
HAL Id: hal-01734619
https://hal.science/hal-01734619v1

Submitted on 14 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Containment With Soft Polytomies
Matthias Bentert, Josef Malík, Mathias Weller

To cite this version:
Matthias Bentert, Josef Malík, Mathias Weller. Tree Containment With Soft Polytomies. SWAT
2018, Jun 2018, Malmö, Sweden. pp.9:1-9:14. �hal-01734619�

https://hal.science/hal-01734619v1
https://hal.archives-ouvertes.fr

Tree Containment Wih Soft Polytomies

Matthias Bentert1, Josef Malík2, and Mathias Weller3

1TU Berlin, Germany, matthias.bentert@tu-berlin.de
3Czech Technical University, Prague, Czech Republic, malikjo1@fit.cvut.cz

3LIGM, CNRS, Université Paris Est, Marne-la-Vallée, France, mathias.weller@u-pem.fr

March 14, 2018

Abstract

The Tree Containment problem has many important applications in the study of evolution-
ary history. Given a phylogenetic network N and a phylogenetic tree T whose leaves are labeled
by a set of taxa, it asks if N and T are consistent. While the case of binary N and T has received
considerable attention, the more practically relevant variant dealing with biological uncertainty has
not. Such uncertainty manifests itself as high-degree vertices (“polytomies”) that are “jokers” in the
sense that they are compatible with any binary resolution of their children. Contrasting the binary
case, we show that this problem, called Soft Tree Containment, is NP-hard, even if N is a
binary, multi-labeled tree in which each taxon occurs at most thrice. On the other hand, we reduce
the case that each label occurs at most twice to solving a 2-SAT instance of size O(|T |3).

1 Introduction

With the dawn of molecular biology also came the realization that evolutionary trees, which have been
widely adopted by biologists, are insufficient to desceibe certain processes that have been observed in
nature. In the last decade, the idea of reticulate evolution, supporting events such as hybridization
(occurring frequently in plants) and horizontal gene transfer (a dominating factor in bacterial evolu-
tion) [2, 14]. Reticulate evolution is described using “phylogenetic networks” (see the monographs by
Gusfield [10] and Huson et al. [12]). A central question when dealing with both phylogenetic trees and
networks is whether or not they represent consistent information, formulated as the question whether
or not the network “displays” the tree. This problem is known as Tree Containment and it has
been shown NP-hard [13, 16]. Due to its importance in the analysis of evolutionaryr history, attempts
have been made to identify polynomial-time computable special cases [1, 5, 6, 8, 9, 13, 16, 17], as well
as moderately exponential-time algorithms [7, 17]. However, all of these works are limited to binary
networks and trees.

In reality, we cannot hope for perfectly precise evolutionary histories. In particular, speciation
events (a species splitting off another) occuring in rapid succession (only a few thousand years between
speciations) can often not be reliably placed in the correct order they occurred. The fact that the
correct order of bifurcations is unknown is usually modeled by multifurcating vertices and, to tell them
apart from speciation events resulting in multiple species, the former are called “soft polytomies” and
the latter are called “hard polytomies”. Soft polytomies have a noteworthy impact on the question of
whether a tree is compatible with a network: since a soft polytomy (also called “fan”) on the taxa a,
b, and c represents lack of knowledge regarding their history, we would consider any binary tree on
the taxa a, b, and c compatible with it. In this work, we present first algorithmic results for Tree
Containment with soft polytomies (with we call Soft Tree Containment). We show that it is
NP-hard, even if the network is “reticulation-visible” and all reticulation vertices have at most three
parents, but if we lower this bound to two, the problem becomes solvable in cubic time.

1

Preliminaries. A phylogenetic network (or network for short) on a set X of taxa is a rooted, leaf-
labeled DAG in which all vertices that do not have in-degree at most one have out-degree exactly one.
The former vertices are called tree vertices and the latter are called reticulations. A network without
reticulations is called a (phylogenetic) tree. By default, no label occurs twice in a network, and we will
make exceptions explicit by calling networks in which a label may occur more than once multi-labeled
(note that networks are a special case of multi-labeled networks in which each label occurs only once).
This allows us to use leaves and labels (taxa) interchangably. For brevity, we abbreviate {x, y} to xy,
and {x, y, z} to xyz. Let N be a network with root ρN . We define a relation “≤N ” on subsets of V (N)
such that U ≤N W if and only if N contains a u-w-path for each u ∈ U and w ∈ W . If u ≤N w, we
call u an ancestor of v and v a descendant of u. For each v ∈ V (N), we let Nv be the subnetwork
of N induced by {u | u ≤N v} and we denote the set of leaf-labels in Nv by L(v) and abbreviate
L(N) := L(ρN). Such a set is also called a cluster of N . Note that, if N is a tree, Nv is the subtree
rooted at v. We abbreviate n := |L(ρN)|. For any X ⊆ V (N), we let LCAN (X) be the set of least
common ancestors of X, that is, the minima (wrt. ≤N) among all vertices u of N with X ≤N u (in
particular, if N is a tree, LCAN (X) is a single vertex, not a set). If clear from context, we may drop
the subscript. Note that, in trees, the LCA of any three vertices has a unique minimum. For any
U ⊆ V (N), we denote the result of removing all vertices v that do not have a descendant in U by N |L
and N ||L is the result of supressing all degree-two vertices in N |L. Note that, if N is a tree, then N |L
is the smallest subtree of N containing the vertices in L and the root of N and N ||L is the smallest
topological minor of N containing the vertices in L and the root of N . A vertex u in N is called stable
on v if all ρN -v-paths contain u. If, for each reticulation u in N there is some leaf ` such that u is
stable on `, then N is called reticulation visible. Suppressing a vertex u in N with unique parent p and
unique child c refers to the act of removing u and adding the edge pc, unless this edge already exists.
A network is binary if all vertices except the root have degree (=in-degree + out-degree) at most three
and the root has degree two. A binary network NB on three leaves a, b, and c is called a triplet and
we denote it by ab|c if c is a child of the root of NB. NB is called binary resolution of a network N
if N is a contraction of NB. In this case, there is a surjective function χ : V (NB)→ V (N) such that,
contracting all edges uv of NB with χ (u) = χ (v) results in N (more formally, for each x, y ∈ V (N),
the edge xy exists in N if and only if there is an edge between χ−1 (x) and χ−1 (y) in NB). We call
such a function contraction function of NB for N . We suppose that all binary resolutions are minimal,
that is, they do not contain biconnected components with exactly one incoming and one outgoing edge.
Observe that, when contracting edges of NB to form N , we never create vertices with in-degree and
out-degree more than one.

Observation 1. Let NB be a binary resolution of a network N , let χ be a contraction function of
NB for N , and let u ∈ V (N). Then, χ−1 (u) does not contain a reticulation and a tree vertex with
out-degree more than one.

If N contains a subgraph S that is isomorphic1 to a tree T , then we simply say that N contains a
subdivision of T . Slightly abusing notation, we consider each vertex v ∈ V (T) equal to the vertex of S
(and, thus, of N) that v is mapped to by an isomorphism. Thus, S consists of V (T) and some vertices
of in- and out-degree one. The following definition is central to this work.

Definition 1. Let N be a network and let T be a tree. Then,
• N firmly displays T if and only if N contains a subdivision of T and
• N softly displays T if and only if there are binary resolutions NB of N and TB of T such that
NB firmly displays TB.

Definition 1 is motivated by the concept of “hard” and “soft” polytomies (that is, high degree vertices):
In phylogenetics, a polytomy is called firm or hard if it corresponds to a split of multiple species at
the same time and soft if it represents a set of binary speciations whose order cannot be determined
from the available data. In this sense, a polytomy is compatible with another if and only if there is a
biological “truth”, that is, a binary resolution, that is common to both. Note that, for binary N and

1In this work, “isomorphic” always refers to isomorphism respecting leaf-labels, that is, all isomorphisms must map a
leaf of label λ to a leaf of label λ.

2

T , the two concepts coincide. Furthermore, for trees on the same label-set, the concepts of display and
binary resolution coincide.

Observation 2. Let T and TB be trees on the same leaf-label set and let TB be binary. Then, T softly
displays TB if and only if TB is a binary resolution of T .

Throughout this work we will mostly use the soft variant and we will refer to it simply as “display”
for the sake of readability. Note that a binary tree displays another binary tree if and only if they are
isomorphic. Thus, in the special case that N is a tree, the “display” relation is symmetrical, leading to
the following observation.

Observation 3. A tree T displays a tree T ′ if and only if T ′ displays T .

Finally, the central problem considered in this work is the following.

Soft Tree Containment
Input: A network N and a tree T
Question: Does N softly display T?

2 Display with Soft Polytomies

The concept of “display” is well-researched for binary trees, in particular, triplets.

Observation 4 ([4]). Let TB be a binary tree and let a, b, c ∈ L(TB). Then, TB displays ab|c if and
only if LCA(ab) < LCA(bc) = LCA(ac). Indeed, TB is uniquely identified by the set D of displayed
triplets, that is, TB is the only binary tree displaying the triplets in D.

However, the “display”-relation with soft polytomies lacks a solid mathematical base in the literature.
In this section, we develope alternative characterizations of the term “(softly) display”. To do this, we
use the following handy characterization of isomorphism for binary trees.

Observation 5. Binary trees TB and T ′B on the same label-set are isomorphic if and only if, for each
u ∈ V (TB) and each Y ⊆ L(u), u has a child v with L(v) = Y if and only if LCAT ′

B
(L(u)) has a child

v′ with L(v′) = Y .

Lemma 1. Let N and T be trees. Then, N displays T if and only if, for all u ∈ V (T) and v ∈ V (N),
it holds that L(u) ⊆ L(v), L(u) ⊇ L(v) or L(u) ∩ L(v) = ∅.
Proof. Observe that, since each label appears only once in N and T , it holds that N displays T if and
only if there are binary resolutions NB of N and TB of T such that NB and TB are isomorphic.

“⇒”: Let N softly display T . Towards a contradiction, assume that there are u ∈ V (N) and
w ∈ V (T) such that L(u) * L(v), L(u) + L(v) and L(u)∩L(v) 6= ∅, that is, there are x ∈ L(u)\L(w),
y ∈ L(u) ∩ L(w), and z ∈ L(w) \ L(u). Since there are binary resolutions NB and TB of N and T ,
respectively, such that NB and TB are isomorphic, there is a vertex u′ in NB with L(u′) = L(u) and
a vertex v′ in T with L(v′) = L(v). Since NB and TB are trees and each leaf-label only appears once
in each of them, NB

u′ contains the leaves x and y but not the leaf z. Analogously, TBv′ contains the
leaves y and z but not the leaf x, contradicting NB being isomorphic to TB.

“⇐”: In order to show the contraposition, suppose that N does not softly display T . Since N
does not softly display T , for any binary resolutions NB of N and TB of T , it holds that NB and TB

are not isomorphic. By Observation 5, there are vertices p ∈ V (NB) and q := LCATB (L(p)) with
children p1, p2 and q1, q2 of q, respectively, such that L(p1) 6= L(q1) and L(p1) 6= L(q2). We will use
the fact that L(p1)] L(p2) = L(p) = L(q) = L(q1)] L(q2).

Case 1: L(pi) (L(qj) for any i, j. Then, there are taxa

x ∈ L(pi) ∩ L(qj) = L(qj) \ L(p3−i)
y ∈ L(qj) \ L(pi) = L(qj) ∩ L(p3−i), and
z ∈ L(q3−j) = L(q3−j) \ L(pi) = L(p3−i) \ L(qj).

The case where L(qj) (L(pi) holds is analogous.
Case 2: None of L(p1), L(p2), L(q1), and L(q2) is subset of another. Then, there are taxa x, y, z

such that x ∈ L(p1) ∩ L(q1) y ∈ L(q1) \ L(p1), and z ∈ L(q1) \ L(p1).

3

We can relate the two forms of “display” for triplets in non-binary trees.

Observation 6. Let T be a tree and let a, b, c ∈ L(T). Then,
(a) T firmly displays ab|c if and only if LCA(ab) <T {LCA(ac),LCA(bc)}.
(b) T firmly displays ac|b or bc|a if and only if T does not softly display ab|c.

Lemma 2. A tree T on X softly displays a tree T ′ on X ⇔ for all a, b, c ∈ X,
T firmly displays ab|c⇒ T ′ softly displays ab|c, and
T ′ firmly displays ab|c⇒ T softly displays ab|c

Proof. “⇒”: By Observation 3, it suffices to show the first of the claimed implications, so let LCAT (ab) <T
LCAT (abc) and assume towards a contradiction that T ′ does not display ab|c. By Observation 6, we
can suppose without loss of generality that T ′ firmly displays ac|b. But then, for u := LCAT (ab) and
v := LCAT ′(ac), we have a ∈ L(u) ∩ L(v), b ∈ L(u) \ L(v), and c ∈ L(v) \ L(u). Thus, by Lemma 1,
T does not display T .

“⇐”: Towards a contradiction, assume that T does not display T ′. By Lemma 1, there are u ∈ V (T)
and v ∈ V (T ′) and a, b, c ∈ X such that a ∈ L(u) ∩ L(v), b ∈ L(u) \ L(v), and c ∈ L(v) \ L(u). Thus,
LCAT (ab) <T LCAT (abc) and LCAT ′(ac) <T ′ LCAT ′(abc). By Observation 6, T firmly displays ab|c
and T ′ firmly displays ac |b. Applying the implications of the lemma, we get that T ′ softly displays
ab|c and T softly displays ac|b, thereby contradicting Observation 6.

The final ingredient to our alternative characterization is the observation that, in (multi-labeled) trees,
edge contraction does not change the ancestor relation.

Observation 7. Let T be a tree, let T ′ be the result of contracting a vertex u onto its parent v, and
let Y and Z be sets of leaves common to T and T ′. Then,
(a) LCAT (Y) ≤T LCAT (Z)⇔ LCAT ′(Y) ≤T ′ LCAT ′(Z) and
(b) LCAT (Y) <T LCAT (Z)⇐ LCAT ′(Y) <T ′ LCAT ′(Z).

We can now prove the following alternative definition of “display”.

Lemma 3. Let T be a tree on the label-set X.
(a) T displays the leaf-triplet ab|c if and only if LCA(ab) ≤ {LCA(bc),LCA(ac)}.
(b) T displays a binary tree TB on X if and only if T displays all triplets displayed by TB.
(c) T displays a tree T ′ on X (and vice versa) if and only if there is a binary tree TB on X displayed

by both T and T ′.
(d) A network N displays T if and only if N contains (as subgraph) a tree T ′ on X that displays T .

Proof. (a). By definition, T displays ab | c if and only if there is a binary resolution TB of T dis-
playing ab | c. By Observation 4, TB displays ab | c if and only if LCATB (ab) <TB LCATB (abc) =
LCATB (ac) = LCATB (bc). Now, since TB is binary, we cannot have LCATB (ab) = LCATB (bc) =
LCATB (bc) and, thus, LCATB (ab) ≤TB {LCATB (ac),LCATB (bc)} which, by Observation 7, is equiva-
lent to LCAT (ab) ≤T {LCAT (ac),LCAT (bc)}.

(b). “⇒”: Assume towards a contradiction that a triplet ab | c of TB is not displayed by T and
recall that {LCAT (ab),LCAT (ac),LCAT (bc)} has a unique minimum x. Since, by (a), LCAT (ab) 6≤T
LCAT (abc), we have x <T LCAT (ab) ≤T LCAT (abc). Without loss of generality, let x = LCAT (ac).
Then, by Observation 7, LCATB (ac) <TB LCATB (abc), implying that TB displays ac |b. Hence, TB
displays conflicting triples, contradicting Observation 4.

“⇐”: Assume towards a contradiction that T does not display TB. By Lemma 1, there are vertices
u ∈ V (T) and vB ∈ V (TB) such that L(u) and L(vB) intersect, but are not in the subset relation, that
is, there are x ∈ L(u) \ L(vB), y ∈ L(vB) \ L(u) and z ∈ L(u) ∩ L(vB). Thus, x, z <T LCAT (xz) ≤T
u <T LCAT (xyz) and y, z <TB LCATB (yz) ≤TB vB <TB LCATB (xyz). Then, by (a), TB displays yz|x
implying that T displays yz |x since all triplets displayed by TB are displayed by T . By (a), we have
LCAT (yz) ≤T LCAT (xz), implying x, y, z <T LCAT (xz) ≤T u, which contradicts u <T LCAT (xyz).

(c). By definition, T displays T ′ if and only if there are binary resolutions TB and T ′B of T and
TB, respectively, such that TB displays T ′B. Note that, if such trees exist then they are equal since,

4

Figure 1: Illustration of the proof of
Lemma 3(d). Left: N with T ′ (bold) and T ∗

(bold and dashed). Right: NB with TB (bold)
and T ∗B (bold and dashed). χ maps each ver-
tex to itself except the encircled ones that are
mapped together.

by (b), TB displays all triplets displayed by T ′B and, by Observation 4, TB = T ′B. Conversely, by
Observation 2, all binary trees on X displayed by T and T ′ are binary resolutions of T and T ′.

(d). “⇒”: By definition, there are binary resolutions NB and TB of N and T , respectively, such that
NB displays TB, that is, there is a subdivision SB of TB that is a subgraph of NB. Let χ : V (NB)→
V (N) be the function mapping each vertex u in NB to the vertex χ (u) in N that u is contracted
to when forming N . Note that, for all vertices w ∈ V (N), the vertices in χ−1 (w) form a connected
component in NB. To show that, the vertices in χ−1 (w) also form a connected component in SB,
assume that there are vertices u and v in SB with χ (LCASB

(uv)) 6= χ (u) = χ (v) =: w. Clearly, u and
v are not in the ancestor relation in SB. Further, by Observation 1, χ−1 (w) contains only reticulations
(and degree-two vertices) or only tree vertices of NB. Since χ−1 (w) induces a connected component
in NB, the latter case implies χ (LCASB

(uv)) = χ (u) = χ (v). In the former case, there is some
γ ∈ χ−1 (w) with γ <NB

uv (note that γ ∈ uv contradicts LCASB
(uv) /∈ uv) and, since SB is a tree, it

cannot contain all edges between γ and u and v. Thus, u or v does not have a labeled leaf below it in
SB. The vertices in χ−1 (w) therefore form a connected component in SB for each w ∈ V (N). Since
(a) χ−1 (w) in SB is a subset of χ−1 (w) in NB and contracting it in NB yields N and (b) χ−1 (w) is a
connected component in SB it follows that the result T ′ of contracting χ−1 (w) for each w ∈ V (N) to
a single vertex in SB is a subgraph of N . Furthermore, SB is a binary resolution of T ′ displaying TB,
which is a binary resolution of T and, by (c), T ′ displays T .

“⇐”: By (c), there is a binary tree TB on X displayed by both T ′ and T . We construct a binary
resolution NB of N such that NB displays TB which, by Observation 2, is a binary resolution of T
(see Figure 1). To this end, let T ∗ be any spanning subgraph of N that is a tree and contains T ′ as
a subgraph, and let Y := E(N) \ E(T ∗) be the set of edges in N that are missing in T ∗. Since TB
is a binary resolution of T ′, there is a binary resolution T ∗B of T ∗ that contains a subdivision of TB.
Finally, we construct NB from T ∗B by adding representations of all edges uv ∈ Y . To this end, let
χ : V (T ∗B) → V (T ∗) be a function mapping each vertex x of T ∗B to a vertex of T ∗ such that T ∗ can
be obtained from T ∗B by contracting all edges uv in T ∗B with χ (u) = χ (v). Note that χ is surjective.
Let uv ∈ Y . In order to keep T ∗B binary while adding a representation of uv, we will first create two
new vertices uB and vB in T ∗B and then add the edge uBvB. If |χ−1 (u) | = 1, then let y be the unique
vertex in χ−1 (u) and, if y is the root of T ∗B, then add a new root uB to T ∗B, and make y its only child,
otherwise subdivide the edge between y and its parent with a new vertex uB. In both cases, add uB
to χ−1 (u). If |χ−1 (u) | > 1, then subdivide any edge between vertices in χ−1 (u), call the new vertex
uB and add it to χ−1 (u). Then, construct a new vertex vB corresponding to v in an analogous way
and add the edge uBvB. Let NB denote the result of repeating this operation for all edges uv ∈ Y .
Since NB results from T ∗B by a series of subdivisions and edge additions, we know that NB contains
a subdivision of T ∗B and, thus, displays TB. It remains to show that NB is a binary resolution of N ,
that is, N is a contraction of NB. Indeed, we show that N is equal to the result N∗ of contracting
all u, v ∈ V (NB) with χ (u) = χ (v). First, since T ∗ spans N , the image of χ equals V (N) and, thus,
V (N∗) = V (N). Second, assume that N∗ contains an edge xy that is not in N and, thus, not in T ∗.
But then, there is an edge xByB ∈ E(N∗B) such that χ (xB) = x and χ (yB) = y. Since xy is not in T ∗,
we know that xByB is not in T ∗B, so xByB has been added by the procedure above. By construction,
there is an edge uv in N such that xB ∈ χ−1 (u) and yB ∈ χ−1 (v), implying that u = x and v = y,
contradicting xy not being an edge of N . Third, assume that N contains an edge xy that is not in
N∗. Then, xy is not in T ∗. Thus, by the construction above, NB contains vertices xB ∈ χ−1 (x) and
yB ∈ χ−1 (y) such that xByB is an edge of NB. But then, xy is an edge of N∗.

5

ρN

uN

︸ ︷︷ ︸
Y

CN

(a)

uT

︸ ︷︷ ︸
Y

CT

(b)

ρN

λ

(c)

uT

λ

(d)

Figure 2: Illustration of Lemma 4: (N,T) left and (N1, T1) right.

Note that, if N contains a subdivision S of T , then any reticulation in N that is in S has in- and
out-degree one in S. Further, contracting an edge between two tree vertices of N cannot break softly
displaying T .

Observation 8. Let N be a network that displays a tree T and let N ′ be the result of contracting an
edge between two tree-vertices or two reticulations of N . Then, N ′ displays T .

Also note that, if N displays T , then the result of removing any label from N displays the result of
removing this label from T .

Observation 9. Let N be a network and let T be a tree on X. Then, N displays T if and only if
N |X′ displays T |X′ for each X ′ ⊆ X.

3 Single-Labeled Trees

In a first step, we suppose that N is a tree. While Lemma 1 already provides a means to solve this case
in polynomial time, we aim to be more efficient. If N and T are both binary, this special case is solved
using the folklore “cherry reduction”: remove a pair of leaves that are siblings in both N and T and
label their parents in N and T with the same new label λ. Here, we prove an analog for non-binary
trees that allows solving the case that N is a tree in linear time.

Lemma 4. Let N be a network on X with root ρN , let T be tree on X, let uN ∈ V (N) and uT ∈ V (T)
and let CN and CT be sets of children of uN and uT , respectively, such that
(a)

⋃
c∈CN

L(c) =
⋃
c∈CT

L(c) =: Y , and
(b) for all λ ∈ Y , all ρN -λ-paths contain some c ∈ CN .
Let λ ∈ Y , let N1 := N ||X\(Y−λ), let T1 := T ||X\(Y−λ), let N2 := N ||Y , and let T2 := T ||Y . Then, N
displays T if and only if N1 displays T1 and N2 displays T2.

Proof. Since “⇒” follows directly from Observation 9, we only show “⇐”. By Lemma 3, for each
i ∈ {1, 2}, there is a tree Qi in Ni (containing the root of Ni) that displays Ti and there is a binary
tree TBi that is displayed by both Qi and Ti. We show that the binary tree TB resulting from replacing
the leaf λ in TB1 by TB2 is displayed by both T and a subtree Q of N .

To this end, note that T is the result of replacing the leaf λ in T1 by T2 and let Q be the result
of replacing the leaf λ in Q1 by Q2. Since TBi is displayed by both Ti and Qi for all i ∈ {1, 2}, the
following argument holds for both T and Q, but we only state it for T . To show that T displays TB, it
suffices to prove that T displays all triplets displayed by TB (by Lemma 3(b)). Towards a contradiction,
assume that TB displays a triplet xy|z that T does not display.

Case 1: x, y ∈ Y . If z is also in Y , then xy |z is displayed by TB2 and, thus, by T2 and by T .
If z /∈ Y , then LCAT (xy) ≤T LCAT (Y) ≤T uT ≤T {LCAT (xz),LCAT (yz)} by (a) (and (b) when
arguing for Q instead of T) and, by Lemma 3(a), T displays xy|z.

Case 2: x or y is not in Y . Without loss of generality, let x /∈ Y . If also y /∈ Y , then λ can take
the role of z in the assumption, that is, TB displays xy|λ but T does not. But then, T 1

B displays xy|λ
but T1 does not, contradicting the fact that T1 displays T 1

B. Thus, y ∈ Y and, completely analogously,

6

V0 V1

C0

Figure 3: Illustration of Construction 1. Bold edges indicate E1.

z ∈ Y . But then, LCATB (yz) ≤TB LCATB (Y) < LCATB (xy) which, by Lemma 3(a), contradicts TB
displaying xy|z.

Finally, let T ∗ be the result of contracting LCAQ(Y) (that is, the former root of T ∗2) onto its parent
in Q. Then, T ∗ is a subtree of N since N is (isomorphic to) the result of replacing ` by N2 in N1

and contracting the the root of N2 onto its parent in the result. Since Q displays TB, so does T ∗ (by
Observation 8). Thus, T ∗ is a subtree of N that displays T and, by Lemma 3(d) N displays T .

In the following, the operation of splitting off a vertex u in a network N means to duplicate u,
remove all incoming edges from one copy of u and remove all outgoing edges from the other copy of u,
thus giving rise to N1 (where a copy of u is a leaf) and N2 (where a copy of u is the root). Lemma 4
gives rise to the following reduction rule.

Reduction Rule 1. Let (N,T) be an instance of Tree Containment, let B be a lowest biconnected
component or a cherry of N with root u such that B does not consist of a leaf and a non-leaf. Then,
split off u from N , split-off LCAT (L(u)) from T , and give the new leaf in N and T the same new label
λ.

Note that Reduction Rule 1 Further, note that the vertex u is a cut-vertex in N . Thus, the bicon-
nected components of N are not modified by application of Reduction Rule 1 and, since biconnected
components can be found in linear time [11], we conclude that Reduction Rule 1 can be exhaustively
applied in linear time.

Theorem 1. Weak Tree Containment can be solved in linear time if N and T are trees.

4 Tree Containment in Multilabeled Trees

To show that Tree Containment is NP-hard even when restricting N to be a multilabeled tree, we
reduce from 2-Union Independent Set, which asks if a graph (V,E1 ∪E2) has a size-k independent
set, and which is NP-hard even if (V,E1) is a collection of disjoint K2s (that is, a matching) and (V,E2)
is a collection of disjoint P2s and P3s [15]. For our reduction, we allow (V,E2) to also contain K3s and
demand that k equals the number of cliques in (V,E1). To prove that this variant remains NP-hard,
we slightly modify the reduction from 3-SAT given by van Bevern et al. [15].

Construction 1. Consider an instance ϕ with n variables xi andm clauses cj of 3-SAT such that each
variable occurs at least twice in ϕ and at most once in each clause. For each variable xi, let Ji be the list
of indices of clauses that contain xi or ¬xi and let Ji[`] denote the `th element of this list. Construct a
graph (V,E) as follows. For each variable xi, construct a cycle Vi of 2|Ji| vertices: (u1i , u

1
i , u

2
i , u

2
i , . . .).

For each clause cj on the variables xi, xk, x`, construct a triangle Cj = (wij , w
k
j , w

`
j). For each variable

xi and each ` ≤ |Ji|, connect wiJi[`] to u
`
i if cJi[`] contains xi, and to u`i if cJi[`] contains ¬xi. Now,

(V,E1) consist of all triangles and all edges {uji , u
j
i} while E2 contains all other edges. See Figure 3

for an illustration.

Note that (V,E1) consists of disjoint K2s and K3s and (V,E2) consist exclusively of P3s. Also note
that this generalizes to k-SAT but (V,E1) becomes a collection of disjoint K2s and Kks.

Lemma 5. ϕ is satisfiable if and only if (V,E) has a size-k independent set, where k is the number of
cliques in (V,E1).

7

N T

Figure 4: Illustration of Construction 2. Left: the initial instance of 2-Union Independent Set
with 4 colors (, , ,) and a size-4 solution encircled. Right: the non-binary tree T (boxes and
triangles indicating label i1 and i2 for a color i). Middle: the binary multi-labeled tree N with a
subdivision of T (bold, gray) corresponding to the solution to the left instance.

Proof. Note that k equals the number of cliques in (V,E1), each clique contains at most one independent
vertex, and all vertices in (V,E) are incident with some edge in E1. Therefore, (V,E) contains a size-k
independent set, if and only if a largest independent set in (V,E) contains exactly one vertex of each
clique in (V,E1). We will first show that if (V,E) contains an independent set of size k, then ϕ is
satisfiable and afterwards the other direction.

“⇐”: Let I be an independent set of size k in (V,E). Then, for each i, I contains either u1i or u1i .
By construction of Vi, it holds that if uhi ∈ I for some h, then u`i , v

`
i ∈ I for all ` ≤ |Ji|. Analogously,

if uhi ∈ I for some h, then u`i , v
`
i ∈ I for all ` ≤ |Ji|. Consider any vertex wij in the clause gadgets

that is in I. Then, wij has a unique neighbor in the variable gadget of xj which is either uhj for some h
if ¬xj occurs in clause i or u`j otherwise. If the neighbor is uhj , then all vertices u`j with 1 ≤ ` ≤ |Jj |
are in I and otherwise all vertices u`j .

We set xi to true if u1i is in I and to false if u1i is in I. Consider any clause cj in ϕ. The literal
whose corresponding vertex is in I is then set to true as its neighboring vertex u is not in I and u has
a neighbor uhi for some h if xi occurs in cj and a neighbor uhi for some h if ¬xi appears in cj . Since
each clause has at least one variable set to true, ϕ is satisfiable.

“⇒”: We will now show that if ϕ is satisfiable, then (V,E) contains an independent set of size k.
Let β be a satisfying assignment for ϕ. We construct an independent set I for (V,E) as follows. For
each xi and each ` ≤ |Ji|, the set I contains the vertices u`i and v

`
i if β(xi) = 1, and the vertices u`i

and v`i , otherwise. For each clause cj we pick one literal that is satisfied by our assignment of the
variables and put the corresponding vertex into I. Observe that I is of size k as exactly one vertex
of each clique in (V,E1) is in I. Further, I is independent since, in each variable gadget, we pick
every second vertex and, if a vertex in a clause gadget is picked, then its neighbor in the corresponding
variable gadget is not picked.

We reduce this version of 2-Union Independent Set to Soft Tree Containment for multilabeled
trees. To this end, we use an equivalent formulation where each clique in (V,E1) is represented by
a color. The problem then becomes the following: Given a vertex-colored collection of P3s, select
exactly one vertex per color such that all selected vertices are independent. Note that the number of
occurances of each color equals the size of its corresponding clique in (V,E1).
Construction 2 (See Figure 4). Given a vertex-colored collection G of P3s constructed by Construc-
tion 1, we construct a multi-labeled tree N and a tree T as follows. Construct T by first creating a
star that has exactly one leaf of each color occuring in G and then, for each leaf x with color i, adding
two new leaves colored i1 and i2, respectively, and removing the color from x. v

u w

Construct N from G as follows: For each P3 (u, v, w) where black, gray, and
white denote the colors of u, v, and w, respectively, construct the binary tree
depicted on the right, where a box or a triangle colored i represents color i1
or i2, respectively. Then, add any binary tree on |V (G)| leaves and identify
its leaves with the roots of the constructed subtrees. Notice u, v, w ∈ V (G) ∩ V (N).

8

Lemma 6. Construction 2 is correct, that is, N displays T if and only if the given collection G of P3s
has a colorful independent set using each color exactly once.

Proof. Note that N is binary and let k be the number of colors in G.
“⇒”: Let N display T , that is, N contains a binary tree S displaying T which, by Lemma 3 is

equivalent to T displaying S. Consider any color i occurring in G. Then, S contains leaves u1 and u2
in S labeled i1 and i2, respectively, and we denote their least common ancestor in S by ui. If u1 and u2
are neither siblings, nor in an uncle-nephew-relation2, then we modify S to include the sibling/uncle
of u1 in N into S instead of u2. Thus, we do not lose generality by assuming that u1 and u2 are either
siblings or in an uncle-nephew-relation. We show that the set Q =

⋃
i u

i is a size-k colorful independent
set in G. First, for each color i, we know that S contains exactly one leaf labeled i1 and one leaf labeled
i2, so ui is unique and, by construction of N , no two ui coincide, implying that Q contains exactly
one vertex of each color. Towards a contradiction, suppose that Q is not independent in G, that is,
there are colors i and j such that ui and uj are adjacent in G. Without loss of generality, ui is the
center of a P3 in G, implying that S contains the subtree ((((j1, j2), i1), i2) (that is, a caterpillar with
leaves labeled j1, j2, i1, i2 in preorder). But then, j1i1 | i2 is displayed by S but not by T , thereby
contradicting Definition 1(b).

“⇐”: Let Q be a size-k colorful independent set of G, let L be the set of leaves that, for each u ∈ Q
of color i, contains the leaves labeled i1 and i2 in Nu, and let S := N |L. Note that S is a subgraph
of N and, as N is binary, S is a subdivision of a binary tree. Since Q contains exactly one vertex of
each color in G, we know that S contains all labels that occur in T . By Definition 1(d), to show that
N displays T , it suffices to show that S displays T . To this end, assume that S displays a triplet xy|z
that T does not display. Then Definition 1(a) lets us assume LCAT (xz) <T {LCAT (xy),LCAT (yz)}
without loss of generality. Thus, x = i1, z = i2, and y = j1 for colors i 6= j. By Definition 1(a), we
have LCAS(i1j1) ≤S LCAS(i1i2). Then, i1 and i2 cannot form a cherry in S and, thus, S|{i1,i2,j1,j2} is
the subtree (((j1, j2), i1), i2). By construction of S, this implies that Q contains two vertices of a P3

in G, one of color i and one of color j, and the latter is in the middle, contradicting independence of
Q in G.

Theorem 2. Soft Tree Containment is NP-hard, even if N is a binary 3-labeled tree.

Note that the number of occurances of each label in N equals the number of occurances of each color in
G which, in turn, equals the size of a largest clique in (V,E1) (instance of 2-Union Independent Set),
which equals the size of a largest clause (instance of 3-SAT), we can state the following generalization
of Theorem 2.

Corollary 1. For each k, k-SAT reduces to Soft Tree Containment on binary k-labeled trees.
Further, CNF-SAT reduces to Soft Tree Containment on binary multilabeled trees.

Corollary 1 immediately raises the question of what happens in the case that N is a 2-labeled tree and
we address this question in Section 4.1. Note that, for Soft Tree Containment, the case that N
is a multilabeled tree reduces straightforwardly to the case that N is a reticulation-visible network,
simply by merging all leaves with the same label i into one reticulation and adding a new child labeled
i to it.

Corollary 2. Soft Tree Containment is NP-hard on reticulation-visible networks, even if the
maximum in-degree is three.

Theorem 2 and Corollary 2 stand in contrast with results for (Strong) Tree Containment, which
is linear-time solvable in both cases [9, 17].

4.1 2-Labeled Trees

In the following, N is a 2-labeled tree and T is a (single-labeled) tree. To solve Tree Containment in
this case, we compute a mappingM : V (T)→ 2V (N) such thatM(u) contains the at most two minima

2Two vertices are in an uncle-nephew relation if the sibling of one is the parent of the other

9

(with respect to ≤N) among all vertices v of N such that Nv displays Tu. If N displays T , there is a
single-labeled subtree S of N that displays T . If, for each u ∈ V (T), we have LCAS(L(u)) ∈ M(u),
then we call S canonical for T . We show that such a canonical subtree always exists.

Lemma 7. N displays T if and only if N has a canonical subtree for T .

Proof. As “⇐” is evident, we just prove “⇒”. To this end, let S be a single-labeled subtree of N that is
a subdivision of T . If S is not canonical, then there is some u ∈ V (T) with x := LCAS(L(u)) /∈M(u).
Since Sx displays Tu, so does Nx. Thus, by definition of M , there is some y ∈ M(u) with y <N x
(recall that x /∈M(u)). But then, we can replace the subtree of S rooted at x with the unique x-y-path
in N and the subtree of Ny displaying Tu. Iterating this construction yields a canonical subtree of N
for T .

To compute M , we consider vertices u ∈ V (T) and ρ ∈ V (N) in a bottom-up manner, checking if Nρ

displays Tu. For each v ∈ V (Tu) with parent p in Tu, each x ∈ M(v) has at most one ancestor y in
M(p) since M contains only minima. For v = u, we let y := ρ. In both cases, we call the unique
x-y-path in Nρ the ascending path of x. A cruicial lemma about ascending paths is the following.

Lemma 8. Let S be a canonical subtree of N ′ for T ′ and let u, v ∈ V (T ′) not be siblings. Let
LCAS(L(u)) and LCAS(L(v)) have ascending paths r and q, respectively. Then, r and q are edge-
disjoint.

Proof. Note that, if u <T ′ v then LCAS(L(p)) ≤S LCAS(L(v)) where p is the parent of u in T ′. Thus,
the highest point of r is below the lowest point of q and the lemma holds. This allows us to suppose
in the following that u and v are incomparable in T ′.

Towards a contradiction, assume that there is a vertex z ∈ V (S) that is internal vertex of both r
and q and, hence, is an ancestor of both u and v in T ′. Then, L(u)]L(v) ⊆ L(z). Further, since u and
v are not siblings, one of u and v has a parent p <T ′ LCAT ′(uv). Without loss of generality, let p be
the parent of u, implying L(p) ∩ L(z) ⊇ L(u) 6= ∅ and L(z) \ L(p) ⊇ L(v) 6= ∅. Since S is canonical,
we have LCAS(L(p)) ∈ M(p) and, thus, the ascending path r of u ends in LCAS(L(p)). Hence, as z
is an internal vertex of r, it holds that z <S LCAS(L(p)), implying L(p) \ L(z) 6= ∅. Since S displays
T ′, the three established relations between L(p) and L(z) contradict Lemma 1.

Clearly, N displays T if and only if M(ρT) 6= ∅, where ρT is the root of T . Further, computation
of M(u) is trivial if u is a leaf. Thus, in the following, we show how to compute M(u) given M(v) for
all v ∈ V (Tu)− u.

In a first step, compute N |L where L is the set of leaves of N whose label occurs in Tu. Then, we
know thatM(v) ⊆ V (N |L) for all v ∈ V (Tu). Second, we mark all vertices ρ in N |L such that, for each
child ui of u in T , there is some xi ∈M(ui) with xi ≤N|L ρ. For each marked vertex ρ in a bottom-up
manner, we test whether Nρ displays Tu using the following formulation as a 2-SAT problem3.

Construction 3. Construct ϕu→ρ as follows. For each v ∈ V (Tu)− u,
(i) for each y ∈M(v), introduce a variable xv→y.
(ii) add the clause

⊕
y∈M(v) xv→y (recall that |M(v)| ≤ 2).

(iii) if the parent p of v in Tu is not u then, for all y ∈M(v) and all z ∈M(p) with y �N z, add the
clause xv→y ⇒ ¬xw→z.

(iv) for each w ∈ V (Tu) − u that is not a sibling of v and each y ∈ M(v) and each z ∈ M(w) such
that the ascending paths of y and z share an edge, add the clause xv→y ⇒ ¬xw→z.

By definition of M(u) it holds that no two vertices in M(u) can be in an ancestor-descendant relation.
For this reason we can ignore all ancestors of a vertex ρ that satisfies ϕu→ρ.

Lemma 9. ϕu→ρ is satisfiable if and only if Nρ displays Tu.
3Note that we are using the XOR operation ((x⊕y) := (x∨y)∧(¬x∨¬y)) as well as implications ((x⇒ y) := (¬x∨y))

in the construction, which can be formulated as clauses with two variables as shown.

10

Proof. “⇐”: Let S be a canonical subtree of Nρ for Tu and let β be an assignment for ϕu→ρ that sets
each xv→y to 1 if and only if y = LCAS(L(v)). Since the LCA of L(v) in S is unique, all clauses of
type (ii) are satisfied by β. If a clause of type (iii) is not satisfied, then there is some v with parent
p in Tu such that y ≤N z for some y ∈ M(v) and z ∈ M(p) and β(xv→y) = 1 and β(xp→z) = 0.
Let z′ ∈ M(p) − z with β(xp→z′) = 1, which exists since all clauses of type (ii) are satisfied. Since
L(p) ⊇ L(v), we know that y ≤S z′ and, as S is a subtree of N , we have y ≤N z′, implying z ≤N z′ or
z′ ≤N z, which contradicts the construction ofM . If a clause of type (iv) is not satisfied, then there are
xv→y and xw→z such that v and w are not siblings in T , β(xv→y) = β(xw→z) = 1, and the ascending
paths of y = LCAS(L(v)) and z = LCAS(L(w)) share an edge. But this contradicts Lemma 8.

“⇒”: Let β be a satisfying assignment for ϕu→ρ. Let ψ ⊆ V (T) × V (N) be a relation such that
(v, y) ∈ ψ if and only if β(xv→y) = 1. Since β satisfies the clauses of type (ii), ψ describes a function
and, slightly abusing notation, we call this function ψ. Let Y be the image of ψ and let S := N |Y ∪{ρ}.
Note that, for all v <T u with parent p 6= u, we know that ψ(v) ≤N ψ(p), since β satisfies the clauses
of type (iii). Thus, for all v, w ∈ V (Tu)− u, we have

w ≤T v ⇒ ψ(w) ≤N ψ(v)⇒ ψ(w) ≤S ψ(v) (1)

We show for all (v, y) ∈ ψ ∪ {(u, ρ)} that y = LCAS(L(v)) and Sy is a canonical subtree of Ny for
Tv. The proof is by induction on the height of v in T . Clearly, if v is a leaf, y is a leaf with the
same label and the claim follows. Otherwise, suppose that the claim holds for all w <T v. Towards a
contradiction, assume that Sy does not display Tv. By Lemma 1, there are w ∈ V (Tv) and z ∈ V (Sy)
such that there are leaves a ∈ L(z) \ L(w), b ∈ L(w) \ L(z), and c ∈ L(w) ∩ L(z). Note that
LCAT (bc) ≤T w <T {LCAT (ab),LCAT (ac)}. Let α be the highest ancestor of a in T with b �T α
and let pα be its parent in T . Let γ be the highest ancestor of c in T with b �T γ and let pγ be
its parent in T . Since b, c <T w and a �T w, we know that pγ <T pα, implying that α and γ are
not siblings in T . Then, as LCAS(ac) ≤S z <S {LCAS(ab),LCAS(bc)} and LCAS(ab) ≤S ψ(pα) and
LCAS(bc) ≤S ψ(pγ), we know that the ascending paths of ψ(α) and ψ(γ) share an edge, contradicting
(iv).

Theorem 3. On 2-labeled trees, Soft Tree Containment can be solved in O(n3) time.

Proof. As correctness follows from Lemma 9, we only show the running time. To this end, note the
N |L can be computed in O(|L|) = O(|L(u)|) time (see, for example [3, Section 8]). To mark all vertices
of N |L that, for each child ui of u in T , have an ancestor in M(ui), we compute the restriction of N |L
to

⋃
iM(ui). Again, this can be done in linear time, that is, O(degT (u)). For each vertex in this

restriction, we can store the set of leaves that descend from it. In a bottom-up manner, we can thus
mark the correct vertices in O(degT (u)

2) time.
We construct ϕu→ρ for each pair (u, ρ) as follows. To check y �N z efficiently in Construction 3(iii),

we can prepare a 0/1-matrix with an entry for each pair of vertices in N . This table has size O(n2)
and can be computed in the same time by a simple bottom-up scan of N . To construct the clauses of
type (iv), we first order the vertices in Nρ. For each v in this order, we construct its ascending path
in O(|Nρ|) time and store v in all edges on this path. Thus, when constructing the clauses of type (iv)
for a vertex v, we can merge the lists of vertices whose ascending path shares an edges with that of v.
Thus, ϕu→ρ can be constructed and solved in O(|Nρ|2) = O(|L(u)|2) time and the total time to decide
whether N displays T is O(

∑
u∈V (T) |L(u)|2) = O(n3).

Theorem 3 implies 4 that we can solve bifurcating reticulation-visible networks in polynomial time,
complementing Corollary 2

Corollary 3. Soft Tree Containment can be solved in O(n3) time on reticulation-visible networks
of in-degree at most two.

4See [17] for a the corresponding reduction.

11

Remarks: in practice, it will be much faster to not consider the whole subtree N |L but only N ||Q
where Q :=

⋃
iM(ui). In general though, vertices of Q might be mutually incompatible, that is, two

children u1 and u2 of u might map to y1 ∈ M(u1) and y2 ∈ M(u2) with y1 ≤N y2. If this occurs, it
is unclear whether or not both Tu1 and Tu2 can be displayed by Ny2 at the same time or not, as this
depends on the ascending paths of the vertices in N that the children of u1 and u2 map to. Thus, we
would have to “develope” y1 and y2, where developing y1 means to replace y1 with the subtree rooted
at y1 restricted to

⋃
iM(u1,i) where u1,i are the children of u1 in T . In theory, we might face another

incompatibility at the level of the children of u1 and this may, in theory, continue down to the leaves
of T . Thus, in a worst-case consideration, we can just start with the full subtree N |L while in practice,
the above strategy of developing incompatabilities will be much faster.

Acknowledgements. The project leading to this work was conceived on the 2017 research retreat
of the algorithms and complexity group of TU-Berlin.

References
[1] M. Bordewich and C. Semple. Reticulation-visible networks. Advances in Applied Mathematics, (78):114–141, 2016.
[2] J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. Proceedings of the National Academy of

Sciences, 110(46):18566–18571, 2013.
[3] R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An o(n logn) algorithm for the maximum

agreement subtree problem for binary trees. SIAM Journal on Computing, 30(5):1385–1404, 2000.
[4] A. Dress, K. Huber, J. Koolen, V. Moulton, and A. Spillner. Basic Phylogenetic Combinatorics. Cambridge

University Press, 2004.
[5] J. Fakcharoenphol, T. Kumpijit, and A. Putwattana. A faster algorithm for the tree containment problem for binary

nearly stable phylogenetic networks. In 12th International Joint Conference on Computer Science and Software
Engineering (JCSSE’15), pages 337–342. IEEE, 2015.

[6] P. Gambette, A. D. M. Gunawan, A. Labarre, S. Vialette, and L. Zhang. Locating a tree in a phylogenetic network
in quadratic time. volume 9029 of LNCS, pages 96–107. Springer, 2015.

[7] A. D. Gunawan, B. Lu, and L. Zhang. A program for verification of phylogenetic network models. Bioinformatics,
32(17):i503–i510, 2016.

[8] A. D. Gunawan, B. DasGupta, and L. Zhang. A decomposition theorem and two algorithms for reticulation-visible
networks. Information and Computation, (252):161–175, 2017.

[9] A. D. M. Gunawan. Solving tree containment problem for reticulation-visible networks with optimal running time.
CoRR, abs/1702.04088, 2017.

[10] D. Gusfield. ReCombinatorics: the algorithmics of ancestral recombination graphs and explicit phylogenetic net-
works. MIT Press, 2014.

[11] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation. Commun. ACM, 16(6):
372–378, June 1973. ISSN 0001-0782.

[12] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic networks: concepts, algorithms and applications. Cam-
bridge University Press, 2010.

[13] I. A. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their branches in the network is hard. Theoretical
Computer Science, 401(1-3):153–164, 2008.

[14] T. J. Treangen and E. P. Rocha. Horizontal transfer, not duplication, drives the expansion of protein families in
prokaryotes. PLoS Genet, 7(1):e1001284, 2011.

[15] R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller. Interval scheduling and colorful independent sets. J.
Scheduling, 18(5):449–469, 2015. doi: 10.1007/s10951-014-0398-5.

[16] L. Van Iersel, C. Semple, and M. Steel. Locating a tree in a phylogenetic network. Information Processing Letters,
110(23):1037–1043, 2010.

[17] M. Weller. Linear-time tree containment in phylogenetic networks. CoRR, abs/1702.06364, 2017.

12

