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Abstract

In this paper we analyse geometric multiscale models arising in the description of physiological
flows such as blood flow in arteries or air flow in the bronchial tree. The geometrical complexity of
the networks in which air/blood flows lead to a classical decomposition in two areas: a truncated
3D geometry corresponding to the largest contribution of the domain, and a 0D part connected
to the 3D part, modelling air/blood flows in smaller airways/vessels. The fluid in the 3D part is
described by the Stokes or the Navier-Stokes system which is coupled to 0D models or so-called

Windkessel models. The resulting Navier-Stokes-Windkessel coupled system involves Neumann
non-local boundary conditions that depends on the considered applications. We first show that the
different types of Windkessel models share a similar formalism. Next we derive stability estimates
for the continuous coupled Stokes-Windkessel or Navier-Stokes-Windkessel problem as well as sta-
bility estimates for the semi-discretized systems with either implicit or explicit coupling. In all the
calculations, we pay a special attention to the dependancy of the various constants and smallness
conditions on the data with respect to the physical and numerical parameters. In particular we
exhibit different kinds of behavior depending on the considered 0D model. Moreover even if no
energy estimates can be derived in energy norms for the Navier-Stokes-Windkessel system, leading
to possible and observed numerical instabilities for large applied pressures, we show that stabil-
ity estimates for both the continuous and semi-discrete problems, can be obtained in appropriate
norms for small enough data by introducing a new well chosen Stokes-like operator. These sufficient
stability conditions on the data may give a hint on the order of magnitude of the data enabling
stable computations without stabilization method for the problem.
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1 Introduction

In the present work, we focus on the analysis and numerical analysis of geometric multiscale models
used either for simulating physiological flows such as airflows in the respiratory tract, see e.g. [43,
2, 20, 31, 32, 28, 35] or blood flows in the arterial network, see e.g. [37, 42, 15, 13, 24, 36]. We
aim, in particular, at giving a general theoretical framework to numerical observations with respect to
numerical stability.

Simulations in patient-specific geometries may provide valuable informations to physicians to im-
prove diagnosis, pulmonary drug delivery [30] or blood surgery [12]. Nevertheless, direct simulations of
3D flows in geometries such as the tracheo-bronchial tree or the arterial network are limited by the fol-
lowing constraints: since the whole respiratory tree and the blood network are very complex, with a lot
of bifurcations, and with different scales therein, numerical costs related to a full 3D simulation in the
whole domain are prohibitive. Not to mention that the image processing of the complete bronchial tree
or blood network is out of reach for the time being. Therefore the whole domain is usually truncated,
restricting the computational domain to a smaller part which is considered to be the most significant
one in terms of flow description at the global scale: the large bronchi for airflows or the aorta region
for blood flows. As a countereffect, the removed part has to be taken into account thanks to suitable
reduced models in order to describe the global behaviour of the whole system.

Air and blood are commonly modelled as homogeneous, viscous, Newtonian and incompressible
fluids. Thus we consider a system of partial differential equations involving the Navier-Stokes equations,
which has to be coupled to reduced models to take into account phenomena in the removed part of the
domain. In this work, we focus on so-called 0D or Windkessel models that describe how the fluid flux
and average pressure on the artificial boundaries is related to the mechanical properties of the truncated
part. Note that 1D models (see for instance [14, 16]) can also be considered to describe the reduced
part. Here, the stability and numerical analysis of 3D/0D coupled systems is investigated, with special
attention brought to applications related to, both, airflows and blood flows modelling, which involve
different kinds of 0D models sharing nevertheless a similar formalism. The whole resulting system
involves Navier-Stokes equations with nonlocal Neumann-type boundary conditions which depend on
the chosen 0D model.

Many authors investigated the difficulties related to this kind of problems. From the theoretical
point of view and the numerical point of view, one difficulty comes from the lack of energy estimate when
considering the Navier-Stokes system with Neumann boundary conditions and more generally mixed
Dirichlet-Neumann boundary conditions. Nevertheless existence of strong solutions (global in time for
small data or local in time) has been shown in [27] under the assumption that the out/inlets meet the
lateral boundary with a right angle and assuming some strong regularity results for the solution of
the Stokes problem with mixed boundary conditions. Additionnally, when coupling the Navier-Stokes
system with 0D reduced models, we refer to [39] and [22, 2] for the same type of wellposedness results of
strong solutions. In particular, in [39], the existence result based on a fixed point strategy, is obtained
for the Navier-Stokes system with Robin-type conditions under a smallness assumption on the Robin
coefficient modeling the resistive part of the 0D model. In [2] the Navier-Stokes system coupled to the
resistive 0D model is considered; the regularity assumption that was previously used in [27] is dropped
as well as the assumption on the resistance of the 0D model needed in [39]. The proof relies on
the regularity results for the solution of the Stokes system in polygonal domains with mixed boundary
conditions, that have been derived in [34] and on the introduction of a well chosen Stokes-like operator,
similar but simpler than the one we will introduce in this paper, that takes into account the 0D model.
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Note that all these results are valid for small data or in small time. Note moreover that concerning
3D/0D models (see [22]) and 3D/1D models (see [14, 16, 38]), coupling conditions based on the total
pressure enables to have global energy estimates, allowing to prove global existence of weak solutions
as in [22]. From the numerical point of view, the lack of energy estimates for the Navier-Stokes system
with Neumann boundary conditions or coupled with 0D model is linked to numerical instabilities as
soon as, for a given physical setting, the applied pressure drop reach a threshold. To overcome this
difficulty many strategies have been proposed. For general flows, we refer to the early work of [8] that
introduces a whole set of boundary conditions that have been further extended and analysed in [9]
where existence of weak solutions is proven. For hemodynamic flows, stabilization methods – some
of them similar as the one proposed in [9] – have been introduced [3, 24, 1, 4]. These stabilization
techniques lead to the modification of the resolved physical system. We also refer to [27, 17, 32], for
reviews on these questions and to [5] where benchmark tests are performed for various stabilization
methods.

Concerning the coupling of the Navier-Stokes equations with 0D models (or other reduced models
such as 1D models), many strategies have been considered for the theoretical analysis of such problems
as for their numerical implementation. For instance, as already stated, the existence result proved in
[39] is based on a fixed point theorem, whereas in [2] a global formulation of the coupled system is
considered. Moreover, for the modelling of physiological flows, many coupling strategies have been
already implemented: the explicit treatment has been used for instance in hemodynamics in [42, 37]
or for airflows in [10] for 3D/1D coupling; the implicit coupling with Neumann boundary conditions
involving the full traction, achieved thanks to an iterative process has been proposed in [24]. Still in
the context of hemodynamics the implicit coupling and the implicit treatment of the convective part
of the fluid equations have been achieved by a Newton algorithm [13, 29]; however, in each Newton
sub-time-step, the coupling is explicit. The same strategy is used in [35] for mechanical ventilation in
a rat bronchial tree. Moreover we refer for instance to [2] in the context of airflow modelling or [6] in
the context of blood flows modelling where implicit monolithic coupling schemes are considered. The
efficiency of the numerical methods associated to these problems relies on the analysis of two types
of numerical difficulties: on the one hand, the explicit/implicit treatment of the nonlocal boundary
conditions which couple the 3D and 0D models, which may lead to numerical instabilities and thus
possible restrictions on the time-step, even with an implicit treatment of the coupling (when achieved by
an iterative procedure). On the other hand, the more intrinsic difficulties coming from the convective
term in the Navier-Stokes system which, as already stated, induces a lack of energy estimates and
subsequent observed numerical instabilities.

Thus this paper is concerned with the analysis and numerical analysis of the coupled 3D/0D models
arising in blood flows in large arteries as well as airflows in the bronchial tree. Here we derive energy or
stability estimates for continuous and semi-discrete Stokes or Navier-Stokes system coupled to typical
Windkessel models for explicit and implicit couplings, with a special emphasis to the dependance with
respect to the physical parameters. The aim is to quantify, depending on the application field, the
stability restrictions on the time step or on the data that are sufficient to ensure stability estimates.
Note that this paper improves and generalizes partial results that can be found in [19, 18]. The outline of
this article is as follows: in section 2 we introduce the coupled fluid-Windkessel models under study. We
choose standard 0D models used in blood flow or airflow and we embed them in a similar formalism. We
also present the semi-discretized in time schemes considered for the coupled fluid-Windkessel models,
whose stability analysis will be performed in the next sections. Next, in section 3, we derive energy
or stability estimates for the continuous or semi-discretized in time Stokes-Windkessel coupled sytem.
Implicit and explicit coupling are considered. We exhibit different type of results depending on the
considered 0D model. Finally in section 4 we study the Navier-Stokes-Windkessel coupled system. We
prove stability estimates both in the continuous case and two semi-discrete cases with either explicit
or implicit coupling. Since no energy estimate can be derived, we prove estimates in stronger norms
linked to the domain of a new well-chosen Stokes-like operator adapted to the coupled system. Once
again we exhibit different types of behavior depending on the considered 0D model as well as on the
coupling strategy.
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2 Reduced models in airflows and blood flows

2.1 Models

In this section, we describe different types of models associated to physiological flows, such as air
through the bronchial tree or blood in the arterial network. The bronchial tree and the blood network
have a complex structure which can be described as an assembly of tubes in which the biological fluid
(air or blood) flows. For instance, the human respiratory tract is a dyadic tree of about 23 generations.
The first generation (the trachea) has a length of about 10 centimetres, while the last one is about
1 millimeter. Until the 15th generation, the flow is convective whereas it is mainly diffusive in the
acinar region. Moreover, the medical imaging and image processing techniques allow to obtain a good
segmented surface and an associated mesh only up to the 6th or 7th generation. In the same way, the
arterial network can be described as tube network.

In this context the complexity of the geometries makes it difficult to address direct simulations over
the whole domain which then have to be truncated. Nevertheless, the removed parts corresponding to
the smaller scales have to be taken into account in the global modelling: this can be done by defining
appropriate reduced models. After truncation of the whole domain, we get a domain Ω ⊂ R

3 involving
artificial boundaries which are denoted Γi, with i ∈ {0, · · · ,N}, N +1 being the number of in/outlets.
The lateral walls of the respiratory tree or of the aorta are denoted Γℓ. In these 3D domains, we
assume that the velocity u and the pressure p of the fluid satisfy the following incompressible Stokes
or Navier-Stokes system (corresponding respectively to ε = 0 and ε = 1):





ρ(∂tu+ ε(u · ∇)u)− µ∆u+∇p = 0 in Ω,
div(u) = 0 in Ω,

u = 0 on Γℓ,
u(0, ·) = u0 in Ω,

with u0 the initial velocity, n the outward unit vector on every part of the boundary ∂Ω and ρ and µ the
density and the viscosity of the fluid respectively. In order to model the whole system, i.e. the whole
respiratory tree or the whole blood network, taking into account the fluid flow in the removed part, the
3D model has to be completed with a well-chosen reduced model. For instance, the removed part can
be condensed into a 0D model (0D in the sense that it does not depend on a space variable) coupled
to the 3D model at each outlet Γi. Here we choose to consider some classical 0D models (also refered
to as Windkessel models), used in blood or air flow modelling, but sharing the same formalism. We
refer the reader to [40] for a review on geometric multiscale modeling in the context of cardiovascular
systems. The coupling between the 3D and the 0D parts can be written as

µ∇u · n− pn = −pin, on Γi, i = 0, . . . ,N ,

where pi is a constant in space interface pressure that depends on the considered 0D model. In all the
studied cases, the 0D pressure is a function of the 0D fluid flux Qi, namely

pi(t) = Fi(Qi(s), 0 ≤ s ≤ t).

Moreover the mass conservation at the interface Γi writes

Qi(s) :=

∫

Γi

u(s, ·) · n.

As a consequence the coupled system is Stokes or Navier-Stokes system with a generalized Neumann
boundary conditions based upon the modelling of phenomena in the truncated part:





ρ(∂tu+ ε(u · ∇)u)− µ∆u+∇p = 0 in Ω,
div(u) = 0 in Ω,

u = 0 on Γℓ,
µ∇u · n− pn = −Fi(

∫
Γi
u · n)n on Γi, i = 0, . . . ,N ,

u(0, ·) = u0 in Ω,

(1)
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Note that, as they involve the velocity flux at the artificial boundary, the boundary conditions are
nonlocal. The choice of function Fi depends on the application field as it is designed to mimick the
behaviour of the truncated subtree. For instance in the context of blood networks models, a so-called
RCR or LRCR model are used whereas, in the context of airflows in the bronchial tree, a so-called RC
model is used. These models will be discussed thereafter.

Remark 1. In this work, several choice have been made:

• We express the Neumann condition by using the non-symmetric tensor σ := µ∇u − p I. This
choice can be justified by the fact that this quantity is continuous on cross section boundary
in a Poiseuille flow in a cylindrical domain. An other choice could be based on the physical
symmetric strain tensor σsymm. := µ(∇u + ∇u

t) − p I and we refer to [27, 17] for numerical
comparisons between the two versions. Note nevertheless that the analysis performed hereafter
remains unchanged when considering the full fluid strain tensor.

• Lateral walls in the 3D part are assumed to be fully rigid and, consequently, we impose the fluid
velocity to be equal to zero on Γℓ. This assumption is valid in the context of air flows, at least for
normal breathing. In the context of bloodflow modelling, the models should be enriched in order to
take into account deformable walls: we refer to [21, 40] for more sophisticated models involving
a deformable domain.

Let us give some details on the considered reduced models.

• The RC model for air flows consists in reducing the truncated subtree into a resistive con-
tribution and a compliant contribution plugged in series at each outlet of the 3D domain, see
Figure 1: therefore we introduce a resistance R related to the resistance of the distal network
(bronchial subtrees) and a compliance C describing the elasticity property of the surrounding
tissues (lung parenchyma). The outlet pressure pi is associated to the current pressure P and
the model reduces to the following ODE:

{
P = RQ+ Pd,

Q = C
dPd

dt
.

(2)

As a straightforward consequence,

P (t) = RQ(t) + (P (0) −RQ(0)) + C−1

∫ t

0
Q(s) ds. (3)

R

C
PdP

3D

Figure 1: Reduced 0D model: the RC model for air flows

• The RCR model for bloodflows consists in reducing the truncated subtree into a proximal
part which is mainly resistive and a distal part which is resistive and compliant. The two parts
are plugged in series at each outlet of the 3D domain, see Figure 2. Therefore we introduce a
proximal resistance Rp, a distal resistance Rd and a compliance C, the latter representing the
wall elasticity of the blood vessels. The outlet pressure pi is the current pressure P and the
model reduces to the following ODE:





P = RpQ+ Pd,

Q = C
dPd

dt
+

Pd

Rd
.
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As a straightforward consequence,

P (t) = P (0)e
− t

RdC +Rp

(
Q(t)− e

− t
RdC Q(0)

)
+C−1

∫ t

0
Q(s) e

− t−s
RdC ds. (4)

Rp

Rd

C

3D
PdP

Figure 2: Reduced 0D model: the RCR model for bloodflows

• The LRCR model consists in considering inductive properties plugged in series with the pre-
vious RCR model, see Figure 3. The corresponding set of equations is





P = RpQ+ Pd,

Q = C
d

dt
(Pd − PL) +

Pd − PL

Rd
,

PL = L
dQ

dt
.

As a straightforward consequence,

P (t) = P (0)e
− t

RdC + L

(
dQ

dt
(t)− e

− t
RdC

dQ

dt
(0)

)
+ Rp

(
Q(t)− e

− t
RdCQ(0)

)

+ C−1

∫ t

0
Q(s) e

− t−s
RdC ds.

L

Rp

Rd

C

3D
Pd PLP

Figure 3: Reduced 0D model: the RCRL model

In all these cases, it can be noticed that the proximal pressure that connects the 3D domain to
the truncated 0D model only depends on the flux Qi so that function Fi(·) takes the following general
form:

Fi(Qi(s), 0 ≤ s ≤ t) = αiQi(t) + βi
dQi

dt
(t) + γi

∫ t

0
e
− t−s

τi Qi(s) ds+ Pi(t), (5)

6



where coefficients αi ≥ 0, βi ≥ 0, γi ≥ 0 and characteristic time τi ∈ (0,+∞) are associated to
corresponding models, and t 7→ Pi(t) is a source term which also depends on themodels. The coefficients
αi model dissipation of the flux, βi represent inertia, γi represent elastance of the 0D models with
an associated relaxation time τi. In particular, Table 2.1 summerizes the possible choices for these
parameters related to the previous described models:

α β γ τ P(t)

R R 0 0 +∞ 0
RC Rp 0 C−1 +∞ P (0)−RQ(0)

RCR Rp 0 C−1 RdC (P (0) −RpQ(0))e
− t

RdC

RCL Rp L C−1 +∞ (P (0) −RpQ(0) − L
dQ

dt
(0))

RCRL Rp L C−1 RdC (P (0) −RpQ(0)− L
dQ

dt
(0))e

− t
RdC

Table 1: Model parameters

Remark 2. The link between the different models can be described as follows

• The four-element RCRL model with Rd = +∞ leads to a so-called RCL model.

• The four-element RCRL model with L = 0 leads to the RCR model.

• The RCR model with Rd = +∞ allows us to get the RC model with R = Rp.

• The RC model with C = +∞ allows us to get the R model.

Remark 3. The compliance parameter in the RCR and LRCR represent the wall elasticity whereas
we choose to consider rigid wall for the 3D part. We refer to [21, 40] for more sophisticated models
involving a deformable domain.

2.2 Variational formulation of the coupled system

Let us now write the variational formulation associated to the coupled problem. Define the following
functional spaces

H1
0,Γℓ

(Ω) = {v ∈ (H1(Ω))3, v = 0 on Γℓ}, V = {v ∈ H1
0,Γℓ

(Ω), div(v) = 0}.

Multiplying the first equation of system (1) by v ∈ V , integrating over the whole domain Ω and using
integrations by parts with boundary conditions (5), we get:

ρ

∫

Ω
∂tu(t, ·) · v + ερ

∫

Ω
(u(t, ·)∇)u(t, ·)v +

N∑

i=0

βi

(∫

Γi

∂tu(t, ·) · n
)(∫

Γi

v · n
)

+µ

∫

Ω
∇u(t, ·) · ∇v+

N∑

i=0

αi

(∫

Γi

u(t, ·) · n
)(∫

Γi

v · n
)

+
N∑

i=0

γi

(∫ t

0
e
− t−s

τi

(∫

Γi

u(s, ·) · n
)

ds

)(∫

Γi

v · n
)

= −
N∑

i=0

Pi

(∫

Γi

v · n
)
.

Notice that ε = 1 includes the full Navier-Stokes system whereas ε = 0 allows us to deal with the
linear Stokes system. The variational formulation is essential for the derivation of energy estimates
(see the forthcoming subsections) which may be obtained by considering v = u. The estimates are
easily derived in the linear case but difficulties emerge in the nonlinear case because of the inertial
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effects. This difficulty is partially overcome by using several tools: construction of a suitable operator,
normed space which is deeply associated to the inertia of the system and bilinear form that takes into
account the fluid dissipation along with its 0D counterpart, namely the flux dissipation of 0D model.
Let us moreover introduce a useful functional space and related property:

H := V
L2

.

In this space the following lemma holds true:

Lemma 1. There exists κ > 0 such that,
∣∣∣∣
∫

Γi

v · n
∣∣∣∣ ≤ κ‖v‖L2(Ω), ∀v ∈ H, ∀i ∈ {0, . . . ,N}.

We refer the reader to [2] for the proof of this lemma. Note that this estimate is deeply based on
the divergence-free property and on the fact that Γi ∪ Γj = ∅ for all i 6= j. Note that, for all v ∈ H,
the flux ∫

Γi

v · n

has to be understood in a weak way: indeed it can be defined by means of duality:
∫

Γi

v · n := 〈v · n, 1〉
H−

1
2 (Γi),H

1
2 (Γi)

= 〈v · n, gi〉
H−

1
2 (∂Ω),H

1
2 (∂Ω)

=

∫

Ω
v · ∇gi,

where gi is a function in H1(Ω) such that gi = 1 on Γi and gi = 0 on Γj, j 6= i. Note that such functions
exist as the boundaries Γi are not in contact. Finally, if v ∈ V, the classical flux formula is recovered.
Let us also introduce the following inequality, that can be deduced from the trace inequality: there
exists CΓ > 0 such that

∣∣∣∣
∫

Γi

v · n
∣∣∣∣ ≤ CΓ‖∇v‖L2(Ω), ∀v ∈ V, ∀i ∈ {0, . . . ,N}. (6)

In what follows, for the sake of simplicity (and without loss of generality for the mathematical
analysis), we will consider two artificial boundaries:

• one “inlet” Γ0 with standard Neumann boundary condition, i.e.

α0 = 0, β0 = 0, γ0 = 0, P0 := p0,

where t 7→ p0(t) is a prescribed pressure.

• one “outlet” Γ1 which is renamed ΓW (with a subscript which stands for Windkessel boundary
condition) coupled with a generic Windkessel model. For that reason we rename α1, β1, γ1, τ1 as
α, β, γ, τ .

Moreover note that the non-homogeneous Neumann boundary condition on Γ0 can be reduced to
homogeneous Neumann boundary condition by defining a new unknown pressure p− p0 (which will be
still denoted p) and a new Windkessel source term P − p0 (which will be still denoted P). Thus we
will consider p0 = 0, since the pressure drop is taken into account in the Windkessel source term P.
Consequently we consider the following problem:





Find u(t, ·) ∈ V such that, for all v ∈ V,

ρ

∫

Ω
∂tu(t, ·) · v + ερ

∫

Ω
(u(t, ·)∇)u(t, ·)v + µ

∫

Ω
∇u(t, ·) · ∇v

+α

(∫

ΓW

u(t, ·) · n
)(∫

ΓW

v · n
)

+β

(∫

ΓW

∂tu(t, ·) · n
)(∫

ΓW

v · n
)

+γ

(∫ t

0
e−

t−s
τ

(∫

ΓW

u(s, ·) · n
)

ds

)(∫

ΓW

v · n
)

= −P(t)

(∫

ΓW

v · n
)
.

(7)
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2.3 Discretization schemes

We investigate the numerical stability of various coupling strategies between the Stokes or Navier-
Stokes system and the 0D models. In particular, we aim at deriving stability estimates on the solution
of the discretized-in-time and pay attention to the sensitivity of the stability constants or possible
smallness conditions with respect to the physiological and numerical parameters.

In what follows, discretized-in-time systems will be referred as semi-discretized systems. Let ∆t >
0 be the time step and tn = n∆t, n ∈ {0, . . . , N}, with N∆t = T . We denote by (un, pn) the
approximated solution at time tn of the continuous velocity and pressure fields t 7→ (u(t, ·), p(t, ·)). If
we discretize in time the strong formulation of system (7), using the first order backward Euler scheme
for the time derivative, the approximated velocity and pressure u

n+1 and pn+1 satisfy:





ρ

(
u
n+1 − u

n

∆t
+ εun+I · ∇u

n+1

)
− µ∆u

n+1 +∇pn+1 = 0, in Ω,

div(un+1) = 0, in Ω,
u
n+1 = 0, on Γℓ,

µ∇u
n+1 · n− pn+1

n = 0, on Γ0,
µ∇u

n+1 · n− pn+1
n = −F∆t((Q

k)0≤k≤m), on ΓW ,
u
0 = u0, in Ω,

(8)

where the choice I ∈ {0, 1} corresponds to a semi-implicit or an implicit treatment of the convection
term. Function F∆t is a time approximation of F , where F is defined by (5). It depends on the
approximations (Qk)0≤k≤m of the fluxes (Q(tk))0≤k≤m. Note that we may consider either explicit
coupling with m = n or implicit coupling with m = n+ 1. The approximate function is chosen as:

F∆t((Q
k)0≤k≤m) = αQm + β

Qn+1 −Qn

∆t
+ γ∆t

m∑

k=m−n

(
τ

τ +∆t

)m+1−k

Qk + P(tm). (9)

Note that, here, the inertance term will be always treated in an implicit way. Indeed an explicit
treatment of this added mass term leads to possibly unconditionally unstable schemes, as it has been
observed and analyzed in [11] in the context of bloodflows. In what follows we investigate the case
β = 0 and the case β 6= 0 in order to understand the stabilization effect of the inertance on the scheme.

Remark 4. The definition (9) of the approximate function modelling the 0D model is built upon the
approximation of the RC and RCR models which leads us to the following quadrature formula

γ

∫ tm

0
e−

tm−s
τ Q(s) ds ≃ γ∆t

m∑

k=m−n

(
τ

τ +∆t

)m+1−k

Qk.

Indeed in the case of the RC model (α > 0, β = 0, γ > 0, τ = +∞), the integral
∫ t
0 Q(s) ds is

approximated by the classical rectangle rule whereas for the RCR model (α > 0, β = 0, γ > 0,
τ < +∞), Equation (9) corresponds to the following discretization of system (2)





F∆t((Q
k)0≤k≤m) := Pn+1 = RpQ

m + Pn+1
d ,

C
Pn+1
d − Pn

d

∆t
+

Pn+1
d

Rd
= Qm.

(10)

We aim at studying the stability of the coupling schemes in both Stokes and Navier-Stokes regimes.
In particular we focus on the derivation of stability conditions for the implicit and explicit schemes. The
goal is to quantify the possible restrictions on the data and numerical parameters with respect to the
physiological parameters and investigate the differences that can be encountered for various 0D models
corresponding to bloodflows and respiratory flows. Consequently since our aim is to differentiate the
behaviour of typical models used either in bloodflows or in air flows, we focus on the case γ > 0 in the
forthcoming theorems. Note that the case γ = 0 will be treated in remarks pointing out the possible

9



simplifications. In any cases, the variational formulation related to System (8) writes:





Find u
n+1 ∈ V such that, for all v ∈ V,

ρ

∫

Ω
(un+1 − u

n) · v + ε ρ∆t

∫

Ω
(un+I∇)un+1

v+ µ∆t

∫

Ω
∇u

n+1 · ∇v

+α∆t

(∫

ΓW

u
m · n

)(∫

ΓW

v · n
)

+β

(∫

ΓW

u
n+1 · n−

∫

ΓW

u
n · n

)(∫

ΓW

v · n
)

+γ∆t2

(
m∑

k=m−n

(
τ

τ +∆t

)m+1−k ∫

ΓW

u
k · n

)(∫

ΓW

v · n
)

= −Pm∆t

(∫

ΓW

v · n
)
,

(11)

where Pm = P(tm). In the above formulation, the choice of ε allows us to discuss the Stokes (ε = 0)
and Navier-Stokes (ε = 1) cases; the index I corresponds to the implicit (I = 1) or semi-implicit
(I = 0) treatment of the convection term; finally the index m allows us to describe an explicit (m = n)
or implicit (m = n+ 1) coupling between 3D and 0D models.

3 Study of the Stokes-Windkessel coupled system

3.1 Energy estimates for the continuous system

Let us now derive the energy estimates related to Problem (7) with ε = 0. This property is an
important issue of the analysis of the numerical strategies which are built upon similar principles
at the discrete level and is a key ingredient to prove existence of weak solutions. In particular, all
the following calculations can be justified thanks to a Galerkin approximation, leading to a rigorous
derivation of the existence of weak solution.

Theorem 1 (Energy estimates for the Stokes system). Let T > 0 and µ > 0. Assume that α ≥ 0,
β ≥ 0, γ > 0 and 0 < τ ≤ +∞. Any weak solution u of the Problem (7) with ε = 0 satisfies, for
0 ≤ t ≤ T :

ρ

2
‖u(t, ·)‖2L2(Ω) +

µ

2

∫ t

0
‖∇u(s, ·)‖2L2(Ω) ds+

β

2
Q2(t) + α

∫ t

0
Q2(s) ds+

γ

2
V 2(t) +

γ

τ

∫ t

0
V 2(s)ds (12)

≤ ρ

2
‖u0‖2L2(Ω) +

β

2
Q2(0) +

C2
Γ

2µ

∫ t

0
(P(s))2 ds,

where Q(s) =
∫
ΓW

u(s, ·) · n and V (t) =
∫ t
0 e

− t−s
τ Q(s)ds.

Proof. Taking v = u(t, ·) in the variational formulation (7) we get

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) + µ‖∇u(t, ·)‖2L2(Ω) + αQ2(t) + β

dQ2

dt
(t) + γQ(t)

∫ t

0
e−

t−s
τ Q(s) ds+ P(t)Q(t) = 0.

Introducing the auxiliary volume

V (t) =

∫ t

0
e−

t−s
τ Q(s)ds, (13)

we obtain easily that V satisfies the following ODE

dV

dt
(t) +

1

τ
V (t) = Q(t). (14)

Note that the previous ODE (14) is also valid for τ = +∞ since, in this case, V (t) =
∫ t
0 Q(s) ds. From

equations (13) and (14), we get

γQ(t)

∫ t

0
e−

t−s
τ Q(s) ds = γ

(
dV

dt
(t) +

1

τ
V (t)

)
V (t) =

γ

2

dV 2

dt
(t) +

γ

τ
V 2(t).
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Then we obtain

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) + µ‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t) +

γ

2

d

dt
V 2(t) +

γ

τ
V 2(t)

= −P(t)

∫

ΓW

u(t, ·) · n. (15)

Using a trace inequality and Young’s inequality, the term P(t)
∫
ΓW

u(t, ·) · n can be controlled by:

∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤

µ

2
‖∇u(t, ·)‖2L2(Ω) +

C2
Γ

2µ
P2(t). (16)

Finally using (16) to bound the right hand side of (15), we obtain

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t) +

γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ C2

Γ

2µ
P2(t). (17)

We conclude by using Gronwall Lemma and remembering that V (0) = 0.

Remark 5 (Case γ = 0). In this case, the introduction of the auxiliary volume V is not necessary and
the estimate (12) is still valid with γ = 0.

Remark 6. Note that other energy estimates can be derived. For instance, assume that α 6= 0. Then
the estimate of the source term can be replaced by

∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤

α

2
Q2(t) +

1

2α
P2(t). (18)

As a consequence (17) can be replaced by

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) + µ‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) +

α

2
Q2(t) +

γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ 1

α
P2(t).

It leads to

ρ

2
‖u(t, ·)‖2L2(Ω) + µ

∫ t

0
‖∇u(s, ·)‖2L2(Ω) ds+

β

2
Q2(t) +

α

2

∫ t

0
Q2(s) ds+

γ

2
V 2(t) +

γ

τ

∫ t

0
V 2(s) ds

≤ ρ

2
‖u0‖2L2(Ω) +

β

2
Q2(0) +

1

2α

∫ t

0
P2(s) ds. (19)

Note moreover that different estimates can be obtained for other cases:

• If µ = 0 and α = 0, then the source term can be bounded as
∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤ κ |P(t)| ‖u(t, ·)‖L2(Ω) (20)

≤ κ2
P2(t)

2ρ
+

ρ

2
‖u(t, ·)‖2L2(Ω) .

by Lemma 1 and Young’s inequality.

• If β 6= 0, ∣∣∣∣P(t)

∫

ΓW

u(t, ·) · n
∣∣∣∣ ≤ |P(t)| |Q(t)| ≤ P2(t)

2β
+

β

2
Q2(t). (21)

Nevertheless, with the previous inequalities (20) and (21), the energy estimate obtained by Gronwall
lemma involves an exponential growth that behaves as eCT with C proportional to the density of the
fluid or of the Windkessel model.

To summarize, when γ > 0 and τ < +∞, in the case where the system is dissipative in u (µ > 0)
or Q (α > 0) then, for zero applied pressures, the energy of the system is decreasing. When µ = α = 0
then the energy of the system is also bounded but with a bound that behaves as eCT , with C behaving
like the inertia of either the fluid or the 0D model.
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Remark 7. Note that when γ > 0 and τ < +∞, the auxilary volume V defined by (13) is “dissipated”
by the model. In particular, in that respect, the RCR model (τ < +∞) and the RC model (τ = +∞)
used respectively in blood flow simulations and air flow simulations behave in a different way, the
auxilary volume V being dissipated in the RCR case whereas it is not in the RC case.

3.2 Energy estimates for the semi-discretized system

In this subsection, we establish energy estimates for the solution of the semi-discretized Stokes system
with implicit coupling (see Theorem 2) or explicit coupling (see Theorem 3). Taking u

n+1 as a test
function in the variational formulation (11) with ε = 0 provides the following equality:

ρ
∥∥un+1

∥∥2
L2(Ω)

− ρ

∫

Ω
u
n · un+1 + µ∆t

∥∥∇u
n+1
∥∥2
L2(Ω)

+α∆tQmQn+1 + β((Qn+1)2 −QnQn+1)

+γ∆t2
m∑

k=m−n

(
τ

τ +∆t

)m+1−k

QkQn+1 +∆tPmQn+1 = 0.

We have

ρ
∥∥un+1

∥∥2
L2(Ω)

− ρ

∫

Ω
u
n · un+1 =

ρ

2

∥∥un+1
∥∥2
L2(Ω)

− ρ

2
‖un‖2L2(Ω) +

ρ

2

∥∥un+1 − u
n
∥∥2
L2(Ω)

and

(Qn+1)2 −QnQn+1 =
(Qn+1)2

2
− (Qn)2

2
+

(Qn+1 −Qn)2

2
.

The discrete energy balance thus writes:

ρ

2

∥∥un+1
∥∥2
L2(Ω)

− ρ

2
‖un‖2L2(Ω) +

ρ

2

∥∥un+1 − u
n
∥∥2
L2(Ω)

(22)

+µ∆t
∥∥∇u

n+1
∥∥2
L2(Ω)

+
β

2
(Qn+1)2 − β

2
(Qn)2 +

β

2
(Qn+1 −Qn)2

+α∆tQmQn+1 + γ∆tV n+1,mQn+1 +∆tPmQn+1 = 0,

where

V n+1,m :=





∆t

n+1∑

k=1

(
τ

τ +∆t

)n+2−k

Qk, if m = n+ 1,

∆t

n∑

k=0

(
τ

τ +∆t

)n+1−k

Qk, if m = n.

Defining the dimensionless parameter

δ∆t :=
τ

τ +∆t
, (23)

note that the discrete volume V n+1,n+1 (resp. V n+1,n) is obtained by the rectangle rule with top-right
(resp. top-left) corner approximation of the volume V (tn+1):

V n+1,m =





∆tδ∆t

n+1∑

k=1

(
τ

τ +∆t

)n+1−k

Qk =: V n+1
imp , if m = n+ 1,

∆tδ∆t

n∑

k=0

(
τ

τ +∆t

)n−k

Qk =: V n+1
exp , if m = n.

(24)

We now distinguish the implicit and explicit cases in the following (resp. m = n+ 1 and m = n).
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3.2.1 Implicit coupling

Let us first consider the implicit case, namely m = n+ 1. In the case of implicit coupling the analysis
is nearly the same as in the continuous framework. More precisely the implicit coupling of the Stokes
system with any 0D model leads to unconditionally stable schemes in standard energy norms. Denoting
V k
imp = V k,k, see (24), we easily verify that

Qn+1 =
V n+1
imp − V n

imp

∆t
+

1

τ
V n+1
imp ,

which corresponds to the time discretization of equation (14) by a backward Euler scheme.

Theorem 2 (Implicit coupling with the Stokes system). Let µ > 0 and T > 0. Assume that α ≥ 0,
β ≥ 0, γ > 0 and 0 < τ ≤ +∞. Let ∆t > 0 be the time step and tn = n∆t, n ∈ {0, . . . , N}, with
N∆t = T . The discrete solution u

n+1 of Problem (11) with ε = 0 satisfies the estimate

ρ

2
‖un+1‖2L2(Ω) +

µ

2
∆t

n+1∑

k=1

‖∇u
k‖2L2(Ω) +

β

2
(Qn+1)2 + α∆t

n+1∑

k=1

(Qk)2 (25)

+
γ

2
(V n+1

imp )2 +
γ∆t

τ

n+1∑

k=1

(V k
imp)

2

≤ ρ

2
‖u0‖2L2(Ω) +

β

2
(Q0)2 +

C2
Γ

2µ
∆t

n+1∑

k=1

(Pk)2.

Proof. The proof is a straightforward adaptation of the proof of Theorem 1.

Remark 8 (Case γ = 0). As for the continuous case, the same kind of discrete energy estimate for
γ = 0 may be derived without introducing the discrete auxiliary volume.

Remark 9. Note that Theorem 2 can be extended to the fully-discretized system, using a standard La-
grange finite element approximation. Moreover different estimates of the source term as the estimates
(18) and (21) obtained in Remark 6, can be adapted to the semi-discrete and fully-discrete frameworks
with straightforward consequences on the global estimate (25). Furthermore in the semi-discrete frame-
work, the estimate (20) is still true, and, in the fully-discrete framework, it is still valid but under
some assumptions on the discrete finite element spaces, ensuring that Lemma 1 holds at the discrete
finite element level. In particular, Lemma 1 will be satisfied for any vh ∈ {vh ∈ Xh,

∫
Ω div(vh)qh =

0, ∀qh ∈ Mh} provided that Xh is a conformal Lagrange finite element approximation of H1
0,Γℓ

(Ω) and

Mh contains an internal approximation space of H1(Ω).

3.2.2 Explicit coupling

We recall that the β-term that accounts for the 0D model inertia is treated in an implicit way. Using
the definition of the auxiliary volume, and denoting V k

exp := V k,k−1, see (24), we can derive discrete
equations relating the flow to the discrete auxiliary volume:

V n+1
exp − V n

exp

∆t
+

1

τ
V n+1
exp = Qn, (26)

1

δ∆t

V n+1
exp − V n

exp

∆t
+

1

τ
V n
exp = Qn, (27)

where δ∆t is defined by (23).
These are the key ingredients to prove:

Theorem 3 (Explicit coupling with the Stokes system). Let µ > 0 and T > 0. Assume that α ≥ 0,
β ≥ 0, γ > 0 and 0 < τ ≤ +∞. Let ∆t > 0 be the time step and tn = n∆t, n ∈ {0, . . . , N}, with
N∆t = T . The discrete solution u

n+1 of Problem (11) with ε = 0 and m = n satisfies the following
stability estimate
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• Under the condition

0 < ∆t < λ1 :=
α

4γ

(√
1 +

8ργ

κ2α2
− 1

)
,

we have
ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇u
k‖2L2(Ω) +

γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC
S
∆tT e

T
λ1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2

)
,

where E0 is a constant that only depends on the energy norm of the initial conditions and

CS
∆t :=

ακ2

ρ
+

2∆t

τ2
.

• Assume furthermore that β > 0. Then, under the condition

0 ≤ ∆t < λ̃1 :=
α

4γ

(√
1 +

8βγ

α2
− 1

)
,

we have
ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇u
k‖2L2(Ω) +

γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC̃
S
∆tT e

T

λ̃1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2

)
,

where E0 is a constant that only depends on the energy norm of the initial conditions and

C̃S
∆t :=

α

β
+

2∆t

τ2
.

Proof. Considering the energy equality (22), with m = n, we obtain

ρ

2

∥∥un+1
∥∥2
L2(Ω)

− ρ

2
‖un‖2L2(Ω) +

ρ

2

∥∥un+1 − u
n
∥∥2
L2(Ω)

(28)

+µ∆t
∥∥∇u

n+1
∥∥2
L2(Ω)

+
β

2
(Qn+1)2 − β

2
(Qn)2 +

β

2
(Qn+1 −Qn)2

+α∆tQnQn+1 + γ∆t V n+1
exp Qn+1 +∆tPnQn+1 = 0.

Let us deal with the explicit terms. The first one can be bounded simply as follows

∣∣α∆tQnQn+1
∣∣ ≤ α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2.

The second one, involving the discrete auxiliary volume V n+1
exp , can be rewritten as follows, using

equation (27)

γ∆t V n+1
exp Qn+1

= γ∆t

(
1

δ∆t

V n+2
exp − V n+1

exp

∆t
+

1

τ
V n+1
exp

)
V n+1
exp

=
γ

δ∆t

(
(V n+2

exp )2

2
−

(V n+1
exp )2

2
−

(V n+2
exp − V n+1

exp )2

2

)
+

γ∆t

τ
(V n+1

exp )2,
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and we get

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+ µ∆t‖∇u
n+1‖2L2(Ω) +

β

2
(Qn+1)2 +

γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2

+
γ

δ∆t

(V n+1
exp )2

2
+

γ

δ∆t

(V n+2
exp − V n+1

exp )2

2

+
C2
Γ

2µ
∆t(Pn)2 +

µ∆t

2
‖∇u

n+1‖2L2(Ω),

where we have used an estimate similar to (16) to bound the source term. The stability estimate is
built upon the control of the following extra terms:

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2,

γ

δ∆t

(V n+2
exp − V n+1

exp )2

2
.

Thanks to (27) we have

γ

δ∆t

(V n+2
exp − V n+1

exp )2

2
≤ γ

δ∆t

(
∆t2δ2∆t(Q

n+1)2 +
∆t2

τ2
δ2∆t(V

n+1
exp )2

)
.

Consequently we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω) +
β

2
(Qn+1)2 +

γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2 +

γ

δ∆t

(V n+1
exp )2

2

+
γ

δ∆t

(
∆t2δ2∆t(Q

n+1)2 +
∆t2

τ2
δ2∆t(V

n+1
exp )2

)
+

C2
Γ

2µ
∆t(Pn)2.

and since δ∆t < 1, we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω) +
β

2
(Qn+1)2 +

γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

α∆t

2
(Qn)2 +

α∆t

2
(Qn+1)2 +

γ

δ∆t

(V n+1
exp )2

2

+
γ

δ∆t

(
∆t2(Qn+1)2 +

∆t2

τ2
(V n+1

exp )2
)
+

C2
Γ

2µ
∆t(Pn)2. (29)

Now we discuss two different cases: β ≥ 0 (general case), β > 0 (0D inertial case).
• In the general case β ≥ 0, and in particular if β = 0, the terms

α∆t

2
(Qn)2,

α∆t

2
(Qn+1)2,

γ

δ∆t
∆t2(Qn+1)2,

in the right-hand side of (29) cannot be controlled by the inertia of the 0D model. However they can
be controlled by the inertial term of the fluid. Indeed by Lemma 1,

(Qk)2 ≤ κ2
∥∥∥uk

∥∥∥
2

L2(Ω)
,

and, as a consequence, we deduce from (29) and the above inequality that

ρ

2

(
1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2

)
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

≤ ρ

2

(
1 +

ακ2

ρ
∆t

)
‖un‖2L2(Ω) +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2

+
β

2
(Qn)2 +

C2
Γ

2µ
∆t(Pn)2.
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Defining

P (∆t) := 1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2, (30)

we introduce the roots of this polynomial

λ1 :=
α

4γ

(√
1 +

8ργ

κ2α2
− 1

)
, −λ2 := − α

4γ

(√
1 +

8ργ

κ2α2
+ 1

)
(31)

with, for the sake of convenience, λi > 0. Then we get

P (∆t) =
2γκ2

ρ
(λ1 −∆t)(λ2 +∆t) ≥ 1− ∆t

λ1
. (32)

As a consequence, we obtain

ρ

2

(
1− ∆t

λ1

)
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

≤ ρ

2

(
1 +

ακ2

ρ
∆t

)
‖un‖2L2(Ω) +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2

+
β

2
(Qn)2 +

C2
Γ

2µ
∆t(Pn)2.

Using the discrete Gronwall lemma [26] and under the condition 0 < ∆t < λ1, this provides the
following stability estimate

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇u
k‖2L2(Ω) +

γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC
S
∆t

T e
T

λ1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2,

)

where E0 is a constant that only depends on the energy norm of the initial conditions and

CS
∆t =

ακ2

ρ
+

2∆t

τ2
.

• Assume now that β > 0. In that case the terms

α∆t

2
(Qn)2,

α∆t

2
(Qn+1)2,

γ

δ∆t
∆t2δ2∆t(Q

n+1)2

in the right-hand side of (29) can be controlled by the inertia of the 0D model. The estimate (29)
yields

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω) +
β

2

(
1− α

β
∆t− 2γ

β
∆t2

)
(Qn+1)2

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2

(
1 +

α

β
∆t

)
(Qn)2 +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2
+

C2
Γ

2µ
∆t(Pn)2.

Defining P̃ (∆t) := 1− α

β
∆t− 2γ

β
∆t2, we introduce the roots of this polynomial

λ̃1 :=
α

4γ

(√
1 +

8βγ

α2
− 1

)
, −λ̃2 := − α

4γ

(√
1 +

8βγ

α2
+ 1

)
,
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with, for the sake of convenience, λ̃i > 0. Then we get

P̃ (∆t) =
2γ

β
(λ̃1 −∆t)(λ̃2 +∆t) ≥ 1− ∆t

λ̃1

.

As a consequence, we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω) +
β

2

(
1− ∆t

λ̃1

)
(Qn+1)2

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2

(
1 +

α

β
∆t

)
(Qn)2 +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2
+

C2
Γ

2µ
∆t(Pn)2.

Under the condition 0 < ∆t < λ̃1, the discrete Gronwall lemma [26], implies that

ρ

2

∥∥un+1
∥∥2
L2(Ω)

+
µ∆t

2

n+1∑

k=1

‖∇u
k‖2L2(Ω) +

γ∆t

τ

n+1∑

k=1

(V k
exp)

2

+
β

2
(Qn+1)2 +

γ

2δ∆t
(V n+2

exp )2

≤ eC̃
S
∆tT e

T
λ1−∆t

(
E0 +

C2
Γ

2µ
∆t

N∑

k=0

(Pk)2

)
,

where E0 is a constant that only depends on the energy norm of the initial conditions and

C̃S
∆t =

α

β
+

2∆t

τ2
.

Note that alternate estimates can be derived following the continuous case that have been developed
in Remark 6.

Remark 10 (Case γ = 0). In this case, no auxiliary volume is required to derive discrete energy
estimates. The sufficient conditions that guarantee the stability of the explicit scheme become:

∆t ≤
max

( ρ

κ2
, β
)

α
.

This condition involves the ratio of the inertance of the 3D or 0D system to the resistance of the 0D
model. Moreover the exponential growth constants are modified as follows:

CS
∆t :=

ακ2

ρ
, C̃S

∆t =
α

β
.

Remark 11 (Influence of the inertia). When the inertia parameters of the problem, namely ρ and β,
tend to +∞, so do the critical times λ1 and λ̃1 which implies that in practice no condition on the time
step is required to ensure stability. Moreover, the exponential growth remains bounded. Let us discuss
the influence of the inertance parameter β on the critical time λ̃1:

λ̃1 ∼β→+∞

√
β

2γ
, C̃S

∆t ∼β→+∞
2∆t

τ2
,

and

λ̃1 ∼β→0
β

α
, C̃S

∆t ∼β→0
α

β
.

When the inertance of the 0D model is small, so is the critical time λ̃1; nevertheless in this case it is
sufficient to impose ∆t ≤ λ1 that may be less restrictive to ensure the stability of the explicit scheme.
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Remark 12. Let us discuss the influence of the characteristic relaxation time τ on the obtained stability
estimates and smallness assumption on the time step:

• the sufficient conditions on the time step do not depend on the parameter τ .

• when τ → +∞, the contribution e2∆tT/τ2 to the exponential growth goes to 1 and thus is uniformly
bounded.

• when τ ≪ T , the exponential bound e2∆tT/τ2 hides an effective restriction on the time-step. Indeed
in order to obtain a uniform bound of the exponential growth, this requires a severe restriction
on the time step by choosing ∆t such that ∆tT/τ2 = O(1), namely ∆t = O( τ

2

T ).

Remark 13 (Influence of the resistance parameter α). When α becomes large then the critical times
λ1 and λ̃1 behave as

λ1 ∼α→+∞
ρ

κ2α
, λ̃1 ∼α→+∞

β

α
.

Thus the larger α is (which corresponds to the resistive parameter of the 0D model), the more severe
is the constraint on the time step together with the exponential growth.

4 Study of the Navier-Stokes-Windkessel coupled system

4.1 Estimates for the continuous system

Let us consider the Navier-Stokes system and underline the standard difficulties met when one is
interested in analyzing the energy balance when adding nonlinearities to the problem. Note that the
estimates we will derive hereafter can enable us to prove existence of strong solution for small time or
for small enough data. Let us first review the difficulties coming from the convection term. To fix the
idea we consider the Navier-Stokes system (7) coupled with a R model (F (Q(s), 0 ≤ s ≤ t) = αQ(t)).
Proceeding as in the linear case, we derive the following energy equality:

ρ

2

d

dt

∫

Ω
|u|2 + ρ

∫

Γ0∪ΓW

|u|2
2

u · n+ µ

∫

Ω
|∇u|2 + α

(∫

ΓW

u · n
)2

= P(t)

∫

ΓW

u · n.

Here we have used the coupling with the R model, as well as the divergence free property of the

fluid velocity. We see a term ρ
∫
ΓW

|u|2

2 u · n that represents the flux of kinetic energy at the artificial
boundary, whose sign is not known a priori. Consequently unlike for the Stokes system one can not
derive easily an energy estimate. To obtain a satisfactory energy estimate and existence theorems, one
has to be able to control this kinetic energy flux at the interface where Neumann boundary conditions
are prescribed. Note that in dimension three we can prove the following bound (see [27])

∣∣∣∣ρ
∫

ΓW

|u|2
2

u · n
∣∣∣∣ ≤ C‖u‖5/2

L2(Ω)
‖∇u‖1/2

L2(Ω)
,

which does not allow to obtain an energy estimate. Nevertheless existence of a unique strong solution
can be proven. In particular, in [2], the existence of a unique strong solution (locally in time or for small
data) is derived, based on the same ideas developped in [27] and on regularity results of the solution
of the stationary Stokes system with mixed Dirichlet-Neumann boundary conditions in polyhedral
domains [33].

Regarding the existence of solutions for the Navier-Stokes system with mixed Dirichlet-Neumann
boundary conditions, we refer to [27]: the authors prove the existence of a unique smooth solution
which is local in time; under an additional assumption on the smallness of the data, the smooth
solution is proven to be global-in-time. Note that the existence of global weak solutions can be derived
by choosing appropriate outflow boundary conditions that control the flux of incoming kinetic energy
and thus stabilize the system [9]. The case of Robin-type boundary conditions which involve the
modelling of a local-in-space resistive contribution is analyzed in [39]: existence of a strong solution is
obtained under the assumption that the resistance is small enough. In [2] a RC-like model is studied:
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the existence of a unique local-in-time strong solution for any data is proven; the particular case of a
single R model is also investigated, leading to the existence and uniqueness of a global-in-time smooth
solution for small data even if the resistance is large. Finally in [39], existence of a local-in-time
strong solution for the RCR model is proven for small data. Proofs of the above results are all based
upon Galerkin approximations with special bases. Note moreover that they all require that in/outlet
meet the lateral boundary with right angles. This framework will be used in the analysis of the semi-
discretized Navier-Stokes systems. We point out that the main difficulty in the above references relies
on the estimate of the convective term of the Navier-Stokes system.

Let us now focus on the more general 0D model we study here and introduce key tools for the
derivation of suitable estimates of the solution of the coupled system. In particular we introduce a new
Stokes-like operator adapted to our coupled Navier-Stokes-Windkessel model.

Definition 1 (Stokes operator). The space H is endowed with the scalar product

(v,w)ρ,β := ρ

∫

Ω
v ·w + β

(∫

ΓW

v · n
)(∫

ΓW

w · n
)
,

and we denote ‖·‖ρ,β the norm associated to this scalar product. Then we define the bilinear form aµ,α
as

aµ,α : H×H → R

(v,w) 7→ µ

∫

Ω
∇v · ∇w + α

(∫

ΓW

v · n
)(∫

ΓW

w · n
)
.

Finally we introduce the operator Aµ,α : D(Aµ,α) → H associated to the bilinear form aµ,α by

(Aµ,αv,w)ρ,β = aµ,α(v,w).

Proposition 2 (Properties of the Stokes operator). The operator Aµ,α has the following properties:

• Aµ,α ∈ L(D(Aµ,α),H) is invertible and its inverse is compact on H;

• Aµ,α is self-adjoint.

As a consequence, Aµ,α admits a family of eigenfunctions {φj}

Aµ,αφj = νjφj , with 0 < ν1 ≤ ν2 ≤ ... ≤ νj →j→+∞ +∞

which is complete and orthogonal in both H and V.

Proof. The proof of this proposition relies on classical arguments, see for instance [7] for general
arguments and [23] for a direct proof in a similar context.

Lemma 3. The following estimates hold:

1. There exists L > 0 such that

∀v ∈ D(Aµ,α), ‖∇v‖L2(Ω) ≤ L‖Aµ,αv‖L2(Ω) . (33)

The constant L depends on the parameters as L := CP
ρ+ βκ2

µ
, where CP denotes the Poincaré

constant.

2. If furthermore the artificial boundaries Γ0 and ΓW meet the lateral boundaries Γℓ at angle π
2 and

each boundary is smooth enough, then there exist ε > 0 and M > 0, such that

∀v ∈ D(Aµ,α), ‖v‖
H

3
2+ε(Ω)

≤ M‖Aµ,αv‖L2(Ω). (34)

The constant M depends on the parameters as:

M := C
(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ
+ C

(1)
Ω CΓ

α

µ
L
)
, (35)

where C
(i)
Ω are constants which only depend on the domain.
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Remark 14. Both constants L and M are proportional to the ratio of a density to a viscosity.

Proof. Both estimates rely on the properties of the Stokes operator. Using the definition of the scalar
product on H, we obtain

(Aµ,αv,v)ρ,β = ρ

∫

Ω
Aµ,αv · v + β

(∫

ΓW

Aµ,αv · n
)(∫

ΓW

v · n
)

≤ ρ ‖Aµ,αv‖L2(Ω) ‖v‖L2(Ω) + βκ2 ‖v‖L2(Ω) ‖Aµ,αv‖L2(Ω)

≤ CP (ρ+ βκ2) ‖Aµ,αv‖L2(Ω) ‖∇v‖L2(Ω) ,

where we have used Lemma 1 and Poincaré inequality. Besides, by definition of the operator Aµ,α, we
have

(Aµ,αv,v)ρ,β = aµ,α(v,v) = µ ‖∇v‖2L2(Ω) + α

(∫

ΓW

v · n
)2

≥ µ ‖∇v‖2L2(Ω) ,

thus
µ ‖∇v‖2L2(Ω) ≤ CP (ρ+ βκ2) ‖Aµ,αv‖L2(Ω) ‖∇v‖L2(Ω) ,

which, by simplification, concludes the proof of (33). The proof of estimate (34) is based upon a
regularity result for the Stokes problem with homogeneous mixed boundary conditions, see [33], for
which we need the geometric angular assumption. The problem Aµ,αv = f ∈ H can be rewritten as





−∆v+∇
(
p

µ

)
=

ρ

µ
f , in Ω,

div(v) = 0, in Ω,
v = 0, on Γℓ,

∇v · n− p

µ
n = 0, on Γ0,

∇v · n− p

µ
n = −β

µ

(∫

ΓW

f · n
)
n− α

µ

(∫

ΓW

v · n
)
n, on ΓW .

(36)

We consider the auxiliary pressure defined by




−∆p̃ = 0, in Ω,
∇p̃ · n = 0, on Γℓ,

p̃ = 0, on Γ0,

p̃ = −β

(∫

ΓW

f · n
)
− α

(∫

ΓW

v · n
)
, on ΓW .

By standard arguments and using Lemma 1 and equation (6), we have

‖∇p̃‖L2(Ω) ≤ C
(1)
Ω

(
αCΓ ‖∇v‖L2(Ω) + βκ ‖f‖L2(Ω)

)
, (37)

where C
(1)
Ω is a constant which only depends on Ω. Using this auxilary pressure, the problem defined

by (36) can be rewritten as





−∆v+∇
(
p− p̃

µ

)
=

ρ

µ
f − ∇p̃

µ
, in Ω,

div(v) = 0, in Ω,
v = 0, on Γℓ,

∇v · n− p− p̃

µ
n = 0, on Γ0,

∇v · n− p− p̃

µ
n = 0, on ΓW .

As a consequence, from regularity results that can be found in [33] in the case of right angles, there
exists ε > 0 such that

‖v‖
H

3
2+ε(Ω)

≤ C
(2)
Ω

(
ρ

µ
‖f‖L2(Ω) +

‖∇p̃‖L2(Ω)

µ

)
,
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where C
(2)
Ω is a constant which only depends on Ω. Using estimate (37), we get

‖v‖
H

3
2+ε(Ω)

≤ C
(2)
Ω

(
ρ

µ
+C

(1)
Ω κ

β

µ

)
‖f‖L2(Ω) + C

(2)
Ω C

(1)
Ω CΓ

α

µ
‖∇v‖L2(Ω) .

By (33) and since f = Aµ,αv, we obtain

‖v‖
H

3
2+ε(Ω)

≤
[
C

(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ

)
+ C

(2)
Ω C

(1)
Ω CΓ

α

µ
L
]
‖Aµ,αv‖L2(Ω) ,

which concludes the proof of (34).

Now that we have introduced an appropriate Stokes-like operator adapted to our coupled Navier-
Stokes-Windkessel system we can derive estimates in suitable norms for this system. The idea relies
on the formal choice of u and Aµ,αu as test functions and then a linear combination of the obtained
inequalities. We will consider two cases.

• the so-called general case for which we prove an estimate valid for small time;

• the so-called dissipative case, with τ < +∞, for which we prove that, if the initial data and
applied pressures are small enough, an “energy” decrease can be established.

Theorem 4 (Estimates for the Navier-Stokes system). Let µ > 0. Assume that the artificial boundaries
Γ0 and ΓW meet the lateral boundaries Γℓ at angle π

2 and that each boundary is smooth enough. Assume
that α ≥ 0, β ≥ 0, γ > 0.

• General case: local-in-time “energy” bound for any data. Assume that 0 < τ ≤ +∞.
For any smooth solution u of the Problem (7), there exists T ∗ > 0 and t 7→ Gr(t) which depend
on the data such that:

ρ

2
‖u(t, ·)‖2L2(Ω) +

µ

4

∫ t

0
‖∇u(s, ·)‖2L2(Ω) ds+

β

2
Q2(t)

+α

∫ t

0
Q2(s) ds+

γ

2
V 2(t) +

γ

τ

∫ t

0
V 2(s) ds

+raµ,α(u(t, ·),u(t, ·)) +
r

2

∫ t

0
‖Aµ,αu(s, ·)‖2ρ,β ds

≤ Gr(t), ∀t ∈ (0, T ∗), (38)

where r is any positive homogeneity constant.

• Dissipative case: global-in-time “energy” bound for small data. Assume furthermore
that τ < +∞. Let δ > 0 and η > 0 such that

δ +
κ2τγ

2ρ
η =

1

2
.

Define

H(t) :=

(
C2
Γ

2µ
+

ηκ2

4δρ

)
P2(t).

There exists a dissipation parameter D > 0 (defined by (60)) such that, if the initial data and
external forces are small enough, namely

ρ

2
‖u0‖2L2(Ω) +

ηµ

2
‖∇u0‖2L2(Ω) +

ηα+ β

2
Q2(0)

≤ E :=
µη3

32
(
ηM+C

(3)
Ω L2

)2 ,
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and
‖H‖∞ ≤ DE ,

then the solution satisfies a stability estimate:

ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t) ≤ E . (39)

Moreover t 7→
∫ t
0 ‖Aµ,αu(s, ·)‖2ρ,β ds is also bounded on any time interval [0, T ].

Proof. Let us derive the estimates in the general case, then in the so-called dissipative case. Note that
all the following formal calculations can be justified by using Galerkin approximation with a special
basis associated to the eigenfunctions of the operator Aµ,α, see Proposition 2.

• General case.

Taking u as a test function in the variational formulation (7), we proceed as for the Stokes-Windkessel
system and obtain estimate (17) with an additional term ρ

∫
Ω(u∇)uu that we bound as follows:

∣∣∣∣ρ
∫

Ω
(u∇)uu

∣∣∣∣ ≤ ρ ‖∇u‖L2(Ω) ‖u‖2L4(Ω) ≤ C
(3)
Ω ρ ‖∇u‖3L2(Ω) , (40)

where C
(3)
Ω is a constant related to the continuous embedding of H1(Ω) onto L4(Ω). The estimate

writes

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t)

+
γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ C2

Γ

2µ
P2(t) + C

(3)
Ω ρ ‖∇u(t, ·)‖3L2(Ω) . (41)

To control the last term in (41), we need to control u in L∞(0, T ;H1(Ω)). Thus we take Aµ,αu as a
test function in the variational formulation (7). By definition of the operator Aµ,α, see Definition 1,
we have

1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) + ‖Aµ,αu(t, ·)‖2ρ,β

= −ρ

∫

Ω
(u∇)u(t, ·)Aµ,αu(t, ·) − γV (t)

(∫

ΓW

Aµ,αu(t, ·) · n
)

− P(t)

∫

ΓW

Aµ,αu(t, ·) · n. (42)

The convection term can be estimated as follows
∣∣∣∣ρ
∫

Ω
(u∇)uAµ,αu

∣∣∣∣ ≤ ρ ‖u‖L∞(Ω) ‖∇u‖L2(Ω) ‖Aµ,αu‖L2(Ω) .

Thanks to the continuous embedding of H
3
2
+ε′(Ω) in L∞(Ω), we have, for every ε′ > 0,

‖u‖L∞(Ω) ≤ C
(4)
Ω ‖u‖

H
3
2+ε′ (Ω)

.

Then, choosing ε′ < ε where ε is defined in Lemma 3, by a Hilbert interpolation combined with Lemma
3 there exists θ ∈ (0, 1) such that

‖u‖L∞(Ω) ≤ C
(5)
Ω M1−θ ‖Aµ,αu‖1−θ

L2(Ω) ‖∇u‖θL2(Ω) .

Consequently, ∣∣∣∣ρ
∫

Ω
(u∇)uAµ,αu

∣∣∣∣ ≤ C
(5)
Ω ρM1−θ ‖Aµ,αu‖2−θ

L2(Ω) ‖∇u‖1+θ
L2(Ω) .
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Using Young’s inequality, we get
∣∣∣∣ρ
∫

Ω
(u∇)uAµ,αu

∣∣∣∣ ≤ δρ ‖Aµ,αu‖2L2(Ω) + CΩ,δρM
2(1−θ)

θ ‖∇u‖
2(1+θ)

θ

L2(Ω)

≤ δ ‖Aµ,αu‖2ρ,β + CΩ,δρM
2(1−θ)

θ ‖∇u‖
2(1+θ)

θ

L2(Ω)
,

(43)

where δ > 0 will be chosen later on and CΩ,δ is a constant which depends on δ−1 and Ω only. Let us
now deal with terms like γV (t)(

∫
ΓW

Aµ,αu(t, ·) ·n), for which we need a control of the auxillary volume
V defined by (13). This control will be provided by estimate (41). By using Lemma 1, the definition
of ‖·‖ρ,β and Young’s inequality, we have

∣∣∣∣γV
∫

ΓW

Aµ,αu · n
∣∣∣∣ ≤

κ |γV |√
ρ

‖Aµ,αu‖ρ,β ≤ κ2

4δρ
(γV )2 + δ ‖Aµ,αu‖2ρ,β . (44)

The linear forcing terms can be treated similarly:
∣∣∣∣P
∫

ΓW

Aµ,αu · n
∣∣∣∣ ≤

κ |P|√
ρ

‖Aµ,αu‖ρ,β ≤ κ2

4δρ
P2 + δ ‖Aµ,αu‖2ρ,β . (45)

Thus, from (42) and thanks the previous estimates (43), (44), (45), we obtain

1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) + (1− 3δ) ‖Aµ,αu(t, ·)‖2ρ,β

≤ CΩ,δρM
2(1−θ)

θ ‖∇u(t, ·)‖
2(1+θ)

θ

L2(Ω)
+

κ2

4δρ
(γV )2(t) +

κ2

4δρ
P2(t). (46)

We next choose δ > 0 such that 1− 3δ > 0, for instance

1− 3δ =
1

2
, (47)

i.e. δ = 1
6 and we denote C

(6)
Ω := CΩ, 1

6
. Using (47), we add (41) and (46) that has been multiplied by

a positive homogeneity constant r to obtain:

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω)

+
β

2

d

dt
Q2(t) + αQ2(t) +

γ

2

d

dt
V 2(t) +

γ

τ
V 2(t)

+
r

2

d

dt
aµ,α(u(t, ·),u(t, ·)) +

r

2
‖Aµ,αu(t, ·)‖2ρ,β

≤
(
C2
Γ

2µ
+

3rκ2

2ρ

)
P2(t) +C

(3)
Ω ρ ‖∇u(t, ·)‖3L2(Ω)

+ rC
(6)
Ω ρM

2(1−θ)
θ ‖∇u(t, ·)‖

2(1+θ)
θ

L2(Ω)
+

3rκ2

2ρ
(γV )2(t). (48)

Thus we can apply a nonlinear Gronwall lemma by setting

ϕ(t) =
ρ

2
‖u(t, ·)‖2L2(Ω) +

β

2
Q2(t) +

γ

2
V 2(t) +

r

2
aµ,α(u(t, ·),u(t, ·)),

which, by (48) and since ‖∇u(t, ·)‖2L2(Ω) ≤ 1
µaµ,α(u(t, ·),u(t, ·)), satisfies the following inequality:

d

dt
ϕ(t) ≤ F (t) +

3κ2γ

ρr
ϕ(t) + C

(3)
Ω

2
3
2 ρ

(rµ)
3
2

ϕ3/2(t) + C
(6)
Ω

2
1+θ
θ ρ

r
1
θµ

(1+θ)
θ

M
2(1−θ)

θ ϕ
(1+θ)

θ (t),

with

F (t) =

(
C2
Γ

2µ
+

3rκ2

2ρ

)
P2(t).
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Consequenlty, we obtain a stability estimate at least for a small time T ∗ (depending on the data of
the problem). From this bound on ϕ one can deduce that

∫ t

0
‖Aµ,αu(s, ·)‖2ρ,β ds

is also bounded on (0, T ∗).

• Dissipative case τ < +∞.

Next we further investigate the case τ < +∞. In this case, as already underlined for the Stokes system,
the auxiliary volume V , defined by (13), is dissipated by the system. We take advantage of this to
derive a stability estimate for any time but for small enough data. When taking u as a test function in
the variational formulation (7), we bound the convective term in a coarser way than we did previously:
using inequality (33) in Lemma 3 and the definition of ‖·‖ρ,β we get

∣∣∣∣ρ
∫

Ω
(u∇)uu

∣∣∣∣ ≤ ρ ‖∇u‖L2(Ω) ‖u‖2L4(Ω) ≤ C
(3)
Ω ρL2 ‖Aµ,αu‖2L2(Ω) ‖∇u‖L2(Ω)

≤ C
(3)
Ω L2 ‖Aµ,αu‖2ρ,β ‖∇u‖L2(Ω) , (49)

where, as in inequality (40), constant C
(3)
Ω is related to the continuous embedding of H1(Ω) onto L4(Ω).

The estimate now writes

ρ

2

d

dt
‖u(t, ·)‖2L2(Ω) +

µ

2
‖∇u(t, ·)‖2L2(Ω) +

β

2

d

dt
Q2(t) + αQ2(t)

+
γ

2

d

dt
V 2(t) +

γ

τ
V 2(t) ≤ C2

Γ

2µ
P2(t) +C

(3)
Ω L2 ‖Aµ,αu(t, ·)‖2ρ,β ‖∇u(t, ·)‖L2(Ω) . (50)

Next we take Aµ,αu as a test function in the variational formulation (7). First the convective term can
be bounded as follows
∣∣∣∣ρ
∫

Ω
(u∇)uAµ,αu

∣∣∣∣ ≤ ρ ‖u‖L∞(Ω) ‖∇u‖L2(Ω) ‖Aµ,αu‖L2(Ω)

≤ ρM‖Aµ,αu‖2L2(Ω) ‖∇u‖L2(Ω)

≤ M‖Aµ,αu‖2ρ,β ‖∇u‖L2(Ω) , (51)

where we have used the continuity of the embedding H
3
2
+ε(Ω) →֒ L∞(Ω) together with estimate (34)

of Lemma 3 and the definition of ‖·‖ρ,β. Let us now deal with the term γV (
∫
ΓW

Aµ,αu · n). Using
Lemma 1, Young’s inequality and the definition of ‖·‖ρ,β, and taking advantage of τ < +∞, leads to

γ

∣∣∣∣V
(∫

ΓW

Aµ,αu · n
)∣∣∣∣ ≤ γκ |V | ‖Aµ,αu‖L2(Ω)

≤ 1

2

γ

ητ
V 2 +

ητκ2

2
γ ‖Aµ,αu‖2L2(Ω)

≤ γ

2ητ
V 2 +

τκ2γ

2ρ
η ‖Aµ,αu‖2ρ,β , (52)

where η > 0 will be chosen later on. The linear forcing terms are bounded as in the general case, see
(45). Thus, by (42), (51), (52) and (45), we obtain

1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) + ‖Aµ,αu(t, ·)‖2ρ,β

≤ M‖Aµ,αu(t, ·)‖2ρ,β ‖∇u(t, ·)‖L2(Ω) +
γ

2ητ
V 2(t)

+
κ2

4δρ
P2(t) +

(
δ +

κ2τγ

2ρ
η

)
‖Aµ,αu(t, ·)‖2ρ,β . (53)
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By choosing δ and η sufficiently small such that

δ +
κ2τγ

2ρ
η =

1

2
, (54)

we obtain

1

2

d

dt
aµ,α(u(t, ·),u(t, ·)) +

1

2
‖Aµ,αu(t, ·)‖2ρ,β

≤ M‖Aµ,αu(t, ·)‖2ρ,β ‖∇u(t, ·)‖L2(Ω) +
γ

2ητ
V 2(t) +

κ2

4δρ
P2(t). (55)

We multiply (55) by η and add (50) to obtain:

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

η

2
aµ,α(u(t, ·),u(t, ·)) +

β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

2
‖∇u(t, ·)‖2L2(Ω) + αQ2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM+ C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Aµ,αu(t, ·)‖2ρ,β

≤
(
C2
Γ

2µ
+

ηκ2

4δρ

)
P2(t).

Recalling the definition of aµ,α(·, ·) (see Definition 1) we get

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα + β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

2
‖∇u(t, ·)‖2L2(Ω) + αQ2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM+ C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Aµ,αu(t, ·)‖2ρ,β

≤
(
C2
Γ

2µ
+

ηκ2

4δρ

)
P2(t).

Next we want to make appear some dissipation of

Ψ(t) :=
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t),

even in the case α = 0 and β > 0. Since |Q| ≤ CΓ ‖∇u‖L2(Ω), we have that

µ

2
‖∇u(t, ·)‖2L2(Ω) ≥

µ

4
‖∇u(t, ·)‖2L2(Ω) +

µ

4C2
Γ

Q2(t)

and thus

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα + β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

4
‖∇u(t, ·)‖2L2(Ω) +

(
α+

µ

4C2
Γ

)
Q2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM+ C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Au(t, ·)‖2ρ,β

≤
(
C2
Γ

2µ
+

ηκ2

4δρ

)
P2(t).

Then, since ‖u‖L2(Ω) ≤ CP ‖∇u‖L2(Ω) by Poincaré inequality,

µ

4
‖∇u(t, ·)‖2L2(Ω) ≥

µ

8
‖∇u(t, ·)‖2L2(Ω) +

µ

8C2
P

‖u(t, ·)‖2L2(Ω) ,
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we thus obtain

d

dt

(
ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα + β

2
Q2(t) +

γ

2
V 2(t)

)

+
µ

8C2
P

‖u(t, ·)‖2L2(Ω) +
µ

8
‖∇u(t, ·)‖2L2(Ω) +

(
α+

µ

4C2
Γ

)
Q2(t) +

γ

2τ
V 2(t)

+
(η
2
− (ηM+ C

(3)
Ω L2) ‖∇u(t, ·)‖L2(Ω)

)
‖Au(t, ·)‖2ρ,β

≤
(
C2
Γ

2µ
+

ηκ2

4δρ

)
P2(t). (56)

Estimate (56) can be rewritten as

d

dt
Ψ(t) +DΨ(t) +

(
A− B ‖∇u(t, ·)‖L2(Ω)

)
‖Aµ,αu(t, ·)‖2ρ,β ≤ H(t), (57)

with
A :=

η

2
, B := ηM+ C

(3)
Ω L2, (58)

H(t) :=

(
C2
Γ

2µ
+

ηκ2

4δρ

)
P2(t), (59)

and a dissipation coefficient defined as

D := min

(
1

τ
,

µ

4ρC2
P

,
1

4η
,
2α + µ

2C2
Γ

ηα+ β

)
. (60)

The constant D stands for the dissipation of the system. In particular, assuming that τ < +∞ ensures
that the 0D model is indeed dissipative with respect to the volume V if the data are small enough.
Assuming that A− B ‖∇u(t, ·)‖L2(Ω) ≥ 0, we obtain by Gronwall lemma:

Ψ(t) ≤ Ψ(0)e−Dt +

∫ t

0
|H(s)| eD(s−t) ds ≤ Ψ(0)e−Dt +

‖H‖∞
D (1− e−Dt). (61)

Consequently if

Ψ(0) ≤ ηµ

8

A2

B2
,

‖H‖∞
D ≤ ηµ

8

A2

B2
, (62)

which implies that ‖∇u0‖L2(Ω) ≤ A
2B , then we obtain the following estimate for all time:

∀t ≥ 0, Ψ(t) ≤ ηµ

8

A2

B2
.

To conclude, provided that the initial data and the source term are small enough (see conditions (62)),
the solution satisfies a stability estimate in suitable norms, namely

ρ

2
‖u(t, ·)‖2L2(Ω) +

ηµ

2
‖∇u(t, ·)‖2L2(Ω) +

ηα+ β

2
Q2(t) +

γ

2
V 2(t)

≤ E =
µη3

32
(
ηM+ C

(3)
Ω L2

)2 .

Finally, combining this estimate with (57) allows us to conclude that

∫ t

0
‖Aµ,αu(s, ·)‖2ρ,β ds

is also bounded on any time interval [0, T ].
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Remark 15. This theorem shows as for the Stokes-Windkessel system that typical 0D models used in
blood flows and in airflows modeling behave in a different way. Indeed for the RCR model for instance
we obtain global-in-time estimates provided the data are small enough whereas for the RC model we
obtain only local-in-time estimates.

Remark 16. In the dissipative case, parameters δ and η may be specified, for instance as follows:

δ =
1

4
, η =

ρ

2κ2τγ
.

As a consequence, updating the constants and source terms as

A :=
ρ

4κ2τγ
, B :=

ρ

2κ2τγ
M+ C

(3)
Ω L2, D := min

(
1

τ
,
κ2τγ

2ρ
,
α+ µ

4C2
Γ

ρα
4κ2τγ

+ β
2

,
µ

4ρC2
P

)
,

H(t) :=

(
C2
Γ

2µ
+

1

2τγ

)
P2(t).

we deduce that, if

Ψ(0) ≤ ρµ

16κ2τγ

A2

B2
,

‖H‖∞
D ≤ ρµ

16κ2τγ

A2

B2
,

the estimate now reads:

ρ

2
‖u(t, ·)‖2L2(Ω) +

ρµ

4κ2τγ
‖∇u(t, ·)‖2L2(Ω) +

(
β

2
+

ρα

4κ2τγ

)
Q2(t) +

γ

2
V 2(t)

≤ ρµ

64κ2τγ

1
(
M+

2C
(3)
Ω L2κ2τγ

ρ

)2 .

Note that the behaviour of the required bound on the initial velocity, namely A
B , as well as the upper

bound in the estimate (39), namely

E :=
ρµ

16κ2τγ

A2

B2
,

can be described more precisely with respect to the parameters: A
2B and E tend to 0 when µ → 0,

ρ → +∞, β → +∞, γ → +∞ or τ → +∞. In particular the less the 0D model dissipates energy with
respect to the auxilary volume V , the more restrictive is the smallness condition on the data.

Remark 17 (Case : γ = 0). Note that, in that case, an estimate can be derived by choosing only
Aµ,αu as a test function. Indeed no control on the auxiliary volume V (t) defined by (13), is required.
More precisely, we easily derive the following estimate

d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)

+

(
1

2
−M‖∇u(t, ·)‖L2(Ω)

)
‖Au(t, ·)‖2ρ,β ≤ κ2

2ρ
P2(t). (63)

In this case the dissipation comes from the term ‖Au(t, ·)‖2ρ,β. Assuming that

‖∇u‖L2(Ω) ≤
1

4M

and since ‖Au(t, ·)‖2ρ,β ≥ ρ ‖Au(t, ·)‖2L2(Ω) ≥ ρ
L2 ‖∇u‖2L2(Ω) estimate (63) can be rewritten as

d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)
+

ρ

4L2
‖∇u‖2L2(Ω) ≤

κ2

2ρ
P2(t).
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Moreover since ‖∇u(t, ·)‖2L2(Ω) ≥ 1
2 ‖∇u(t, ·)‖2L2(Ω) +

1
2C2

Γ
Q2(t), we obtain

d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)

+
ρ

8L2
‖∇u‖2L2(Ω) +

ρ

8C2
ΓL2

Q2(t) ≤ κ2

2ρ
P2(t). (64)

Thus the analogue of the dissipation coefficient D is, in this case,

D0 = min

(
ρ

4µL2
,

ρ

4µC2
ΓL2

)
.

Consequently,

d

dt

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)
+D0

(µ
2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t)

)
≤ κ2

2ρ
P2(t).

Proceeding as in the proof of Theorem 4, we obtain that if the initial data are small, namely

µ

2
‖∇u0‖2L2(Ω) +

α

2
Q2(0) ≤ µ

32M2
,

and if the external pressure satisfies

κ2

2ρ

∥∥P2
∥∥
∞

≤ D0µ

32M2
,

then the solution satisfies the following stability estimate

µ

2
‖∇u(t, ·)‖2L2(Ω) +

α

2
Q2(t) ≤ µ

32M2
. (65)

Here we recover the results obtained in [27] for the Navier-Stokes system with Neumann boundary
conditions as a particular case of this result by setting α = β = 0. Note also that the behaviour of the
required bound on the initial velocity, namely 1

M , as well as the upper bound µ
M2 in estimate (65) can

be described more precisely with respect to the parameters: D0,
1
M and µ

M2 tend to 0 when µ → 0,
ρ → +∞, β → +∞.

Remark 18. We could have kept (41) instead of (50) and, following nearly the same lines, obtain a
stability estimate for small enough data. But it leads to slightly more tedious calculations we choose
not to present here for the sake of simplicity.

Remark 19. In the case β > 0, estimates (45) and (52) can be adapted by using the property ‖v‖2ρ,β ≥
β
(∫

ΓW
v · n

)2
. In that way similar estimates can be derived by using the 0D inertia instead of the

fluid intertia, leading to a possibly less restrictive condition on the smallness assumption on the data.
In particular adding inertia in the 0D model may stabilize the whole coupled system.

4.2 Estimates for the semi-discretized system

4.2.1 Implicit coupling

We now focus on the semi-discrete Navier-Stokes system implicitly coupled to the Windkessel model
which corresponds to the variational formulation (11) with ε = 1 and m = n + 1. We consider a
semi-implicit treatment of the convective term, namely I = 0.

Theorem 5 (Implicit coupling with the Navier-Stokes system). Let µ > 0. Assume that the artificial
boundaries Γ0 and ΓW meet the lateral boundaries Γℓ at angle π

2 and that each boundary is smooth
enough. Assume that α ≥ 0, β ≥ 0, γ > 0.
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• Dissipative case: global-in-time bound for small data. Assume that τ < +∞. Let us
consider the constants δ, η, D and the function H as in Theorem 4. If the initial data and
external forces are small enough, namely

ρ

2
‖u0‖2L2(Ω) +

ηµ

2

∥∥∇u
0
∥∥2
L2(Ω)

+
ηα+ β

2
(Q0)2 ≤ Ẽ :=

µη3

32
(
ηC

(7)
Ω M+ C

(3)
Ω L2

)2 ,

and
‖H‖∞ ≤ DẼ ,

then the solution of (11) with ε = 1, m = n+ 1 and I = 0 satisfies the following estimate:

ρ

2
‖un‖2L2(Ω) +

µη

2
‖∇u

n‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2 ≤ Ẽ , (66)

for all n ∈ {0, ..., N} Moreover ∆t
∑N

n=0 ‖Aµ,αu
n‖2ρ,β is also bounded independently on N .

• Case τ = +∞: local-in-time bound for small data. Assume that the time step is such that

∆t <
ρ

8rκ2γ
=: ∆tr,

where r is a positive homogeneity constant. Assume furthermore that the initial data, external
forces and final time T = N∆t satisfy

ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u

0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2

+

(
C2
Γ

2µ
+

2rκ2

ρ

)
∆t

N∑

k=0

(Pk)2 ≤ µ e−
T

∆tr−∆t

32
(
C

(3)
Ω L2 + rC

(7)
Ω M

)2 , (67)

then

ρ

2
‖un‖2L2(Ω) +

rµ

2
‖∇u

n‖2L2(Ω) +

(
β

2
+

rα

2

)
(Qn)2

+
γ

2
(V n

imp)
2 +

r

4
∆t

n∑

k=0

∥∥∥Aµ,αu
k
∥∥∥
2

ρ,β

≤ e
T

∆tr−∆t

(ρ
2
‖u0‖2L2(Ω) +

rµ

2
‖∇u

0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2

+

(
C2
Γ

2µ
+

2rκ2

ρ

)
∆t

N∑

k=0

(Pk)2
)
.

Proof. All the forthcoming calculations can be rigorously justified by using a Galerkin method with
a special basis associated to the Stokes-like operator Aµ,α, see Proposition 2. Moreover existence of
a solution (for which uniqueness could be also proven) can be also derived thanks to the previous
estimates by the same Galerkin approximation.

• Dissipative case: τ < +∞.

We consider the system (8) with I = 0 for which the convection term is semi-explicit. We prove
estimate (66) by induction. We follow the steps of the continuous case by taking u

n+1 and Aµ,αu
n+1

as test functions in the variational formulation (11). Note that the only difference with the continuous
case concerns the estimate of the convection term. The discrete analogue of (49) should be read as

∣∣∣∣ρ
∫

Ω
(un∇)un+1

u
n+1

∣∣∣∣ ≤ ρ ‖un‖L4(Ω)

∥∥∇u
n+1
∥∥
L2(Ω)

∥∥un+1
∥∥
L4(Ω)

≤ C
(3)
Ω L2 ‖∇u

n‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

.
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The discrete stability estimate can thus be written as follows

ρ

2
‖un+1‖2L2(Ω) +

µ

2
∆t‖∇u

n+1‖2L2(Ω) +
β

2
(Qn+1)2 + α∆t(Qn+1)2

+
γ

2
(V n+1

imp )2 +
γ∆t

τ
(V n+1

imp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

γ

2
(V n

imp)
2 +

C2
Γ

2µ
∆t(Pn+1)2

+ C
(3)
Ω L2∆t ‖∇u

n‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

. (68)

We take Aµ,αu
n+1 as a test function in the variational formulation (11) for ε = 1, I = 0 and m = n+1:

ρ

∫

Ω
(un+1 − u

n) ·Aµ,αu
n+1 + ρ∆t

∫

Ω
(un∇)un+1Aµ,αu

n+1

+ β
(
Qn+1 −Qn

)(∫

ΓW

Aµ,αu
n+1 · n

)
+ γ∆tV n+1

imp

(∫

ΓW

Aµ,αu
n+1 · n

)

+ µ∆t

∫

Ω
∇u

n+1 · ∇Aµ,αu
n+1 + α∆tQn+1

(∫

ΓW

Aµ,αu
n+1 · n

)

= −Pm∆t

(∫

ΓW

Aµ,αu
n+1 · n

)
.

By definition of operator Aµ,α, we have

ρ

∫

Ω
(un+1 − u

n) ·Aµ,αu
n+1 + β

(
Qn+1 −Qn

)(∫

ΓW

Aµ,αu
n+1 · n

)

= aµ,α(u
n+1 − u

n,un+1)

=
µ

2

∥∥∇u
n+1
∥∥2 + µ

2
‖∇u

n‖2 + µ

2

∥∥∇u
n+1 −∇u

n
∥∥2 + α

2
(Qn+1)2

+
α

2
(Qn)2 +

α

2
(Qn+1 −Qn)2.

Using again the definition of Aµ,α, we have also

µ∆t

∫

Ω
∇u

n+1 · ∇Aµ,αu
n+1 + α∆tQn+1

(∫

ΓW

Aµ,αu
n+1 · n

)
= ∆t

∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

Now we have to estimate ρ
∫
Ω(u

n∇)un+1Aµ,αu
n+1. We do not follow exactly the same lines as for the

continuous case in particular since the convective term is treated in a semi-implicit way:

∣∣∣∣ρ
∫

Ω
(un∇)un+1 Aµ,αu

n+1

∣∣∣∣ ≤ ρ ‖un‖L6(Ω)

∥∥∇u
n+1
∥∥
L3(Ω)

∥∥Aµ,αu
n+1
∥∥
L2(Ω)

≤ C
(7)
Ω ρ ‖∇u

n‖L2(Ω)

∥∥un+1
∥∥
H

3
2+ε(Ω)

∥∥Aµ,αu
n+1
∥∥
L2(Ω)

≤ C
(7)
Ω M‖∇u

n‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

, (69)

where C
(7)
Ω comes from the continuous embeddings H

3
2
+ε(Ω) →֒ W 1,3(Ω) and H1(Ω) →֒ L6(Ω). Then

using (45) for the forcing term, (52) for the term involving the volume and estimate (69) for the
convection term, the discrete analogue of estimate (55) reads

µ

2

∥∥∇u
n+1
∥∥2
L2(Ω)

+
α

2
(Qn+1)2 +

∆t

2

∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ µ

2
‖∇u

n‖2L2(Ω) +
α

2
(Qn)2 +

γ

2ητ
∆t(V n+1

imp )2 +
κ2

4δρ
∆t(Pn+1)2

+ C
(7)
Ω M∆t ‖∇u

n‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

, (70)
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with (δ, η) satisfying (54). By multiplying estimate (70) by η and adding (68), we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ

2
(η +∆t)‖∇u

n+1‖2L2(Ω) +

(
β

2
+

α

2
η + α∆t

)
(Qn+1)2

+

(
γ

2
+

γ∆t

2τ

)
(V n+1

imp )2 +
(η
2
−
(
C

(3)
Ω L2 + C

(7)
Ω Mη

)
‖∇u

n‖L2(Ω)

)
∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

≤ ρ

2
‖un‖2L2(Ω) +

µ

2
η ‖∇u

n‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2

+

(
C2
Γ

2µ
+

κ2

4δρ
η

)
∆t(Pn+1)2. (71)

Recalling that A is defined by (58) and defining B̃ by

B̃ = C
(3)
Ω L2 + C

(7)
Ω Mη, (72)

since
∣∣Qn+1

∣∣ ≤ CΓ

∥∥∇u
n+1
∥∥
L2(Ω)

, and
∥∥un+1

∥∥
L2(Ω)

≤ CP

∥∥∇u
n+1
∥∥
L2(Ω)

by Poincaré inequality, we

proceed as in the continuous case in order to derive the discrete analogue of estimate (57):

(
ρ

2
+

µ

8C2
P

∆t

)
‖un+1‖2L2(Ω) +

(µη
2

+
µ

8
∆t
)
‖∇u

n+1‖2L2(Ω)

+

(
β

2
+

α

2
η +

(
α+

µ

4C2
Γ

)
∆t

)
(Qn+1)2 +

(
γ

2
+

γ∆t

2τ

)
(V n+1

imp )2

+∆t
(
A− B̃ ‖∇u

n‖L2(Ω)

)∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ ρ

2
‖un‖2L2(Ω) +

µ

2
η ‖∇u

n‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2

+

(
C2
Γ

2µ
+

κ2

4δρ
η

)
∆t(Pn+1)2. (73)

Recalling the definition of D, see (60), and introducing the approximation of Ψ(tn) defined by

Ψn :=
ρ

2
‖un‖2L2(Ω) +

µη

2
‖∇u

n‖2L2(Ω) +

(
β

2
+

α

2
η

)
(Qn)2 +

γ

2
(V n

imp)
2,

we obtain

Ψn+1 (1 +D∆t) + ∆t
(
A− B̃ ‖∇u

n‖L2(Ω)

) ∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ Ψn +∆tHn+1,

where Hn+1 = H(tn+1), H being defined by (59). Then, if
∥∥∇u

k
∥∥
L2(Ω)

≤ A
2B̃

, for all k ∈ {0, ..., n}, we
get

Ψn+1 ≤ Ψ0

(1 +D∆t)n+1
+

max
k∈{0,...,n+1}

Hk

D

(
1− 1

(1 +D∆t)n+1

)
. (74)

Assuming that

Ψ0 ≤ ηµ

8

A2

B̃2
,

max
k∈{0,...,n+1}

Hk

D ≤ ηµ

8

A2

B̃2
,

we conclude that

Ψn+1 ≤ ηµ

8

A2

B̃2
, and

∥∥∇u
n+1
∥∥
L2(Ω)

≤ A
2B̃

. (75)

Consequently, by induction, we can prove that the solution stays at each time iteration in the same
ball defined by estimate (75).

• Case τ = +∞.
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In this case we cannot take advantage of the dissipitation with respect to the volume V n
imp. Taking

u
n+1 as a test function, we obtain

ρ

2
‖un+1‖2L2(Ω) +

µ

2
∆t‖∇u

n+1‖2L2(Ω)

+
β

2
(Qn+1)2 + α∆t(Qn+1)2 +

γ

2
(V n+1

imp )2

≤ ρ

2
‖un‖2L2(Ω) +

β

2
(Qn)2 +

γ

2
(V n

imp)
2 +

C2
Γ

2µ
∆t(Pn+1)2

+ C
(3)
Ω L2∆t ‖∇u

n‖L2(Ω)

∥∥Aµ,αu
n+1
∥∥2
ρ,β

. (76)

Next, once again we take Aµ,αu
n+1 as a test function. Here we have to control the term

γ∆t

∣∣∣∣V
n+1
imp

∫

ΓW

Aµ,αu
n+1 · n

∣∣∣∣

without using the dissipative term γ∆t
τ (V n+1

imp )2 of (68) that is equal to zero in the case τ = +∞. We
have, by using Lemma 1 and the definition of ‖·‖ρ,β :

γ∆t

∣∣∣∣V
n+1
imp

∫

ΓW

Aµ,αu
n+1 · n

∣∣∣∣ ≤
γκ√
ρ
∆t|V n+1

imp |
∥∥Aµ,αu

n+1
∥∥
ρ,β

≤ κ2γ2

δρ
∆t(V n+1

imp )2 + δ∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

, (77)

for δ > 0 that will be chosen latter. Remembering estimate (45) of the linear forcing terms and estimate
(69) of the convection term, we obtain

µ

2

∥∥∇u
n+1
∥∥2
L2(Ω)

+
α

2
(Qn+1)2 +∆t

∥∥Aµ,αu
n+1
∥∥2
ρ,β

≤ µ

2
‖∇u

n‖2L2(Ω) +
α

2
(Qn)2 +

κ2γ2

δρ
∆t(V n+1

imp )2 +
κ2

4δρ
∆t(Pn+1)2

+
(
2δ∆t +C

(7)
Ω M∆t ‖∇u

n‖L2(Ω)

) ∥∥Aµ,αu
n+1
∥∥2
ρ,β

.

Consequently by choosing 2δ = 1
2 , we have

µ

2

∥∥∇u
n+1
∥∥2
L2(Ω)

+
α

2
(Qn+1)2 +

(
1

2
− C

(7)
Ω M‖∇u

n‖L2(Ω)

)
∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

≤ µ

2
‖∇u

n‖2L2(Ω) +
α

2
(Qn)2 + 4

κ2γ2

ρ
∆t(V n+1

imp )2 +
κ2

ρ
∆t(Pn+1)2. (78)

Multiplying (78) by a homogeneity coefficient r and adding (76) yields

ρ

2
‖un+1‖2L2(Ω) +

µ

2
(r +∆t)‖∇u

n+1‖2L2(Ω)

+

(
β

2
+

rα

2
+ α∆t

)
(Qn+1)2 +

(
γ

2
− 4

rκ2γ2

ρ
∆t

)
(V n+1

imp )2

+
(r
2
−
(
C

(3)
Ω L2 + rC

(7)
Ω M

)
‖∇u

n‖L2(Ω)

)
∆t
∥∥Aµ,αu

n+1
∥∥2
ρ,β

≤ ρ

2
‖un‖2L2(Ω) +

rµ

2
‖∇u

n‖2L2(Ω)

+

(
β

2
+

rα

2

)
(Qn)2 +

γ

2
(V n

imp)
2 +

(
C2
Γ

2µ
+

rκ2

ρ

)
∆t(Pn+1)2. (79)

Thus, if we impose

∆t <
ρ

8rκ2γ
= ∆tr,
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and assuming that

∥∥∥∇u
k
∥∥∥
L2(Ω)

≤ r

4
(
C

(3)
Ω L2 + rC

(7)
Ω M

) , ∀k ∈ {0, ..., n}, (80)

we obtain, thanks to discrete Gronwall Lemma, the following discrete stability estimate

ρ

2
‖un+1‖2L2(Ω) +

rµ

2
‖∇u

n+1‖2L2(Ω) +

(
β

2
+

rα

2

)
(Qn+1)2 +

γ

2
(V n+1

imp )2 +
r

4
∆t

n+1∑

k=0

∥∥∥Aµ,αu
k
∥∥∥
2

ρ,β

≤ e
T

∆tr−∆t

(
ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u

0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2 +

(
C2
Γ

2µ
+

rκ2

ρ

)
∆t

N∑

k=0

(Pk)2

)
. (81)

Consequently to satisfy (80) for k = n + 1 and obtain the desired result by induction, the data
have to verify

e
T

∆tr−∆t

[ρ
2
‖u0‖2L2(Ω) +

rµ

2
‖∇u

0‖2L2(Ω) +

(
β

2
+

rα

2

)
(Q0)2 +

(
C2
Γ

2µ
+

rκ2

ρ

)
∆t

N∑

k=0

(Pk)2
]

≤ r3µ

32
(
C

(3)
Ω L2 + rC

(7)
Ω M

)2 . (82)

The above condition requires that the initial conditions, the forcing term as well as the final time T
are small enough.

Note that a standard fixed point argument [41, 27] allows us to obtain the same kind of stability
bound for the solution of system (11) with I = 1 together with the existence of a strong solution.

Remark 20. Let us comment the dependency on the homogeneity constant r. The upper bounds defined
by (80) and (82) are increasing with respect to r, are equal to zero for r = 0 and have a finite limit as
r goes to +∞. Moreover, at the same time, the critical time step ∆tr goes to zero as r goes to +∞
and so does the exponential growth. Thus, large values for r induce restrictive smallness conditions on
the time step and on the data. For small values for r the condition on the time step is dropped but the
upper bound on the data goes to 0.

Remark 21. We can already note that for typical Windkessel model in blood flow for which τ < +∞,
we can ensure global-in-time stability of the semi-discrete solution for small enough initial data and
external forces, whereas for typical Windkessel model in airflow for which τ = +∞ we exhibit restrictive
sufficient conditions on the time step and on the data (initial data, external forces, final time). In this
case, the restriction on the time step writes ∆t < ρ

8rκ2γ
. In particular the smaller the Windkessel

compliance is, the more restrictive the conditions on the data and the time step are. Thus when ρ goes
to zero or when γ goes to infinity the time step goes to zero.

Remark 22. Note that we cannot extend easily the proof of Theorem 5 to the fully-discretized system,
unlike for the Stokes system. To do so one should introduce the finite element discrete analogue of
Aµ,α, see [25] in which this type of analysis is done for the Navier-Stokes system with homogeneous
Dirichlet boundary conditions.

Remark 23 (Case γ = 0). As for the continuous case, it is sufficient to choose Aµ,αu
n+1 as a test

function in order to derive a stability estimate, as in Remark 17. In this case the system is also
dissipative and no condition on the time step is required for the stability.
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4.2.2 Explicit coupling

We now focus on the semi-discretized Navier-Stokes-Windkessel model with explicit coupling. More
precisely, as for the Stokes-Windkessel model with explicit coupling, the inertia of the 0D model
associated to the parameter β is treated implicitly whereas the terms related to the parameters α and
γ are treated explicitly. Moreover we consider a semi-implicit treatment of the convective term. It
thus corresponds to the problem (11) with ε = 1, m = n and I = 0. We have all the ingredients to
study this case, since it will be a mix of the study done for the Stokes system with explicit coupling
and the study of the Navier-Stokes system.

Theorem 6. Let µ > 0. Assume that the artificial boundaries Γ0 and ΓW meet the lateral boundaries
Γℓ at angle π

2 and that each boundary is smooth enough. Assume that α ≥ 0, β ≥ 0, γ > 0 and
0 < τ ≤ +∞. The discrete solution of (11) with ε = 1, I = 0 and m = n satisfies a discrete stability
estimate, under restrictive condition on the data (final time, initial data and external forces) and on
the time step. More precisely, let r be a positive homogeneity constant, assuming that ∆t < λ1 (where
λ1 is defined by (31)) and that

ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u

0‖2L2(Ω) +
γ

δ∆t

(V 1
exp)

2

2
+

β

2
(Q0)2 +∆t

(
C2
Γ

2µ
+

2rκ2

ρ

) N∑

k=0

(Pk)2

≤ r3µe−CNS
∆t,rT e

− T
λ1−∆t

32
(
C

(3)
Ω L2 + rC

(7)
Ω M0

)2

with

CNS
∆t,r = CS

∆t + r

(
2α2κ4

ρ2
+

8κ2γδ∆t

ρ

)
, (83)

(the constant CS
∆t being defined in Theorem 3) and

M0 := C
(2)
Ω

(
ρ

µ
+ C

(1)
Ω κ

β

µ

)
, (84)

then the following discrete estimate holds true

ρ

2
‖un+1‖2L2(Ω) +

rµ

2
‖∇u

n+1‖2L2(Ω) +
γ

δ∆t

(V n+2
exp )2

2
+

β

2
(Qn+1)2 +

r

4
∆t

n+1∑

k=0

∥∥∥Aµ,0u
k
∥∥∥
2

ρ,β

≤ eC
NS
∆t,rT e

T
λ1−∆t

(
ρ

2
‖u0‖2L2(Ω) +

rµ

2
‖∇u

0‖2L2(Ω) +
γ

δ∆t

(V 1
exp)

2

2

+
β

2
(Q0)2 +

(
C2
Γ

2µ
+

2rκ2

ρ

)
∆t

n∑

k=0

(Pk)2

)
.

Note that here the discrete estimates are derived on the system with a semi-implicit treatment of
the convection term. Nevertheless a fixed point procedure could enable to prove a similar estimate in
the case of an implicit treatment of this term, namely in the case I = 1.

Proof. By taking u
n+1 as a test function in the variational formulation (11) with ε = 1, I = 0 and

m = n following the same lines as in the proof of Theorem 3 in the case β ≥ 0 and using moreover the
following estimate of the convection term

∣∣∣∣ρ
∫

Ω
(un∇)un+1

u
n+1

∣∣∣∣ ≤ ρ ‖un‖L4(Ω)

∥∥∇u
n+1
∥∥
L2(Ω)

∥∥un+1
∥∥
L4(Ω)

≤ C
(3)
Ω L2 ‖∇u

n‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

,
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we get

ρ

2

(
1− ακ2

ρ
∆t− 2γκ2

ρ
∆t2

)
‖un+1‖2L2(Ω) +

µ∆t

2
‖∇u

n+1‖2L2(Ω)

+
γ

δ∆t

(V n+2
exp )2

2
+

γ∆t

τ
(V n+1

exp )2 +
β

2
(Qn+1)2

≤ ρ

2

(
1 +

ακ2

ρ
∆t

)
‖un‖2L2(Ω) +

γ

δ∆t

(
1 +

2∆t2

τ2

)
(V n+1

exp )2

2

+
β

2
(Qn)2 +

C2
Γ

2µ
∆t(Pn)2 + C

(3)
Ω L2 ‖∇u

n‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

, (85)

where δ∆t have been previously defined in the proof of Theorem 3 (see (23)). As the coupling is explicit
the next test function to consider is Aµ,0u

n+1. Note that the constant L appearing in the previous
estimate (85) does not depend on the parameter α. Following the same lines as in the proof of Theorem
5 leads to

µ

2

∥∥∇u
n+1
∥∥2
L2(Ω)

+∆t
∥∥Aµ,0u

n+1
∥∥2
ρ,β

≤ µ

2
‖∇u

n‖2L2(Ω) +
κ2

4δρ
∆t(Pn+1)2 + C

(7)
Ω M0∆t ‖∇u

n‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥2
ρ,β

+ α∆t

∣∣∣∣Q
n

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣+ γ∆t

∣∣∣∣V
n+1
exp

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ . (86)

Here the constant M0 is associated to the operator Aµ,0 and thus is defined by (35) with α = 0
(see (84)). We next have to estimate the last two terms of the right hand side of (86) corresponding

to the explicit coupling. Let us first consider α∆t
∣∣∣Qn

∫
ΓW

Aµ,0u
n+1 · n

∣∣∣. By Lemma 1 and Young’s

inequality, we have

α∆t

∣∣∣∣Q
n

∫

ΓW

Aµ,0u
n+1 · n

∣∣∣∣ ≤
ακ2√
ρ
∆t ‖un‖L2(Ω)

∥∥Aµ,0u
n+1
∥∥
ρ,β

≤ α2κ4

4δρ
∆t ‖un‖2L2(Ω) + δ∆t

∥∥Aµ,0u
n+1
∥∥2
ρ,β

, (87)

where δ > 0 will be chosen later. Next we estimate γ∆t
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At this stage we do not distinghish two cases as we did previoulsly. In the general case we can not

take advantage of the dissipation of the volume, thus we estimate γ∆t
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did in the implicit coupling, see (77):
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Thus from (86) multiplied by a homogeneity coefficient r > 0, using (87), choosing δ = 1
4 , and adding
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(85) we obtain
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Next remembering the definition of the polynomial function P (see (30)) and its positive root λ1 (see
(31)) and using the lower bound (32), we have
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Thus assuming that
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) , ∀k ∈ {0, ..., n}, (91)

and if we moreover impose ∆t < λ1, we obtain thanks to the discrete Gronwall Lemma that
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with CNS
∆t,r defined by (83). Consequently if the data satisfy
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we obtained the desired result by induction.
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Remark 24. Let us discuss the so called dissipative case, namely τ < +∞ for which we could have
tried to take advantage of the volume dissipation. In this case we can reproduce (52) to obtain
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Thus by (87) and (92), the bound (86) becomes
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By choosing δ and η satisfying (54), the previous estimate (93) writes
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By multiplying (94) by η and adding (85), leads to
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Let us define B0 by

B0 = C
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(7)
Ω ηM0. (95)

Note that B0 corresponds to the constant B̃ defined by (72) with α = 0. Next remembering the definition
of the polynomial function P (see (30)) and its positive root λ1 (see (31)) and using the the lower bound
(32), remembering also the definitions of A defined by (58) and of H defined by (59), we have
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, for all k ∈ {0, ..., n}, and assuming that ∆t < λ1, we obtain thanks to the
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discrete Gronwall Lemma
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where
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ηα2κ4

8δρ2
.

Consequently the desired discrete stability estimate can be proven by induction assuming that the data
of the problem satisfy
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As a conclusion, in the case of the semi-discrete Navier-Stokes system coupled explicitly to the 0D
model, the obtained stability estimates are quite similar in both considered cases. In both proofs, we
exhibit a similar sufficient condition on the time step (which is the same as for the Stokes system) and
restrictive assumptions on the data imposing smallness of the initial data as well as on the applied
forces but also on the global time T . In particular in the so called dissipative case when explicity
coupled to the Navier-Stokes equation the system does not dissipate energy anymore.

Remark 25. As in the proof of Theorem 3 we can adapt the previous calculations to the case where
β > 0 and take advantage of the inertia of the 0D model. For the sake of simplicity we do not reproduce
the calculations here.

Remark 26. For the case where τ < +∞ in order to control the exponential growth e
2∆t

τ2
T one could

impose to the time step to satisfy ∆t ≤ 2τ2

T which could be a rather restrictive condition in particular
for large time T or small relaxation time τ .

Remark 27 (Case γ = 0). Once again it is sufficient to choose Aµ,αu
n+1 as a test function. Never-

theless, since no control on the auxiliary volume is required, no restriction on the time step emerges
from the subsequent analysis. Yet the stability estimate involves an exponential growth coming from the
explicit treatment of the resistive 0D model. Thus a sufficient smallness condition on the initial data,
external forces and final time guarantees the stability of the discrete solution.

5 Conclusion

In this paper we derived energy or stability estimates for Stokes-Windkessel and Navier-Stokes-Windkessel
models, both in the continuous setting and in the semi-discrete one with implicit or explicit coupling.
One of the key ingredients in the derivation is the control of an auxiliary volume associated to the 0D
model. This property is obtained by taking the velocity field u as a test function in the variational
formulation for both Stokes and Navier-Stokes regimes. Nevertheless in the Navier-Stokes regime, it
is not sufficient to obtain a stability estimate; in this case we have to consider a combination of the
previous estimate with another one in which Aµ,αu is used as a test function, where Aµ,α is a new
Stokes-like operator adapted to our coupled system. This enables us to control both the convective
term and the auxiliary volume.

In particular, we have shown that for the standard Windkessel model used in bloodflow modeling,
namely the RCR model (for which α > 0, β = 0, γ > 0 and 0 < τ < +∞), “energy” dissipation holds
true and can be also derived when considering the Navier-Stokes system under smallness assumptions
on the data. Meanwhile the standard Windkessel model used in airflow modeling (for which α > 0,
β = 0, γ > 0 and τ = +∞) is not dissipative, leading to restrictive conditions – on the time step, on
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the data, on the final time – for the stability of the Navier-Stokes system even for the implicit coupling;
this echoes the numerical simulations of such coupled problems for which instabilities arise leading to
the use of stabilization techniques that make it possible to get away from smallness conditions on the
data or, at least, give access to a larger range of data, see [5] where benchmark tests are performed for
various stabilization methods. When considering an explicit coupling for the Navier-Stokes system, in
both cases (RCR and RC models), “energy” dissipation does not hold anymore; stability estimates are
derived but they require the same type of restrictive conditions.

We also paid attention to the dependency on the various physical parameters. Even if some of these
constants are not explicit and depend on the geometry (such as the Poincaré constant, for instance)
and thus on the considered test case, the derived estimates and their related validity conditions give
a good insight into the behaviour of coupled systems according to the underlying fluid involved. For
instance increasing the inertance in the 0D model (namely taking greater values for β) which is always
treated in an implicit way stabilizes the semi-discretized system for the Stokes regime whereas it leads
to a more restrictive smallness condition on the data in the Navier-Stokes regime.

All these theoretical achievements shall be further investigated in a forthcoming paper thanks to
numerical experiments in order to quantify how sharp the derived estimates are, which range of data
(for instance, applied pressures) enable stable simulations for the Navier-Stokes-Windkessel system
without stabilization technique, which method has the best performance for each application field.
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