely A
B , as

well as the upper bound in the estimate (4.7), namely

E :=
ρµ

16κ2τγ

A2

B2
,

can be described more precisely with respect to the parameters: A
2B and E tend to 0

when µ → 0, ρ → +∞, β → +∞, γ → +∞ or τ → +∞. In particular the less the 0D
model dissipates energy with respect to the auxilary volume V , the more restrictive
is the smallness condition on the data.

Remark 4.8 (Case : γ = 0). Note that, in that case, an estimate can be derived
by choosing only Aµ,αu as a test function. Indeed no control on the auxiliary volume
V (t) defined by (3.2), is required. More precisely, we easily derive the following
estimate

(4.31)
d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)

+

(
1

2
−M‖∇u(t, ·)‖L2(Ω)

)
‖Au(t, ·)‖2ρ,β ≤ κ2

2ρ
P2(t).

In this case the dissipation comes from the term ‖Au(t, ·)‖2ρ,β . Assuming that

‖∇u‖L2(Ω) ≤
1

4M
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and since ‖Au(t, ·)‖2ρ,β ≥ ρ ‖Au(t, ·)‖2L2(Ω) ≥ ρ
L2 ‖∇u‖2L2(Ω) estimate (4.31) can be

rewritten as

d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)
+

ρ

4L2
‖∇u‖2L2(Ω) ≤

κ2

2ρ
P2(t).

Moreover since ‖∇u(t, ·)‖2L2(Ω) ≥ 1
2 ‖∇u(t, ·)‖2L2(Ω) +

1
2C2

Γ
Q2(t), we obtain

(4.32)
d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)

+
ρ

8L2
‖∇u‖2L2(Ω) +

ρ

8C2
ΓL2

Q2(t) ≤ κ2

2ρ
P2(t).

Thus the analogue of the dissipation coefficient D is, in this case,

D0 = min

(
ρ

4µL2
,

ρ

4µC2
ΓL2

)
.

Consequently,

d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)
+D0

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)
≤ κ2

2ρ
P2(t).

Proceeding as in the proof of Theorem 4.5, we obtain that if the initial data are small,
namely

µ

2
‖∇u0‖2L2(Ω) +

α

2
Q2(0) ≤ µ

32M2
,

and if the external pressure satisfies

κ2

2ρ

∥∥P2
∥∥
∞

≤ D0µ

32M2
,

then the solution satisfies the following stability estimate

(4.33)
µ

2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t) ≤ µ

32M2
.

Here we recover the results obtained in [24] for the Navier-Stokes system with Neu-
mann boundary conditions as a particular case of this result by setting α = β = 0.
Note also that the behaviour of the required bound on the initial velocity, namely 1

M ,
as well as the upper bound µ

M2 in estimate (4.33) can be described more precisely
with respect to the parameters: D0,

1
M and µ

M2 tend to 0 when µ → 0, ρ → +∞,
β → +∞.

Remark 4.9. We could have kept (4.9) instead of (4.18) and, following nearly the
same lines, obtain a stability estimate for small enough data. But it leads to slightly
more tedious calculations we choose not to present here for the sake of simplicity.

Remark 4.10. In the case β > 0, estimates (4.13) and (4.20) can be adapted by

using the property ‖v‖2ρ,β ≥ β
(∫

ΓW
v · n

)2
. In that way similar estimates can be

derived by using the 0D inertia instead of the fluid intertia, leading to a possibly less
restrictive condition on the smallness assumption on the data. In particular adding
inertia in the 0D model may stabilize the whole coupled system.



32 C. GRANDMONT, S. MARTIN

4.2. Estimates for the semi-discretized system.

4.2.1. Implicit coupling. We now focus on the semi-discrete Navier-Stokes sys-
tem implicitly coupled to the Windkessel model which corresponds to the variational
formulation (2.11) with ε = 1 and m = n+ 1. We consider a semi-implicit treatment
of the convective term, namely I = 0.

Theorem 4.11 (Implicit coupling with the Navier-Stokes system). Let µ > 0.
Assume that the artificial boundaries Γ0 and ΓW meet the lateral boundaries Γℓ at
angle π

2 and that each boundary is smooth enough. Assume that the artificial bound-
aries Γ0 and ΓW meet the lateral boundaries Γℓ at angle π

2 and that each boundary is
smooth enough. Assume that α ≥ 0, β ≥ 0, γ > 0.

• Dissipative case: global-in-time bound for small data. Assume that
τ < +∞. Let us consider the constants δ, η, D and the function H as in
Theorem 4.5. If the initial data and external forces are small enough, namely

ρ

2
‖u0‖2L2(Ω) +

ηµ

2

∥∥∇u0
∥∥2
L2(Ω)

+
ηα+ β

2
(Q0)2

≤ Ẽ :=
µη3

32
(
ηC

(7)
Ω M+ C

(3)
Ω L2

)2 ,

and

‖H‖∞ ≤ DẼ ,

then the solution of (2.11) with ε = 1, m = n + 1 and I = 0 satisfies the
following estimate:

(4.34)
ρ

2
‖un‖2L2(Ω)+

µη

2
‖∇un‖2L2(Ω)+

(
β

2
+

α

2
η

)
(Qn)2+

γ

2
(V n

imp)
2 ≤ Ẽ ,

for all n ∈ {0, ..., N} Moreover ∆t
∑N

n=0 ‖Aµ,αu
n‖2ρ,β is also bounded inde-

pendently on N .
• Case τ = +∞: local-in-time bound for small data. Assume that the

time step is such that

∆t <
ρ

8rκ2γ
=: ∆tr,

where r is a positive homogeneity constant. Assume furthermore that the
initial data, external forces and final time T = N∆t satisfy

(4.35)
ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2

+

(
C2

Γ

2µ
+

2rκ2

ρ

)
∆t

N∑

k=0

(Pk)2 ≤ µ e−
T

∆tr−∆t

32
(
C

(3)
Ω L2 + rC

(7)
Ω M

)2 ,
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then

ρ

2
‖un‖2L2(Ω) +

rµ

2
‖∇un‖2L2(Ω) +

(
β

2
+

rα

2

)
(Qn)2

+
γ

2
(V n

imp)
2 +

r

4
∆t

n∑

k=0

∥∥Aµ,αu
k
∥∥2
ρ,β

≤ e
T

∆tr−∆t

(ρ
2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2

+

(
C2

Γ

2µ
+

2rκ2

ρ

)
∆t

N∑

k=0

(Pk)2
)
.

Proof. All the forthcoming calculations can be rigorously justified by using a
Galerkin method with a special basis associated to the Stokes-like operator Aµ,α, see
Proposition 4.2. Moreover existence of a solution (for which uniqueness could be also
proven) can be also derived thanks to the previous estimates by the same Galerkin
approximation.

• Dissipative case: τ < +∞.
We consider the system (2.8) with I = 0 for which the convection term is semi-

explicit. We prove estimate (4.34) by induction. We follow the steps of the continuous
case by taking un+1 and Aµ,αu

n+1 as test functions in the variational formulation
(2.11). Note that the only difference with the continuous case concerns the estimate
of the convection term. The discrete analogue of (4.17) should be read as

∣∣∣∣ρ
∫

Ω

(un∇)un+1 un+1

∣∣∣∣

≤ ρ ‖un‖L4(Ω)

∥∥∇un+1
∥∥
L2(Ω)

∥∥un+1
∥∥
L4(Ω)

≤ C
(3)
Ω L2 ‖∇un‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

The discrete stability estimate can thus be written as follows

(4.36)
ρ

2
‖un+1‖2L2(Ω) +

µ

2
∆t‖∇un+1‖2L2(Ω) +

β

2
(Qn+1)2 + α∆t(Qn+1)2

+
γ

2
(V n+1

imp )2 +
γ∆t

τ
(V n+1

imp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

γ

2
(V n

imp)
2 +

C2
Γ

2µ
∆t(Pn+1)2

+ C
(3)
Ω L2∆t ‖∇un‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

We take Aµ,αu
n+1 as a test function in the variational formulation (2.11) for ε = 1,
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I = 0 and m = n+ 1:

ρ

∫

Ω

(un+1 − un) · Aµ,αu
n+1 + ρ∆t

∫

Ω

(un∇)un+1 Aµ,αu
n+1

+ β
(
Qn+1 −Qn

)(∫

ΓW

Aµ,αu
n+1 · n

)
+ γ∆tV n+1

imp

(∫

ΓW

Aµ,αu
n+1 · n

)

+ µ∆t

∫

Ω

∇un+1 · ∇Aµ,αu
n+1 + α∆tQn+1

(∫

ΓW

Aµ,αu
n+1 · n

)

= −Pm∆t

(∫

ΓW

Aµ,αu
n+1 · n

)
.

By definition of operator Aµ,α, we have

ρ

∫

Ω

(un+1 − un) · Aµ,αu
n+1 + β

(
Qn+1 −Qn

)(∫

ΓW

Aµ,αu
n+1 · n

)

= aµ,α(u
n+1 − un,un+1)

=
µ

2

∥∥∇un+1
∥∥2 + µ

2
‖∇un‖2 + µ

2

∥∥∇un+1 −∇un
∥∥2 + α

2
(Qn+1)2

+
α

2
(Qn)2 +

α

2
(Qn+1 −Qn)2.

Using again the definition of Aµ,α, we have also

µ∆t

∫

Ω

∇un+1 · ∇Aµ,αu
n+1 +α∆tQn+1

(∫

ΓW

Aµ,αu
n+1 · n

)
= ∆t

∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

Now we have to estimate ρ
∫
Ω
(un∇)un+1 Aµ,αu

n+1. We do not follow exactly the
same lines as for the continuous case in particular since the convective term is treated
in a semi-implicit way:

(4.37)

∣∣∣∣ρ
∫

Ω

(un∇)un+1 Aµ,αu
n+1

∣∣∣∣ ≤ ρ ‖un‖L6(Ω)

∥∥∇un+1
∥∥
L3(Ω)

∥∥Aµ,αu
n+1
∥∥
L2(Ω)

≤ C
(7)
Ω ρ ‖∇un‖L2(Ω)

∥∥un+1
∥∥
H

3
2
+ε(Ω)

∥∥Aµ,αu
n+1
∥∥
L2(Ω)

≤ C
(7)
Ω M‖∇un‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

,

where C
(7)
Ω comes from the continuous embeddingsH

3
2+ε(Ω) →֒ W 1,3(Ω) andH1(Ω) →֒

L6(Ω). Then using (4.13) for the forcing term, (4.20) for the term involving the vol-
ume and estimate (4.37) for the convection term, the discrete analogue of estimate
(4.23) reads

(4.38)
µ

2

∥∥∇un+1
∥∥2
L2(Ω)

+
α

2
(Qn+1)2 +

∆t

2

∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ µ

2
‖∇un‖2L2(Ω) +

α

2
(Qn)2 +

γ

2ητ
∆t(V n+1

imp )2 +
κ2

4δρ
∆t(Pn+1)2

+ C
(7)
Ω M∆t ‖∇un‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

,
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with (δ, η) satisfying (4.22). By multiplying estimate (4.38) by η and adding (4.36),
we obtain

(4.39)
ρ

2
‖un+1‖2L2(Ω) +

µ

2
(η +∆t)‖∇un+1‖2L2(Ω) +

(
β

2
+

α

2
η + α∆t

)
(Qn+1)2

+

(
γ

2
+

γ∆t

2τ

)
(V n+1

imp )2+
(η
2
−
(
C

(3)
Ω L2 + C

(7)
Ω Mη

)
‖∇un‖L2(Ω)

)
∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

≤ ρ

2
‖un‖2L2(Ω) +

µ

2
η ‖∇un‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2

+

(
C2

Γ

2µ
+

κ2

4δρ
η

)
∆t(Pn+1)2.

Recalling that A is defined by (4.26) and defining B̃ by

(4.40) B̃ = C
(3)
Ω L2 + C

(7)
Ω Mη,

since
∣∣Qn+1

∣∣ ≤ CΓ

∥∥∇un+1
∥∥
L2(Ω)

, and
∥∥un+1

∥∥
L2(Ω)

≤ CP

∥∥∇un+1
∥∥
L2(Ω)

by Poincaré

inequality, we proceed as in the continuous case in order to derive the discrete analogue
of estimate (4.25):

(4.41)

(
ρ

2
+

µ

8C2
P

∆t

)
‖un+1‖2L2(Ω) +

(µη
2

+
µ

8
∆t
)
‖∇un+1‖2L2(Ω)

+

(
β

2
+

α

2
η +

(
α+

µ

4C2
Γ

)
∆t

)
(Qn+1)2 +

(
γ

2
+

γ∆t

2τ

)
(V n+1

imp )2

+∆t
(
A− B̃ ‖∇un‖L2(Ω)

) ∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ ρ

2
‖un‖2L2(Ω) +

µ

2
η ‖∇un‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2

+

(
C2

Γ

2µ
+

κ2

4δρ
η

)
∆t(Pn+1)2.

Recalling the definition of D, see (4.28), and introducing the approximation of Ψ(tn)
defined by

Ψn :=
ρ

2
‖un‖2L2(Ω) +

µη

2
‖∇un‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2,

we obtain

Ψn+1 (1 +D∆t) + ∆t
(
A− B̃ ‖∇un‖L2(Ω)

) ∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ Ψn +∆tHn+1,

where Hn+1 = H(tn+1), H being defined by (4.27). Then, if
∥∥∇uk

∥∥
L2(Ω)

≤ A
2B̃

, for

all k ∈ {0, ..., n}, we get

(4.42) Ψn+1 ≤ Ψ0

(1 +D∆t)n+1
+

max
k∈{0,...,n+1}

Hk

D

(
1− 1

(1 +D∆t)n+1

)
.

Assuming that

Ψ0 ≤ ηµ

8

A2

B̃2
,

max
k∈{0,...,n+1}

Hk

D ≤ ηµ

8

A2

B̃2
,
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we conclude that

(4.43) Ψn+1 ≤ ηµ

8

A2

B̃2
, and

∥∥∇un+1
∥∥
L2(Ω)

≤ A
2B̃

.

Consequently, by induction, we can prove that the solution stays at each time iteration
in the same ball defined by estimate (4.43).

• Case τ = +∞.
In this case we cannot take advantage of the dissipitation with respect to the volume
V n
imp. Taking un+1 as a test function, we obtain

(4.44)
ρ

2
‖un+1‖2L2(Ω) +

µ

2
∆t‖∇un+1‖2L2(Ω)

+
β

2
(Qn+1)2 + α∆t(Qn+1)2 +

γ

2
(V n+1

imp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

γ

2
(V n

imp)
2 +

C2
Γ

2µ
∆t(Pn+1)2

+ C
(3)
Ω L2∆t ‖∇un‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

Next, once again we take Aµ,αu
n+1 as a test function. Here we have to control the

term γ∆t
∣∣∣V n+1

imp

∫
ΓW

Aµ,αu
n+1 · n

∣∣∣ without using the dissipative term γ∆t
τ (V n+1

imp )2 of

(4.36) that is equal to zero in the case τ = +∞. We have, by using Lemma 2.3 and
the definition of ‖·‖ρ,β :

(4.45) γ∆t

∣∣∣∣V
n+1
imp

∫

ΓW

Aµ,αu
n+1 · n

∣∣∣∣

≤ γκ√
ρ
∆t|V n+1

imp |
∥∥Aµ,αu

n+1
∥∥
ρ,β

≤ κ2γ2

δρ
∆t(V n+1

imp )2 + δ∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

,

for δ > 0 that will be chosen latter. Remembering estimate (4.13) of the linear forcing
terms and estimate (4.37) of the convection term, we obtain

µ

2

∥∥∇un+1
∥∥2
L2(Ω)

+
α

2
(Qn+1)2 +∆t

∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ µ

2
‖∇un‖2L2(Ω) +

α

2
(Qn)2 +

κ2γ2

δρ
∆t(V n+1

imp )2 +
κ2

4δρ
∆t(Pn+1)2

+
(
2δ∆t+ C

(7)
Ω M∆t ‖∇un‖L2(Ω)

)∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

Consequently by choosing 2δ = 1
2 , we have

(4.46)
µ

2

∥∥∇un+1
∥∥2
L2(Ω)

+
α

2
(Qn+1)2

+

(
1

2
− C

(7)
Ω M‖∇un‖L2(Ω)

)
∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

≤ µ

2
‖∇un‖2L2(Ω) +

α

2
(Qn)2 + 4

κ2γ2

ρ
∆t(V n+1

imp )2 +
κ2

ρ
∆t(Pn+1)2.
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Multiplying (4.46) by a homogeneity coefficient r and adding (4.44) yields

(4.47)
ρ

2
‖un+1‖2L2(Ω) +

µ

2
(r +∆t)‖∇un+1‖2L2(Ω)

+

(
β

2
+

rα

2
+ α∆t

)
(Qn+1)2 +

(
γ

2
− 4

rκ2γ2

ρ
∆t

)
(V n+1

imp )2

+
(r
2
−
(
C

(3)
Ω L2 + rC

(7)
Ω M

)
‖∇un‖L2(Ω)

)
∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

≤ ρ

2
‖un‖2L2(Ω) +

rµ

2
‖∇un‖2L2(Ω)

+

(
β

2
+

rα

2

)
(Qn)2 +

γ

2
(V n

imp)
2 +

(
C2

Γ

2µ
+

rκ2

ρ

)
∆t(Pn+1)2.

Thus, if we impose

∆t <
ρ

8rκ2γ
= ∆tr,

and assuming that

(4.48)
∥∥∇uk

∥∥
L2(Ω)

≤ r

4
(
C

(3)
Ω L2 + rC

(7)
Ω M

) , ∀k ∈ {0, ..., n},

we obtain, thanks to discrete Gronwall Lemma, the following discrete stability esti-
mate

(4.49)
ρ

2
‖un+1‖2L2(Ω) +

rµ

2
‖∇un+1‖2L2(Ω)

+

(
β

2
+

rα

2

)
(Qn+1)2 +

γ

2
(V n+1

imp )2 +
r

4
∆t

n+1∑

k=0

∥∥Aµ,αu
k
∥∥2
ρ,β

≤ e
T

∆tr−∆t

(ρ
2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2

+

(
C2

Γ

2µ
+

rκ2

ρ

)
∆t

N∑

k=0

(Pk)2
)
.

Consequently to satisfy (4.48) for k = n+1 and obtain the desired result by induction,
the data have to verify

(4.50) e
T

∆tr−∆t

[ρ
2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2

+

(
C2

Γ

2µ
+

rκ2

ρ

)
∆t

N∑

k=0

(Pk)2
]
≤ r3µ

32
(
C

(3)
Ω L2 + rC

(7)
Ω M

)2 .

The above condition requires that the initial conditions, the forcing term as well as
the final time T are small enough.

Note that a standard fixed point argument [36, 24] allows us to obtain the same
kind of stability bound for the solution of system (2.11) with I = 1 together with the
existence of a strong solution.
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Remark 4.12. Let us comment the dependency on the homogeneity constant r.
The upper bounds defined by (4.48) and (4.50) are increasing with respect to r, are
equal to zero for r = 0 and have a finite limit as r goes to +∞. Moreover, at the
same time, the critical time step ∆tr goes to zero as r goes to +∞ and so does the
exponential growth. Thus, large values for r induce restrictive smallness conditions
on the time step and on the data. For small values for r the condition on the time
step is dropped but the upper bound on the data goes to 0.

Remark 4.13. We can already note that for typical Windkessel model in blood
flow for which τ < +∞, we can ensure global-in-time stability of the semi-discrete
solution for small enough initial data and external forces, whereas for typical Wind-
kessel model in airflow for which τ = +∞ we exhibit restrictive sufficient conditions
on the time step and on the data (initial data, external forces, final time). In this
case, the restriction on the time step writes ∆t < ρ

8rκ2γ . In particular the smaller
the Windkessel compliance is, the more restrictive the conditions on the data and the
time step are. Thus when ρ goes to zero or when γ goes to infinity the time step goes
to zero.

Remark 4.14. Note that we cannot extend easily the proof of Theorem 4.11 to the
fully-discretized system, unlike for the Stokes system. To do so one should introduce
the finite element discrete analogue of Aµ,α, see [22] in which this type of analysis is
done for the Navier-Stokes system with homogeneous Dirichlet boundary conditions.

Remark 4.15 (Case γ = 0). As for the continuous case, it is sufficient to choose
Aµ,αu

n+1 as a test function in order to derive a stability estimate, as in Remark 4.8.
In this case the system is also dissipative and no condition on the time step is required
for the stability.

4.2.2. Explicit coupling. We now focus on the semi-discretized Navier-Stokes-
Windkessel model with explicit coupling. More precisely, as for the Stokes-Windkessel
model with explicit coupling, the inertia of the 0D model associated to the parameter β
is treated implicitly whereas the terms related to the parameters α and γ are treated
explicitly. Moreover we consider a semi-implicit treatment of the convective term. It
thus corresponds to the problem (2.11) with ε = 1, m = n and I = 0. We have all the
ingredients to study this case, since it will be a mix of the study done for the Stokes
system with explicit coupling and the study of the Navier-Stokes system.

Theorem 4.16. Let µ > 0. Assume that the artificial boundaries Γ0 and ΓW

meet the lateral boundaries Γℓ at angle π
2 and that each boundary is smooth enough.

Assume that α ≥ 0, β ≥ 0, γ > 0 and 0 < τ ≤ +∞. The discrete solution of (2.11)
with ε = 1, I = 0 and m = n satisfies a discrete stability estimate, under restrictive
condition on the data (final time, initial data and external forces) and on the time
step. More precisely, let r be a positive homogeneity constant, assuming that ∆t < λ1

(where λ1 is defined by (3.21)) and that

ρ

2
‖u0‖2L2(Ω)+

rµ

2
‖∇u0‖2L2(Ω)+

γ

δ∆t

(V 1
exp)

2

2
+

β

2
(Q0)2+∆t

(
C2

Γ

2µ
+

2rκ2

ρ

) N∑

k=0

(Pk)2

≤ r3µe−CNS
∆t,rT e−

T
λ1−∆t

32
(
C

(3)
Ω L2 + rC

(7)
Ω M0

)2
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with

(4.51) CNS
∆t,r = CS

∆t + r

(
2α2κ4

ρ2
+

8κ2γδ∆t

ρ

)
,

(the constant CS
∆t being defined in Theorem 3.8) and

(4.52) M0 := C
(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ

)
,

then the following discrete estimate holds true

ρ

2
‖un+1‖2L2(Ω) +

rµ

2
‖∇un+1‖2L2(Ω) +

γ

δ∆t

(V n+2
exp )2

2

+
β

2
(Qn+1)2 +

r

4
∆t

n+1∑

k=0

∥∥Aµ,0u
k
∥∥2
ρ,β

≤ eC
NS
∆t,rT e

T
λ1−∆t

(
ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

γ

δ∆t

(V 1
exp)

2

2

+
β

2
(Q0)2 +

(
C2

Γ

2µ
+

2rκ2

ρ

)
∆t

n∑

k=0

(Pk)2

)
.

Note that here the discrete estimates are derived on the system with a semi-implicit
treatment of the convection term. Nevertheless a fixed point procedure could enable
to prove a similar estimate in the case of an implicit treatment of this term, namely
in the case I = 1.

Proof. By taking un+1 as a test function in the variational formulation (2.11)
with ε = 1, I = 0 and m = n following the same lines as in the proof of Theorem 3.8
in the case β ≥ 0 and using moreover the following estimate of the convection term

∣∣∣∣ρ
∫

Ω

(un∇)un+1 un+1

∣∣∣∣ ≤ ρ ‖un‖L4(Ω)

∥∥∇un+1
∥∥
L2(Ω)

∥∥un+1
∥∥
L4(Ω)

≤ C
(3)
Ω L2 ‖∇un‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

,

we get

(4.53)
ρ

2

(
1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2

)
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇un+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

≤ ρ

2

(
1 +

ακ2

ρ
∆t

)
‖un‖2L2(Ω) +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2

+
β

2
(Qn)2 +

C2
Γ

2µ
∆t(Pn)2 + C

(3)
Ω L2 ‖∇un‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

,

where δ∆t have been previously defined in the proof of Theorem 3.8 (see (3.13)). As
the coupling is explicit the next test function to consider is Aµ,0u

n+1. Note that
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the constant L appearing in the previous estimate (4.53) does not depend on the
parameter α. Following the same lines as in the proof of Theorem 4.11 leads to

(4.54)
µ

2

∥∥∇un+1
∥∥2
L2(Ω)

+∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

≤ µ

2
‖∇un‖2L2(Ω) +

κ2

4δρ
∆t(Pn+1)2 + C

(7)
Ω M0∆t ‖∇un‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

+ α∆t

∣∣∣∣Q
n

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣+ γ∆t

∣∣∣∣V
n+1
exp

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ .

Here the constant M0 is associated to the operator Aµ,0 and thus is defined by
(4.3) with α = 0 (see (4.52)). We next have to estimate the last two terms of the
right hand side of (4.54) corresponding to the explicit coupling. Let us first consider

α∆t
∣∣∣Qn

∫
ΓW

Aµ,0u
n+1 · n

∣∣∣. By Lemma 2.3 and Young’s inequality, we have

(4.55) α∆t

∣∣∣∣Q
n

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ ≤
ακ2

√
ρ
∆t ‖un‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥
ρ,β

≤ α2κ4

4δρ
∆t ‖un‖2L2(Ω) + δ∆t

∥∥Aµ,0u
n+1
∥∥2
ρ,β

,

where δ > 0 will be chosen later. Next we estimate γ∆t
∣∣∣V n+1

exp

∫
ΓW

Aµ,0u
n+1 · n

∣∣∣ using
once again Lemma 2.3:

γ∆t

∣∣∣∣V
n+1
exp

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ ≤
γκ√
ρ
∆t
∣∣V n+1

exp

∣∣ ∥∥Aµ,0u
n+1
∥∥
ρ,β

At this stage we do not distinghish two cases as we did previoulsly. In the general
case we can not take advantage of the dissipation of the volume, thus we estimate

γ∆t
∣∣∣V n+1

exp

∫
ΓW

Aµ,0u
n+1 · n

∣∣∣ as we did in the implicit coupling, see (4.45):

(4.56) γ∆t

∣∣∣∣V
n+1
exp

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ ≤
κ2γ2

δρ
∆t(V n+1

exp )2 + δ∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

.

Thus from (4.54) multiplied by a homogeneity coefficient r > 0, using (4.55), choosing
δ = 1

4 , and adding (4.53) we obtain

(4.57)
ρ

2

(
1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2

)
ρ

2
‖un+1‖2L2(Ω) +

µ

2
(r +∆t)‖∇un+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

+
(r
2
−
(
C

(3)
Ω L2 + rC

(7)
Ω M0

)
‖∇un‖L2(Ω)

)
∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

≤ ρ

2

(
1 +

(
ακ2

ρ
+

2rα2κ4

ρ2

)
∆t

)
‖un‖2L2(Ω) +

rµ

2
‖∇un‖2L2(Ω)

+
γ

δ∆t

(
1 +

8rκ2γδ∆t

ρ
∆t+

2

τ2
∆t2

)
(V n+1

exp )2

2
+

β

2
(Qn)2 +

(
C2

Γ

2µ
+

2rκ2

ρ

)
∆t(Pn)2.
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Next remembering the definition of the polynomial function P (see (3.20)) and its
positive root λ1 (see (3.21)) and using the lower bound (3.22), we have

(4.58)
ρ

2

(
1− ∆t

λ1

)
‖un+1‖2L2(Ω) +

µ

2
(r +∆t)‖∇un+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

+
(r
2
−
(
C

(3)
Ω L2 + rC

(7)
Ω M0

)
‖∇un‖L2(Ω)

)
∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

≤ ρ

2

(
1 +

(
ακ2

ρ
+

2rα2κ4

ρ2

)
∆t

)
‖un‖2L2(Ω) +

rµ

2
‖∇un‖2L2(Ω)

+
γ

δ∆t

(
1 +

8rκ2γδ∆t

ρ
∆t+

2

τ2
∆t2

)
(V n+1

exp )2

2
+

β

2
(Qn)2 +

(
C2

Γ

2µ
+

2rκ2

ρ

)
∆t(Pn)2.

Thus assuming that

(4.59)
∥∥∇uk

∥∥
L2(Ω)

≤ r

4
(
C

(3)
Ω L2 + rC

(7)
Ω M0

) , ∀k ∈ {0, ..., n},

and if we moreover impose ∆t < λ1, we obtain thanks to the discrete Gronwall Lemma
that

ρ

2
‖un+1‖2L2(Ω)+

rµ

2
‖∇un+1‖2L2(Ω)+

γ

δ∆t

(V n+2
exp )2

2
+
β

2
(Qn+1)2+

r

4
∆t

n+1∑

k=0

∥∥Aµ,0u
k
∥∥2
ρ,β

≤ eC
NS
∆t,rT e

T
λ1−∆t

(ρ
2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

γ

δ∆t

(V 1
exp)

2

2
+

β

2
(Q0)2

+

(
C2

Γ

2µ
+

2rκ2

ρ

)
∆t

n∑

k=0

(Pk)2
)
,

with CNS
∆t,r defined by (4.51). Consequently if the data satisfy

ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u0‖2L2(Ω) +

γ

δ∆t

(V 1
exp)

2

2
+

β

2
(Q0)2

+∆t

(
C2

Γ

2µ
+

2rκ2

ρ

) N∑

k=0

(Pk)2 ≤ r3µe−CNS
∆t,rT e−

T
λ1−∆t

32
(
C

(3)
Ω L2 + rC

(7)
Ω M0

)2 ,

we obtained the desired result by induction.

Remark 4.17. Let us discuss the so called dissipative case, namely τ < +∞ for
which we could have tried to take advantage of the volume dissipation. In this case
we can reproduce (4.20) to obtain

(4.60) γ∆t

∣∣∣∣V
n+1
exp

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ ≤
γ

2ητ
∆t(V n+1

exp )2 +
ητκ2γ

2ρ
∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β
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Thus by (4.55) and (4.60), the bound (4.54) becomes

(4.61)
µ

2

∥∥∇un+1
∥∥2
L2(Ω)

+∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

≤ µ

2
‖∇un‖2L2(Ω) +

κ2

4δρ
∆t(Pn+1)2 + C

(7)
Ω M0∆t ‖∇un‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

+
α2κ4

4δρ
∆t ‖un‖2L2(Ω) +

γ

2ητ
∆t(V n+1

exp )2 +

(
δ +

ητκ2γ

2ρ

)
∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

.

By choosing δ and η satisfying (4.22), the previous estimate (4.61) writes

(4.62)
µ

2

∥∥∇un+1
∥∥2
L2(Ω)

+

(
1

2
− C

(7)
Ω M0 ‖∇un‖L2(Ω)
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4δρ
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α2κ4

4δρ
∆t ‖un‖2L2(Ω) +

γ

2ητ
∆t(V n+1

exp )2

By multiplying (4.62) by η and adding (4.53), leads to

ρ

2
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1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2

)
‖un+1‖2L2(Ω) +

µ

2
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γ
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(V n+2
exp )2

2
+

γ∆t

2τ
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β
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n+1
∥∥2
ρ,β

≤ ρ

2

(
1 +

(
ακ2

ρ
+

ηα2κ4
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)
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µη
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2∆t2
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2
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β

2
(Qn)2 +
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C2

Γ

2µ
+

ηκ2

4δρ
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∆t(Pn)2.

Let us define B0 by

(4.63) B0 = C
(3)
Ω L2 + C

(7)
Ω ηM0.

Note that B0 corresponds to the constant B̃ defined by (4.40) with α = 0. Next
remembering the definition of the polynomial function P (see (3.20)) and its positive
root λ1 (see (3.21)) and using the the lower bound (3.22), remembering also the
definitions of A defined by (4.26) and of H defined by (4.27), we have

ρ
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1− ∆t

λ1
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µ

2
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γ
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2
+
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2τ
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+
β

2
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(
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∥∥2
ρ,β
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2

(
1 +

(
ακ2

ρ
+

ηα2κ4
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)
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‖un‖2L2(Ω) +

µη

2
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+
γ
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(
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2
+

β

2
(Qn)2 +∆tHn.
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Thus, if
∥∥∇uk

∥∥
L2(Ω)

≤ A
2B0

, for all k ∈ {0, ..., n}, and assuming that ∆t < λ1, we

obtain thanks to the discrete Gronwall Lemma

(4.64)
ρ
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µη
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γ
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2
+

γ∆t

2τ
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2
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ρ,β
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∆tT e

T
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(
ρ

2
‖u0‖2L2(Ω) +

µη

2
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γ
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(V 1
exp)

2

2

+
β

2
(Q0)2 +∆t

n∑

k=0

Hk

)
,

where

CNS
∆t = CS

∆t +
ηα2κ4

8δρ2
.

Consequently the desired discrete stability estimate can be proven by induction as-
suming that the data of the problem satisfy

eC
NS
∆tT e

T
λ1−∆t

(ρ
2
‖u0‖2L2(Ω) +

µη

2
‖∇u0‖2L2(Ω) +

γ

δ∆t

(V 1
exp)

2

2

+
β

2
(Q0)2 +∆t

N∑

k=0

Hk
)
≤ ηµ

8

A2

B2
0

.

As a conclusion, in the case of the semi-discrete Navier-Stokes system coupled
explicitly to the 0D model, the obtained stability estimates are quite similar in both
considered cases. In both proofs, we exhibit a similar sufficient condition on the time
step (which is the same as for the Stokes system) and restrictive assumptions on the
data imposing smallness of the initial data as well as on the applied forces but also
on the global time T . In particular in the so called dissipative case when explicity
coupled to the Navier-Stokes equation the system does not dissipate energy anymore.

Remark 4.18. As in the proof of Theorem 3.8 we can adapt the previous calcula-
tions to the case where β > 0 and take advantage of the inertia of the 0D model. For
the sake of simplicity we do not reproduce the calculations here.

Remark 4.19. For the case where τ < +∞ in order to control the exponential

growth e
2∆t

τ2 T one could impose to the time step to satisfy ∆t ≤ 2τ2

T which could be a
rather restrictive condition in particular for large time T or small relaxation time τ .

Remark 4.20 (Case γ = 0). Once again it is sufficient to choose Aµ,αu
n+1 as a

test function. Nevertheless, since no control on the auxiliary volume is required, no
restriction on the time step emerges from the subsequent analysis. Yet the stability
estimate involves an exponential growth coming from the explicit treatment of the
resistive 0D model. Thus a sufficient smallness condition on the initial data, external
forces and final time guarantees the stability of the discrete solution.

5. Conclusion. In this paper we derived energy or stability estimates for Stokes-
Windkessel and Navier-Stokes-Windkessel models, both in the continuous setting and
in the semi-discrete one with implicit or explicit coupling. One of the key ingredients
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in the derivation is the control of an auxiliary volume associated to the 0D model.
This property is obtained by taking the velocity field u as a test function in the
variational formulation for both Stokes and Navier-Stokes regimes. Nevertheless in
the Navier-Stokes regime, it is not sufficient to obtain a stability estimate; in this case
we have to consider a combination of the previous estimate with another one in which
Aµ,αu is used as a test function, where Aµ,α is a new Stokes-like operator adapted
to our coupled system. This enables us to control both the convective term ans the
auxiliary volume.

In particular, we have shown that for the standard Windkessel model used in
bloodflow modeling, namely the RCR model (for which α > 0, β = 0, γ > 0 and 0 <
τ < +∞), “energy” dissipation holds true and can be also derived when considering
the Navier-Stokes system under smallness assumptions on the data. Meanwhile the
standard Windkessel model used in airflow modeling (for which α > 0, β = 0, γ > 0
and τ = +∞) is not dissipative, leading to restrictive conditions – on the time step,
on the data, on the final time – for the stability of the Navier-Stokes system even for
the implicit coupling; this echoes the numerical simulations of such coupled problems
for which instabilities arise leading to the use of stabilization techniques that make
it possible to get away from smallness conditions on the data or, at least, give access
to a larger range of data, see [6] where benchmark tests are performed for various
stabilization methods. When considering an explicit coupling for the Navier-Stokes
system, in both cases (RCR and RC models), “energy” dissipation does not hold
anymore; stability estimates are derived but they require the same type of restrictive
conditions.

We also paid attention to the dependency on the various physical parameters.
Even if some of these constants are not explicit and depend on the geometry (such
as the Poincaré constant, for instance) and thus on the considered test case, the
derived estimates and their related validity conditions give a good insight into the
behaviour of coupled systems according to the underlying fluid involved. For instance
increasing the inertance in the 0D model (namely taking greater values for β) which is
always treated in an implicit way stabilizes the semi-discretized system for the Stokes
regime whereas it leads to a more restrictive smallness condition on the data in the
Navier-Stokes regime.

REFERENCES
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